Katarzyna Dems, Institute of Mathematics, Łódź Technical University, al. Politechniki 11, 90-924 Łódź, Poland. email: kasidems@p.lodz.pl

ON J-CAUCHY SEQUENCES

Abstract

We study J-convergence and J-Cauchy sequences in metric spaces where $\mathcal{I} \subset \mathcal{P}(\mathbb{N}^k)$ is an ideal containing all singletons and $k \in \{1, 2\}$.

1 Introduction.

Throughout the paper, \mathbb{N} denotes the set of positive integers, $\mathcal{P}(X)$ stands for the power set of X. For a subset E of a metric space, clE will denote the closure of E. The ball with center x and radius r will be written as B(x, r).

Recall that a sequence $\{x_n\}_{n\in\mathbb{N}}$ of points in a metric space (X, ρ) is said to be *statistically convergent* to $x \in X$ if $d(A(\varepsilon)) = 0$ for each $\varepsilon > 0$ where $A(\varepsilon) = \{n \in \mathbb{N} : \rho(x_n, x) \ge \varepsilon\}$ and $d(E) = \lim_{n \to \infty} (1/n) \cdot \operatorname{card}(\{k \in E : k \le n\})$ is the *density* of a set $E \subset \mathbb{N}$ provided that the limit exists.

Several papers on statistical convergence have been published. See [2], [3], [5]. In [4] and [7] an interesting generalization of this notion was proposed. Namely, it is easy to check that the family $\mathcal{I}_d = \{A \subset \mathbb{N} : d(A) = 0\}$ forms an ideal of subsets of \mathbb{N} . Thus, one may consider an arbitrary ideal $\mathcal{I} \subset \mathcal{P}(\mathbb{N})$ (assumed non-trivial, i.e. $\emptyset \neq \mathcal{I} \neq \mathcal{P}(\mathbb{N})$) to modify the definition of statistical convergence as follows. A sequence $\{x_n\}_{n\in\mathbb{N}}$ in (X, ρ) is called \mathcal{I} -convergent to $x \in X$ (in short $x = \mathcal{I} - \lim_{n \to \infty} x_n$) if $A(\varepsilon) \in \mathcal{I}$ for each $\varepsilon > 0$. The article [4] contains many examples and properties of \mathcal{I} -convergence. We shall continue these studies. Our main aim is to prove that, in a complete space (X, ρ) , a Cauchy-type condition (borrowed from [3]) is necessary and sufficient for the \mathcal{I} -convergence of a given sequence. We also give equivalent formulations of \mathcal{I} -Cauchy condition and obtain \mathcal{I} -Cauchy condition for double sequences and show some applications.

Key Words: Statistical convergence, ideals of sets, Cauchy sequences

Mathematical Reviews subject classification: Primary 26A03; Secondary 40A05, 54A20. Received by the editors December 3, 2003

Communicated by: B. S. Thomson

Following [4], \mathfrak{I} is called *admissible* if it contains all singletons. The ideal \mathfrak{I}_{fin} of all finite subsets of \mathbb{N} is the smallest admissible ideal in $\mathcal{P}(\mathbb{N})$. Observe that the usual convergence, in a given space (X, ρ) coincides with \mathfrak{I}_{fin} -convergence, and that the usual convergence implies \mathfrak{I} -convergence, for any admissible ideal \mathfrak{I} .

2 J-Cauchy Condition.

Let (X, ρ) be a metric space and $\mathfrak{I} \subset \mathfrak{P}(\mathbb{N})$ be an admissible ideal. It is easy to check that the classical Cauchy condition for a sequence $\{x_n\}_{n\in\mathbb{N}}$ in (X, ρ) is equivalent to the following: for each $\varepsilon > 0$ there exists a positive integer k such that $\rho(x_n, x_k) < \varepsilon$ for all $n \geq k$. A similar idea was used by Fridy [3] in formulation of the statistical Cauchy condition for a sequence of real numbers. We can modify it to define a Cauchy-type condition associated with \mathfrak{I} -convergence in (X, ρ) . Namely, \mathfrak{I} -Cauchy condition reads as follows: for each $\varepsilon > 0$ there exists a $k \in \mathbb{N}$ such that $\{n \in \mathbb{N} : \rho(x_n, x_k) \geq \varepsilon\} \in \mathfrak{I}$. Note that, for \mathfrak{I}_{fin} , this yields the usual Cauchy condition. Fridy [3] proved that statistical Cauchy condition is equivalent to the statistical convergence of a sequence of reals. However, in any metric space we have the following proposition.

