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Abstract

Let Ω ⊂ Rn be a domain. The result of J. Kauhanen, P. Koskela
and J. Malý [4] states that a function f : Ω → R with a derivative in
the Lorentz space Ln,1(Ω, Rn) is n-absolutely continuous in the sense
of [5]. We give an example of an absolutely continuous function of two
variables, whose derivative is not in L2,1. The boundary behavior of
n-absolutely continuous functions is also studied.

1 Introduction.

Absolutely continuous functions of one variable are admissible transformations
for the change of variables in the Lebesgue integral. Recently, J. Malý [5] in-
troduced a class of n-absolutely continuous functions giving an n-dimensional
analogue of the notion of absolute continuity from this point of view. For the
recent development in the theory of n-absolutely continuous functions also see
[2] and [3].

Suppose that Ω ⊂ Rn is a domain. A function f : Ω → Rm is said to be
n-absolutely continuous if for each ε > 0 there is δ > 0 such that for each
disjoint finite family {Bi} of open balls in Ω we have∑

i

Ln(Bi) < δ =⇒
∑

i

(oscBi
f)n < ε.

It was shown in [5] that n-absolute continuity implies weak differentiability
with gradient in Ln, differentiability a.e., area and coarea formula.
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It was proved by J. Kauhanen, P. Koskela and J. Malý [4] that a function
f : Ω → R has an n-absolutely continuous representative if ∇f ∈ Ln,1(Ω, Rn).
This result gains in interest if we realize that Ln,1(Ω) is the largest rearrange-
ment invariant Banach space of functions on Rn with such a property, (see [1]).
In the third section we give an example of 2-absolutely continuous function,
whose derivative is not in the Lorentz space L2,1.

Sections 4 and 5 are devoted to the study of the boundary behavior of n-
absolutely continuous functions. The aim of these sections is to find conditions
on the domain Ω which guarantee that every n-absolutely continuous function
on Ω can be continuously extended to ∂Ω. Let 0 < α < 1. Example 4.3
demonstrates that the existence of a continuous extension is not generally
guaranteed by the condition that a domain Ω has C1,α boundary. On the
other hand, in Section 5 it is shown that a continuous extension exists if Ω
has a C1,1 boundary. (See Preliminaries for the definition of C1,α boundary.)

2 Preliminaries.

We will denote by Ln the n-dimensional Lebesgue measure. We will use the
symbol αn to denote the Lebesgue measure of the unit ball in Rn.

We will denote by B(x, r) the n-dimensional Euclidean open ball with
the center x and diameter r and by B(x, r) the corresponding closed ball.
Throughout the paper, we will use the letter B only for open balls.

For a mapping f : Ω → R, we denote by f ′(x) the vector of all partial
derivatives of f at x. We write ∇f for the weak (distributional) derivative.

The convex hull of a set A ⊂ Rn will be denoted by conv(A). The closure
of a set A is denoted by A and its boundary is denoted by ∂A. We denote by
|x| the Euclidean norm of a point x ∈ Rd.

Let A ⊂ Rd be an open set and 0 < α ≤ 1. A function F : A → Rd is said
to be α-Hölder continuous if there is a constant K > 0 such that

|F (x)− F (y)| ≤ K|x− y|α for every x, y ∈ A. (2.1)

As usual, F is called Lipschitz if it is 1-Hölder continuous. We will denote by
C1,α(A) the family of functions from A to R whose derivative, as a function
from A to Rd, is α-Hölder continuous. Let us denote by C1(A) the family of
functions whose derivative is continuous.

We will use the letter Ω to denote a domain; i.e., a connected open set
in Rn, n ≥ 2. Let 0 < α ≤ 1. A domain Ω is said to have C1,α boundary
(or C1 boundary) ∂Ω if for every x0 ∈ ∂Ω there is a ball B(x0, r0) ⊂ Rn,
i ∈ {1, . . . , n}, an open set D ⊂ Rn−1 and h ∈ C1,α(Rn−1) (or h ∈ C1(Rn−1))
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such that

∂Ω ∩B(x0, r0) = {x ∈ Rn : [x1, . . . , xi−1, xi+1, . . . , xn] ∈ D and
h(x1, . . . , xi−1, xi+1, . . . , xn) = xi}

(2.2)

and that either G+ ⊂ Ω and G− ∩ Ω = ∅ or G− ⊂ Ω and G+ ∩ Ω = ∅ where

G+ = {x ∈ B(x0, r0) : h(x1, . . . , xi−1, xi+1, . . . , xn) < xi}
and G− = {x ∈ B(x0, r0) : h(x1, . . . , xi−1, xi+1, . . . , xn) > xi}.

(2.3)

We will need the following version of the Taylor theorem which holds for
C1,1(Rd) mappings.

Proposition 2.1. Let h : Rd → R be a C1,1 mapping. Let K denotes the
Lipschitz constant of h′ (i.e., |h′(x)− h′(y)| ≤ K|x− y| for every x, y ∈ Rd).
Then ∣∣h(x̃0 + x̃)− h(x̃0)− h′(x̃0)x̃

∣∣ ≤ K

2
|x̃|2 (2.4)

for every x̃0, x̃ ∈ Rd.

If f : Ω → R is a mapping and x ∈ Ω, we write mlip(f, x) for the “maximal
function” version of Lipschitz constant

mlip(f, x) = sup
{∣∣∣f(x)− f(y)

x− y

∣∣∣ :

y ∈ Ω \ {x} and x, y ∈ B for some ball B ⊂ Ω
}

.

We write oscB(x,r) f for the oscillation of f over the ball B(x, r), which is the
diameter of the image f(B(x, r)). The support of a function f : Ω → R is
denoted by spt(f) = {x ∈ Ω : f(x) 6= 0}.

Throughout this paper, we use the letter γ for a continuous mapping γ :
[0, 1] → Ω. Set 〈γ〉 = {γ(t) : t ∈ [0, 1]}. The length of the curve γ is denoted
by `(γ). For x, y ∈ Ω, we will denote by ρΩ(x, y) the distance of x and y in
Ω; i.e.,

ρΩ(x, y) = inf{`(γ); γ : [0, 1] → Ω, γ(0) = x and γ(1) = y}.

We use the convention that C denotes some positive constant. The value
of this constant may differ from occurrence to occurrence but for a fixed n
(the dimension of the underlying space Rn) it is always an absolute constant.

Given a function f : Ω → R, the n-variation of f on Ω is defined by

Vn(f,Ω) = sup
{∑

i

(oscBi
f)n : {Bi} is a disjoint finite family of balls in Ω

}
.
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We define the space ACn(Ω) to be the family of all n-absolutely continuous
functions f : Ω → R such that Vn(f,Ω) < ∞.

A function f : Ω → R is said to satisfy the RR-condition (written f ∈
RR(Ω)) if there is a function g ∈ L1(Ω), called the weight, such that(

oscB(x,r) f
)n

≤
∫

B(x,r)

g

for every ball B(x, r) ⊂ Ω. A condition similar to RR was used by Rado
and Reichelderfer [6] as a sufficient condition for the area formula and for the
differentiability a.e. It was shown in [5] that the RR-condition easily implies
n-absolute continuity.

Theorem 2.2 (RR-condition). Suppose that a function f : Ω → R satisfies
the RR-condition. Then f ∈ ACn(Ω).

Moreover the results of M. Csörnyei [2] give RR(Ω) = ACn(Ω), but we will
not need this fact in this paper.

3 Lorentz Space Ln,1.

If f : Ω → Rm is a measurable function, we define its distributional function
m(·, f) by

m(σ, f) = Ln({x : |f(x)| > σ}), σ > 0,

and the nonincreasing rearrangement f? of f by

f?(t) = inf{σ : m(σ, f) ≤ t}.