Proposition 1. If a sequence of points in X is \Im -convergent in X then it fulfills \Im -Cauchy condition.

PROOF. Let $\mathbb{I} - \lim_{n \to \infty} x_n = x$ and $\varepsilon > 0$. Thus $A(\varepsilon/2) = \{n \in \mathbb{N} : \rho(x_n, x) \ge \varepsilon/2\} \in \mathbb{J}$. Pick an $k \in \mathbb{N}$ such that $k \notin A(\varepsilon/2)$. Hence $\{n \in \mathbb{N} : \rho(x_n, x_k) \ge \varepsilon\} \subset \{n \in \mathbb{N} : \rho(x_n, x) \ge \varepsilon/2 \text{ or } \rho(x, x_k) \ge \varepsilon/2\} = A(\varepsilon/2) \in \mathbb{J}$. \Box

In the next theorem we shall show that the equivalence of J-convergence and J-Cauchy condition is true for complete metric spaces. Moreover, we shall give a sufficient condition for a metric space to be complete, by the use of J-convergence of J-Cauchy sequences. The proofs of Proposition 1 and of part (1) in Theorem 2 mimic the arguments of Fridy [3].

- **Theorem 2.** (1). If (X, ρ) is a complete space then every J-Cauchy sequence in X is J-convergent in X.
- (2). If every J-Cauchy sequence in X is J-convergent in X then X is complete.

PROOF. (1). Let $\{x_n\}_{n\in\mathbb{N}}$ be an J-Cauchy sequence in a complete space (X, ρ) . Consider $\varepsilon_m = 1/2^m$, $m \in \mathbb{N}$, and, according to J-Cauchy condition, pick numbers $k(m) \in \mathbb{N}$, $m \in \mathbb{N}$, such that $A_m = \{n \in \mathbb{N} : \rho(x_n, x_{k(m)}) \geq \varepsilon_m/2\} \in \mathcal{I}$ for all $m \in \mathbb{N}$. Define inductively $B_1 = \operatorname{clB}(x_{k(1)}, \varepsilon_1), B_{m+1} = B_m \cap \operatorname{clB}(x_{k(m+1)}, \varepsilon_{m+1}), m \in \mathbb{N}$. Let us prove that $B_m \neq \emptyset$ for each $m \in \mathbb{N}$.

Indeed, we have $A_1 \in \mathcal{J}$ and $x_n \in B_1$ for all $n \notin A_1$. Assume that $m \in \mathbb{N}$ and $C \in \mathcal{J}$ is a set such that $x_n \in B_m$ for each $n \notin C$. We have $A_{m+1} \in \mathcal{J}$ and $x_n \in \operatorname{clB}(x_{k(m+1)}, \varepsilon_{m+1})$ for each $n \notin A_{m+1}$. Thus $C \cup A_{m+1} \in \mathcal{J}$ and $x_n \in B_{m+1}$ for all $n \notin C \cup A_{m+1}$. Since additionally $B_{m+1} \subset B_m$ for all $m \in \mathbb{N}$, and the diameter of B_m tends to 0, there is an $x \in X$ such that $\bigcap_{m \in \mathbb{N}} B_m = \{x\}$, by the Cantor theorem for complete spaces. It suffices to show that $\mathcal{J} - \lim_{n \to \infty} x_n = x$. Let $\varepsilon > 0$ and pick an $m \in \mathbb{N}$ such that $\varepsilon_m < \varepsilon/2$.