The Lorentz space Ln,1(Ω, Rm) is defined to be the class of all measurable
functions f : Ω → Rm such that∫ ∞

0

t
1
n f?(t)

dt

t
< ∞.

For abbreviation, we write Ln,1(Ω) instead of Ln,1(Ω, R). For an introduction
to Lorentz spaces see for instance [7].

The following theorem of J. Kauhanen, P. Koskela and J. Malý [4] states
that functions with the distributional derivative in the Lorentz space Ln,1 are
n-absolutely continuous.

Theorem 3.1. Suppose that ∇f ∈ Ln,1(Ω, Rn). Then there is a representative
of f such that f ∈ ACn(Ω).
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This result is quite sharp, because A. Cianchi and L. Pick [1] proved that
Ln,1 is the largest rearrangement invariant Banach space of functions on Rn

with the property ∇f ∈ Ln,1(Ω, Rn) ⇒ f ∈ C(Ω) (see also [4, Theorem F]).
The rest of this section is devoted to the proof that there are ε > 0 and

f ∈ AC2(B([0, 0], ε)) such that ∇f /∈ L2,1(B([0, 0], ε), R2). It follows that
these two classes of functions do not coincide.

Lemma 3.2. Let B(0, R) ⊂ Rn and let f : B(0, R)\{0} → R+ be a continuous
function. Suppose that there is a decreasing function g : (0, R) → R+ such
that f(x) = g(|x|). Then f ∈ Ln,1(B(0, R)) if and only if

∫ R

0
g < ∞.

Proof. Since m(σ, f) = Ln({x : |f(x)| > σ}) = αn(g−1(σ))n, it follows that

f?(t) = inf{σ : m(σ, f) ≤ t} = inf{σ : αn(g−1(σ))n ≤ t} = g
( n

√
t

n
√

αn

)
.

From this we have∫ ∞

0

t
1
n f?(t)

dt

t
=

∫ αnRn

0

t
1
n f?(t)

dt

t

=
∫ αnRn

0

t
1
n g

( n
√

t
n
√

αn

)dt

t
= C

∫ R

0

g(s)ds.

Lemma 3.3. Let B(0, R) ⊂ Rn and let G : [0, R] → R+ be an increasing
continuous function which is differentiable on (0, R). Assume further that G′

is a continuous decreasing function on (0, R). Then a function F (x) = G(|x|)
satisfies F ′ ∈ Ln,1(B(0, R), Rn).

Proof. Set f = |F ′| and g = G′. Clearly, f and g satisfy the assumptions of
Lemma 3.2 and

∫ R

0
g =

∫ R

0
G′ = G(R)−G(0) < ∞ .

Remark 3.4. From Lemma 3.3 and Theorem 3.1 we have that ACn(Ω) func-
tions can have arbitrarily “bad” modulus of continuity even on compact sub-
sets of Ω. Note that functions from ACn(Ω) are not necessarily uniformly
continuous on Ω if ∂Ω is not “nice” (see Section 4 for details).

The following lemma provides a criterion for absolute continuity.

Lemma 3.5. Let Ω ⊂ Rn be a domain and let f : Ω → R. If g(x) =
mlipn(f, x) ∈ L1(Ω) then f satisfies the RR-condition with weight Cg, and
hence f ∈ ACn(Ω).
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Proof. Fix B = B(z, r) ⊂ Ω and x ∈ B. There exist a, b ∈ B such that

oscB f

2
≤ |f(a)− f(b)|.

Since |a− x| ≤ 2r and |b− x| ≤ 2r, we have

oscn
B f

rn
≤ C

|f(a)− f(b)|n

rn
≤ C

(
|f(a)− f(x)|n

(2r)n
+
|f(b)− f(x)|n

(2r)n

)
≤ C

(
|f(a)− f(x)|n

|a− x|n
+
|f(b)− f(x)|n

|b− x|n

)
≤ C mlipn(f, x) = Cg(x)

It follows that

oscn
B(z,r) f = C

∫
B(z,r)

oscn
B(z,r) f

rn
dx ≤ C

∫
B(z,r)

g(x)dx.

Hence f satisfies the RR-condition with weight Cg, and the desired conclusion
follows from Theorem 2.2.

Example 3.6. There is a function f : B([0, 0], 1/2) → R such that f ∈
AC2(B([0, 0], 1/2)), but mlip2(f, x) /∈ L1(B([0, 0], 1/2)).

Proof. Set

f(x) =

{
1

| log |x||1/2 for x ∈ B([0, 0], 1/2),

0 for x = [0, 0].

Clearly, Lemma 3.3 and Theorem 3.1 give that f ∈ AC2(B([0, 0], 1/2)). An
easy computation shows that∫

B

mlip2(f, x) dx =
∫

B

∣∣∣f(x)− f(0)
x− 0

∣∣∣2 dx =
∫

B

1
|x|2

∣∣log |x|
∣∣ dx

= C

∫ 1
2

0

1
r2| log r|

r dr = C

∫ log 1
2

−∞

1
|a|

da = ∞.

Theorem 3.7. There exist 0 < ε0 < 1/2 and F : B([0, 0], ε0) → R such that
F ∈ AC2(B([0, 0], ε0)) and ∇F /∈ L2,1(B([0, 0], ε0)).

Proof. Set

g(r) =

{
1

ln r r sin 1
r for r ∈ (0, 1/2),

0 for r = 0.

We claim that the function F (x) = g(|x|) satisfies desired conditions if ε0 is
small enough. Plainly, F ′ ∈ C(B([0, 0], 1/2) \ {0}) and ∇F = F ′ a.e.
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Let us first prove that F ′ /∈ L2,1(B([0, 0], ε0)). We compute

|F ′(x)| = |g′(|x|)| =
∣∣∣ 1
ln |x|

|x| −1
|x|2

cos
1
|x|

+
1

ln |x|
sin

1
|x|

+
1
|x|

−1
ln2 |x|

|x| sin 1
|x|

∣∣∣.
Let

M =
{

r ∈
(

0,
1
2

)
:
∣∣∣∣cos

1
r

∣∣∣∣ ≥ 1
2

}
=

⋃
k∈N

[
1

π
3 + kπ

,
1

−π
3 + kπ

]
. (3.1)

We have

|g′(r)| ≥
∣∣∣ 1
r ln r

cos
1
r

∣∣∣− ∣∣∣ 1
ln r

sin
1
r

∣∣∣− ∣∣∣ 1
ln2 r

sin
1
r

∣∣∣ ≥ −1
2r ln r

−
∣∣∣ 1
ln r

∣∣∣− 1
ln2 r

for every r ∈ M . Clearly, there is k0 ∈ N \ {1} such that for ε0 =
1

−π
3 + k0π

we have
|g′(r)| ≥ −1

4r ln r
for every r ∈ M ∩ (0, ε0). (3.2)

Set
f(x) =

−1
4|x| ln |x|

, x ∈ B([0, 0], ε0).

We claim that the nonincreasing rearrangements of F ′ and f satisfy

(F ′)?(t) ≥ f?(4t). (3.3)

From (3.2) we have

|F ′(x)| ≥ |f(x)| for |x| ∈ M ∩ (0, ε0). (3.4)

An elementary computation gives

3L2

({
x : |x| ∈

[
1

π
3 + kπ

,
1

−π
3 + kπ

]})
> L2

({
x : |x| ∈

[
1

−π
3 + kπ

,
1

π
3 + (k − 1)π

]}) (3.5)

for every k ∈ N \ {1}. From (3.4), (3.5) and

[0, ε0] ∩M =
⋃

k∈N, k≥k0

[
1

π
3 + kπ

,
1

−π
3 + kπ

]
we obtain 4m(σ, F ′) ≥ m(σ, f). The inequality (3.3) easily follows.
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Since
∫ ε0

0

−1
4r ln r

dr = ∞, we have f /∈ L2,1(B([0, 0], ε0)) by Lemma 3.2.