We have

$$A(\varepsilon) \subset \{ n \in \mathbb{N} : \rho(x_n, x_{k(m)}) + \rho(x_{k(m)}, x) \ge \varepsilon \}.$$

But $\rho(x_{k(m)}, x) \leq \varepsilon_m < \varepsilon/2$ since $x \in B_m$. Therefore

$$A(\varepsilon) \subset \{n \in \mathbb{N} : \rho(x_n, x_{k(m)}) + \varepsilon/2 \ge \varepsilon\} = \{n \in \mathbb{N} : \rho(x_n, x_{k(m)}) \ge \varepsilon/2\}$$
$$\subset \{n \in \mathbb{N} : \rho(x_n, x_{k(m)}) > \varepsilon_m\} \subset A_m \in \mathfrak{I}.$$

(2). Let $\{x_n\}_{n\in\mathbb{N}}$ be a Cauchy sequence in (X, ρ) . Since \mathfrak{I} is admissible, $\{x_n\}_{n\in\mathbb{N}}$ is an \mathfrak{I} -Cauchy sequence. Thus, by assumption, we have $\mathfrak{I} - \lim_{n\to\infty} x_n = x$ for some $x \in X$. Put $k_0 = 0$ and for $\varepsilon = 1/n, n \in \mathbb{N}$, pick inductively $k_n \in \mathbb{N} \setminus (\{0, \ldots, k_{n-1}\} \cup A(\varepsilon_n))$. Thus $\rho(x_{k_n}, x) < 1/n$ for every n which implies that $\lim_{n\to\infty} x_{k_n} = x$. Consequently, $\lim_{n\to\infty} x_n = x$.

Note that J-Cauchy sequences lack some natural properties of Cauchy sequences. For instance, a subsequence of an J-Cauchy sequence can be not J-Cauchy which is shown in the following example inspired by [4, Prop. 3.1(ii)].

Example 3. Assume that a metric space (X, ρ) contains at least two distinct points x and y. Let $\mathcal{I} \subset \mathcal{P}(\mathbb{N})$ be an admissible ideal such that there exists a partition of \mathbb{N} into pairwise disjoint infinite sets such that $A \in \mathcal{I}$ and $B \notin \mathcal{I}$, $C \notin \mathcal{I}$. Let $A = \{m_n : n \in \mathbb{N}\}, B \cup C = \{k_n : n \in \mathbb{N}\}$ with m_n and k_n strictly increasing. Define $\{x_n\}_{n \in \mathbb{N}}$ as follows. Put $x_{k_n} = x$ for all $n \in \mathbb{N}$. Let

$$x_{m_n} = \begin{cases} x & \text{if } n \in A \cup B \\ y & \text{if } n \in C \end{cases}$$

Observe that $\mathcal{I} - \lim_{n \to \infty} x_n = x$, thus $\{x_n\}_{n \in \mathbb{N}}$ is \mathcal{I} -Cauchy, by Theorem 2. However, the subsequence $\{x_{m_n}\}_{n \in \mathbb{N}}$ is not \mathcal{I} -Cauchy (consider $\varepsilon = \rho(x, y)$.)

The statements of Proposition 1 and Theorem 2 (1) were mentioned in [7]. The authors of [7] use however filters rather than ideals. Their J-Cauchy condition is formulated in a different but equivalent form. Now, we shall prove this equivalence and we add one more equivalent condition.

For $\varepsilon > 0$ and a sequence $\{x_n\}_{n \in \mathbb{N}}$ of points in (X, ρ) , we denote $E_k(\varepsilon) = \{n \in \mathbb{N} : \rho(x_n, x_k) \ge \varepsilon\}, k \in \mathbb{N}.$

Proposition 4. For a sequence $\{x_n\}_{n\in\mathbb{N}}$ of points in (X, ρ) , the following conditions are equivalent:

- (1). $\{x_n\}_{n\in\mathbb{N}}$ is an \mathbb{J} -Cauchy sequence,
- (2). (cf. [7]) $(\forall \varepsilon > 0) (\exists D \in \mathfrak{I}) (\forall m, n \notin D) \quad \rho(x_m, x_n) < \varepsilon$,
- (3). $(\forall \varepsilon > 0) \quad \{k \in \mathbb{N} : E_k(\varepsilon) \notin \mathfrak{I}\} \in \mathfrak{I}.$

PROOF. (1) \Rightarrow (2). Let $\varepsilon > 0$. Put $D = E_k(\varepsilon/2)$ where $k \in \mathbb{N}$ is chosen for $\varepsilon/2$ in the J-Cauchy condition for $\{x_n\}_{n\in\mathbb{N}}$. Thus $D \in \mathbb{J}$ and for any $m, n \notin D$ we have $\rho(x_n, x_k) < \varepsilon/2$ and $\rho(x_m, x_k) < \varepsilon/2$. Hence $\rho(x_n, x_m) < \varepsilon$ by the triangle inequality.

(2) \Rightarrow (3). Let $\varepsilon > 0$ and let D be chosen as in (2). We shall show that $\{k \in \mathbb{N} : E_k(\varepsilon) \notin \mathfrak{I}\} \subset D$. Let $k \in \mathbb{N}$ be such that $E_k(\varepsilon) \notin \mathfrak{I}$. Suppose that $k \notin D$. Pick an $n \in E_k(\varepsilon) \setminus D$. Thus $\rho(x_n, x_k) \geq \varepsilon$ by the definition of $E_k(\varepsilon)$. But $n, k \notin D$ implies $\rho(x_n, x_k) < \varepsilon$ by (2), contradiction.

(3) \Rightarrow (1). ¿From (3) we have $(\forall \varepsilon > 0)$ $\{k \in \mathbb{N} : E_k(\varepsilon) \in \mathcal{I}\} \neq \emptyset$ which yields (1).

3 Double Sequences.

In [1], the notion of \mathfrak{I} -convergence was extended to the case when \mathfrak{I} is an ideal of subsets of \mathbb{N}^2 and one considers a double sequence $\{x_{mn}\}_{m,n\in\mathbb{N}}$ of points in (X, ρ) . (The further generalization deals with multi-indexed sequences and with ideals in $\mathcal{P}(\mathbb{N}^k)$ for $k \in \mathbb{N}$.) Namely, we say that $\{x_{mn}\}_{m,n\in\mathbb{N}}$ is \mathfrak{I} convergent to $x \in X$ (in short $\mathfrak{I} - \lim x_{mn} = x$) if $\{(m, n) \in \mathbb{N}^2 : \rho(x_{mn}, x) \geq \varepsilon\} \in \mathfrak{I}$ for each $\varepsilon > 0$. Again an ideal $\mathfrak{I} \subset \mathcal{P}(\mathbb{N}^2)$ is called admissible if it is non-trivial and contains all singletons.

Proposition 5. Let $\{x_{mn}\}_{m,n\in\mathbb{N}}$ be a sequence of points in a complete metric space (X, ρ) and let $\mathfrak{I} \subset \mathfrak{P}(\mathbb{N}^2)$ be an admissible ideal. The following conditions are equivalent:

(1). $\{x_{mn}\}_{m,n\in\mathbb{N}}$ is an J-convergent sequence,

(2). $(\forall \varepsilon > 0)(\exists (M, N) \in \mathbb{N}^2) \quad \{(m, n) \in \mathbb{N}^2 : \rho(x_{mn}, x_{MN}) \ge \varepsilon\} \in \mathfrak{I}.$

If moreover, \mathfrak{I} contains all sets of the form $\{n\} \times \mathbb{N}, \mathbb{N} \times \{n\}$ (for $n \in \mathbb{N}$), each of the above conditions is equivalent to:

(3). $(\forall \varepsilon > 0)(\forall l \in \mathbb{N})(\exists M, N \ge l) \quad \{(m, n) \in \mathbb{N}^2 : \rho(x_{mn}, x_{MN}) \ge \varepsilon\} \in \mathcal{I}.$