Thus (3.3) implies
F ′ /∈ L2,1(B([0, 0], ε0)).

Using Lemma 3.5 we will prove that F ∈ AC2(B([0, 0], ε0)). Clearly,

mlip2(F, x) = mlip2(g, |x|).

For every r such that 0 < r < ε0 < 1/e we have

|g′(r)| =
∣∣∣ 1
ln r

r
−1
r2

cos
1
r

+
1

ln r
sin

1
r

+
1
r

−1
ln2 r

r sin
1
r

∣∣∣
≤ −1

r ln r
+
−1
ln r

+
1

ln2 r
≤ −3

r ln r
.

(3.6)

Fix r such that r < ε0 < 1/e and t such that 1/r + 2π ≤ 1/t ≤ 1/r + 4π
and define t̃ = t/(1 − 2πt) (i.e., 1/t̃ = 1/t − 2π). Since the function t/ ln t is
decreasing on the interval (0, 1/e), we obtain |g(t̃)| ≥ |g(t)| and therefore

sup
t, 1

t∈[ 1
r +2π, 1

r +4π]
|g(r)− g(t)| ≤ sup

t̃, 1
t̃
∈[ 1

r , 1
r +2π]

|g(r)− g(t̃)|.

Analogously, we conclude that

sup
t, 1

t > 1
r +2π

|g(r)− g(t)| ≤ sup
t̃, 1

t̃
∈[ 1

r , 1
r +2π]

|g(r)− g(t̃)|.

This and 5/r > 1/r + 2π for r < ε0 < 1/e give

sup
0≤t≤ε0

∣∣∣∣g(r)− g(t)
r − t

∣∣∣∣ = sup
r
5≤t≤ε0

∣∣∣∣g(r)− g(t)
r − t

∣∣∣∣ . (3.7)

From (3.6) and (3.7) we obtain

mlip(g, r) = sup
0≤t≤ε0

∣∣∣g(r)− g(t)
r − t

∣∣∣
= sup

r
5≤t≤ε0

∣∣∣g(r)− g(t)
r − t

∣∣∣ ≤ sup
r
5≤ξ≤ε0

|g′(ξ)| ≤ −3
r
5 ln r

5

.

An easy computation yields∫
B([0,0],ε0)

mlip2(F, x) ≤
∫

B([0,0],ε0)

( −3
|x|
5 ln |x|

5

)2

dx

≤ C

∫ ε0

0

( 1
r ln r

5

)2

r dr = C

∫ ln
ε0
5

−∞

1
a2

da < ∞.

Therefore F ∈ AC2(B([0, 0], ε0)) by Lemma 3.5.
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4 Boundary Behavior—Negative Results.

In this section we give examples of domains Ω ⊂ Rn for which there is a
function f ∈ ACn(Ω) that fails to have a continuous extension to ∂Ω (i.e.,
there is no f̃ ∈ C(Ω) such that f = f̃ on Ω). When Ω is bounded, this
is equivalent to the fact that there is f ∈ ACn(Ω) which is not uniformly
continuous on Ω.

Theorem 4.1. Let Ω ⊂ Rn be a domain and suppose that there is x ∈ ∂Ω
such that for all balls B ⊂ Ω we have x /∈ ∂B. Then there is f ∈ ACn(Ω)
such that there is no continuous extension of f to ∂Ω.

Proof. This theorem is an easy consequence of Theorem 4.2.

Theorem 4.2. Let Ω ⊂ Rn be a domain and let 0 < R < 1. Suppose that there
is x ∈ ∂Ω such that x /∈ ∂B for every ball B ⊂ Ω. Then there is f ∈ ACn(Ω)
such that f ≥ 0, spt(f) ⊂ B(x, R) and limy→x

y∈Ω
f(y) = +∞. Moreover, there

is g ∈ L1(Ω), spt g ⊂ B(x, R) such that f satisfies the RR-condition with
weight g.

Proof. For every m ∈ N we set

Mm =
⋃{

B
(
z,

1
m

)
: z ∈ Ω,dist(z, ∂Ω) ≥ 1

m

}
.

Since it is not possible to touch ∂Ω at the point x with a ball of radius 1/m,
we have rm = dist(x, Mm) > 0.

Set a1 = R. We define a sequence {am}∞m=2 by induction. Given am, we
will show that there is am+1 such that 0 < am+1 < am and for every ball B[

B ∩B(x, am+1) 6= ∅ and B ∩
(
B(x, am) \B

(
x,

am

2

))
6= ∅

]
=⇒ B ∩ (Rn \ Ω) 6= ∅.

(4.1)

Fix k ∈ N such that 1
k < am

6 . For every B(z, r) we have[
r ≤ 1

k
and B(z, r) ∩

(
B(x, am) \B

(
x,

am

2

))
6= ∅

]
=⇒ B(z, r) ∩B

(
x,

am

6

)
= ∅.

(4.2)

We prove that (4.1) holds for am+1 = min(am/6, rk) by contradiction. If there
were a ball B(z, r) such that (4.1) failed, we would have

B(z, r) ∩B(x, rk) 6= ∅ and B(z, r) ∩ (Rn \ Ω) = ∅ =⇒ r ≤ 1
k

,
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by the definition of rk. From (4.2) we obtain B(z, r) ∩ B(x, am/6) = ∅ and
therefore B(z, r) ∩B(x, am+1) = ∅, contrary to the assumption in (4.1).

Let f be defined for y ∈ Ω by

f(y) =


0 y ∈ Ω \B(x, a1),
m−1∑
i=1

1
i + 1

m
2

am
(am − |x− y|) y ∈ B(x, am) \B(x, am

2 ), m ∈ N,

m∑
i=1

1
i y ∈ B(x, am

2 ) \B(x, am+1), m ∈ N.

Clearly, limy→x
y∈Ω

f(y) = +∞. Set

g(y) =

{(
2

amm

)n

y ∈ B(x, am) \B(x, am

2 ), m ∈ N,

0 y ∈ B(x, am

2 ) \B(x, am+1), m ∈ N.

From (4.1) we have

g(y) = mlipn(f, y) for y ∈ B(x, am) \B
(
x,

am

2

)
, m ∈ N.

Lemma 3.5 now gives oscn
B f ≤ C

∫
B

g for every ball B ⊂ B(x, am)\B(x, am

2 ).
From (4.1) and the definition of f it is evident that for every ball B ⊂ Ω

there is a ball B′ ⊂ B such that oscB f = oscB′ f and B′ ⊂ B(x, am)\B(x, am

2 )
for some m ∈ N. Thus

oscn
B f = oscn

B′ f ≤ C

∫
B′

g(y) dy ≤ C

∫
B

g(y) dy.

Hence f satisfies the RR-condition with weight Cg. An easy computation
gives that ∫

Ω

g ≤
∞∑

m=1

Ln

(
B(x, am) \B

(
x,

am

2

))( 2
amm

)n

≤
∞∑

m=1

Can
m

( 2
amm

)n

= C2n
∞∑

m=1

( 1
m

)n

< ∞.

Example 4.3. Let 0 < α < 1. There exist a domain Ω ⊂ Rn with C1,α

boundary and f ∈ ACn(Ω) such that there is no continuous extension of f to
∂Ω.

Proof. Set Ω = {[x1, . . . , xn] ∈ Rn : x1 > |[x2, . . . , xn]|α+1}. It is not
difficult to show that Ω has C1,α boundary and that for every ball B ⊂ Ω we
have 0 /∈ ∂B. Thus Theorem 4.2 shows that there is f ∈ ACn(Ω) such that
there is no continuous extension of f to the point 0 ∈ ∂Ω.
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The following example shows that it is not enough to assume that we can
touch every point of a boundary by a ball.