PROOF. To show (1) \Leftrightarrow (2), fix a bijection $\varphi : \mathbb{N}^2 \to \mathbb{N}$ and put $\mathcal{J} = \{\varphi(A) : A \in \mathcal{I}\}$. For an $x \in X$ we have $\mathcal{I} - \lim x_{mn} = x \Leftrightarrow \mathcal{J} - \lim_{k \to \infty} x_{\varphi_{-1}(k)} = x$. By Proposition 1 and Theorem 2 part (1) this last condition is equivalent to $(\forall \varepsilon > 0)(\exists j \in \mathbb{N}) \quad \{k \in \mathbb{N} : \rho(x_{\varphi^{-1}(k)}, x_{\varphi^{-1}(j)}) \ge \varepsilon\} \in \mathcal{J}$ which in turn is equivalent to (2) when we put $(M, N) = \varphi^{-1}(j)$. Now, assume that \mathcal{I} contains all sets of the form $\{n\} \times \mathbb{N}, \mathbb{N} \times \{n\}$ (for $n \in \mathbb{N}$). It is obvious that (3) \Rightarrow (2). Let us show implication (1) \Rightarrow (3). Assume that $\mathcal{I} - \lim x_{mn} = x$ and fix $\varepsilon > 0$ and $l \in \mathbb{N}$. Thus $\{(m, n) \in \mathbb{N}^2 : \rho(x_{mn}, x) \ge \varepsilon/2\} \in \mathcal{I}$. Since $(\mathbb{N} \times \{1, \ldots, l-1\}) \cup (\{1, \ldots, l-1\} \times \mathbb{N}) \in \mathcal{I}$, we can pick $(M, N) \in \{l, l + 1, \ldots\} \times \{l, l + 1, \ldots\}$ with $\rho(x_{MN}, x) < \varepsilon/2$. Now, we have $\{(m, n) \in \mathbb{N}^2 : \rho(x_{mn}, x_{MN}) \ge \varepsilon\} \subset \{(m, n) \in \mathbb{N}^2 : \rho(x_{mn}, x) \ge \varepsilon/2\} \in \mathcal{I}$ as desired.

Remark. J-Cauchy condition in the form (3) was proved by Móricz [6] in the particular case when \mathfrak{I} consists of all sets $S \subset \mathbb{N}^2$ with two-dimensional density $d_2(S)$ equal to 0 where $d_2(S) = \lim_{m,n\to\infty} (1/(mn)) \cdot \operatorname{card}(S \cap (\{1,\ldots,m\} \times \{1,\ldots,n\}))$ and $\lim_{m,n\to\infty} z_{mn} = z$ is meant in the Pringsheim's sense, that is $(\forall \varepsilon > 0)(\exists l \in \mathbb{N})(\forall m, n \ge l) \quad |z_{mn} - z| < \varepsilon$. It is easy to check that the ideal \mathfrak{I} defined in such a manner contains all sets of the form $\{n\} \times \mathbb{N}, \mathbb{N} \times \{n\}$ (for $n \in \mathbb{N}$).

Acknowledgements. I would like to thank Professor Marek Balcerzak, whose helpful suggestions led to a substantial improvement in this paper.

Added in Proof. Recently another proof of Theorem 2(1) has been published in the paper B. K. Lahiri, Pratulananda Das, *Further results on I-limit superior* and *I-limit inferior*, Mathematical Communications, 8 (2003), 151–156.

References

- M. Balcerzak, K. Dems, Some types of convergence and related Baire systems, Real Analysis Exchange, **31** (2004/05), this issue.
- [2] H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241–244.
- [3] J. A. Fridy, On statistical convergence, Analysis, 5 (1985), 301–313.
- [4] P. Kostyrko, T. Šalát, W. Wilczyński, J-convergence, Real Anal. Exchange, 26 (2000/2001), 669–689.

- [5] H. I. Miller, C. Orhan, On almost convergent and statistically convergent subsequences, Acta Math. Hung., 93 (2001), 135–151.
- [6] F. Móricz, Statistical convergence of multiple sequences, Arch. Math., 81 (2003), 82–89.
- [7] F. Nurray, W. H. Ruckle, Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl., 245 (2000), 513–527.