Example 4.4. There is a bounded, convex domain Ω ⊂ R2 with C1 boundary
such that for all x ∈ ∂Ω we have x ∈ ∂B for some ball B ⊂ Ω. Moreover,
there is f ∈ AC2(Ω) such that there is no continuous extension of f to ∂Ω.

Proof. For i ∈ N0 set xi =
[

1
2i ,

1
22i

]
and

Ai =
{

[x, y] ∈ R2 : x ∈
[

1
2i+1

,
1
2i

]
, y =

3
2i+1

x− 1
22i+1

}
.

Define Ω1 = conv(S), where we have set

S =
∞⋃

i=0

Ai ∪ {[x, y] : x2 + (y − 1)2 = 1, y ≥ 1}

∪ {[x, y] : x2 + (y − 1)2 = 1, x ≤ 0}.

Clearly, there is a continuous function h : [−1, 1] → R such that

Ω1 = {[x, y] : x ∈ (−1, 1), h(x) < y < 1 +
√

1− x2}.

For every j ∈ N \ {1, 2, 3} and 1
2j ≤ x ≤ 1

2j−1 we have

h(x) ≤ h
( 1

2j−1

)
=

1
22(j−1)

= 4
1

22j
≤ 4x2 ≤ 1

8
−

√
1
82
− x2.

Thus B([0, 1/8], 1/8) ⊂ Ω1.
Applying Theorem 4.2 to Ω1, xi and ri = 1

2i+3 we obtain functions fi, gi

such that spt(gi), i ∈ N, are pairwise disjoint. Consider {ai}∞i=0, ai ∈ R, ai >
0 such that

∑∞
i=0 ai

∫
Ω1

gi < ∞. Set f =
∑∞

i=0 aifi. Clearly, f satisfies the
RR-condition with weight g =

∑∞
i=0 aigi and hence f ∈ AC2(Ω1).

There are yi ∈ Ω1 such that

dist(yi, Ai) = dist(yi, Ai−1) and aifi(yi) = 1

and there is y0 ∈ Ω1 such that

dist(y0, A0) = dist(y0, ∂B([0, 1], 1)) and a0f0(y0) = 1.

Let Bi = B(yi,dist(yi, ∂Ω1)). Fix zi ∈ Ai ∩ ∂Bi and z ∈ ∂B([0, 1], 1) ∩ ∂B0.
Set

Ωi
1 =

(
Ω1 \B(xi, |xi − zi|)

)
∪Bi, i ∈ N,

Ω0
1 =

(
Ω1 \B

(
z + z0

2
,
|z − z0|

2

))
∪B0.
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Let Ω =
⋂∞

i=0 Ωi
1. Now Ω obviously satisfies all assumptions. Further,

f ∈ AC2(Ω) and there is no continuous extension of f to the point [0, 0] since

[0, y]
y→0+−→ [0, 0] and f([0, y])

y→0+−→ 0 but yi → [0, 0] and f(yi) → 1.

Remark 4.5. In much the same way we can prove that there is a domain
Ω ⊂ Rn with the same properties as in Example 4.4.

5 Boundary Behavior—Positive Results.

Definition 5.1. A domain Ω ⊂ Rn is said to have the property (P) if the
following holds. There are k ∈ N, η > 0 and a function h : [0, η) → [0,∞)
such that h(0) = 0, h is continuous at 0, and for every x, y ∈ Ω satisfying
|x− y| < η we have:

There are balls Bi = B(si, ri) ⊂ Ω, i ∈ {1, . . . , k} such that
x ∈ B1, Bi ∩Bi+1 6= ∅ for all i ∈ {1, . . . , k − 1},
y ∈ Bk and ri ≤ h(|x− y|) for all i ∈ {1, . . . , k}.

(5.1)

For abbreviation of (5.1), we say that the points x and y are joined in Ω
by k balls.

Lemma 5.2. Suppose that a domain Ω has the property (P) and let f : Ω → R.
Suppose that for every ε > 0 there is δ > 0 such that[

B(c, r) ⊂ Ω, r < δ
]
⇒ oscB(c,r) f < ε. (5.2)

Then there is f̃ ∈ C(Ω) such that f = f̃ on Ω.

Proof. To obtain a contradiction, suppose that there are Ω and f : Ω → R
satisfying (5.2) such that there is no continuous extension of f to the point
x ∈ Ω \ Ω. Then we can find sequences {aj}∞j=1 ⊂ Ω, {bj}∞j=1 ⊂ Ω and ε̃ > 0
such that

aj → x, bj → x, |aj − bj | < η and |f(aj)− f(bj)| ≥ ε̃

where η is occurring in the definition of the property (P). Applying (P) to
points aj , bj we obtain balls Bj

1, B
j
2, . . . , B

j
k such that

aj ∈ Bj
1, B

j
i ∩Bj

i+1 6= ∅ for i ∈ {1, . . . , k − 1} and bj ∈ Bj
k.

By the triangle inequality, we have

ε̃ ≤ |f(aj)− f(bj)| ≤
k∑

i=1

oscBj
i
(f).



Absolutely Continuous Functions of Several Variables 71

Therefore there is d(j) ∈ {1, 2, . . . , k} such that oscBj
d(j)

(f) ≥ ε̃/k. Let us

denote by rj the radius of Bj
d(j). From |aj−bj | → 0, rj ≤ h(|aj−bj |), h(0) = 0

and the continuity of h at 0 we obtain rj → 0. Hence oscBj
d(j)

(f) ≥ ε̃/k

contradicts (5.2).

Lemma 5.3. Let R > 0 and let Ω ⊂ Rn be a domain. Suppose that we
have a continuous curve γ : [0, 1] → Ω such that diam(〈γ〉) < R and that for
every z ∈ 〈γ〉 there is a ball Bz = B(cz, R) ⊂ Ω such that z ∈ Bz. Then
there are z1, . . . , z2·3n ∈ 〈γ〉 such that x = γ(0) and y = γ(1) are joined by
Bz1 , Bz2 , . . . , Bz2·3n in Ω.

Proof. Find z1, z2, . . . , zk ∈ 〈γ〉 such that x and y are joined by Bz1 . . . Bzk

and k is minimal in the sense[
z
′

1, z
′

2, . . . , z
′

l ∈ 〈γ〉, Bz
′
1
, . . . , Bz

′
l
⊂ Ω join x and y

]
=⇒ k ≤ l. (5.3)

If there were a, b, c ∈ {1, . . . , k}, a 6= b 6= c 6= a such that Bza
∩Bzb

∩Bzc
6= ∅,

then one of the balls Bza , Bzb
, Bzc would be redundant in joining x and y

which contradicts the minimality of k in the sense of (5.3). From this and
Bzi

⊂ B(x, 3R) we have

Ln

( k⋃
i=1

Bi

)
≤ 2Ln(B(x, 3R)) ⇒ k ≤ 2Ln(B(x, 3R))

Ln(B(0, R))
= 2 · 3n.

Lemma 5.4. Given r > 0 and A ⊂ Rn suppose that Ω =
⋃

a∈A B(a, r) is
a bounded domain. Suppose that for every z ∈ ∂Ω and for every sequences
{xi}∞i=1, {yi}∞i=1 ⊂ Ω we have

xi → z, yi → z =⇒ ρΩ(xi, yi) → 0. (5.4)

Then Ω has the property (P).

Proof. Set

g(t) = sup{ρΩ(x, y) : x, y ∈ Ω, |x− y| ≤ t} for t ≥ 0.

We claim that the function g is continuous at 0. Conversely, suppose that there
are δ > 0 and {xi}i∈N, {yi}i∈N ⊂ Ω such that |xi − yi| → 0 and ρΩ(xi, yi) > δ.
Since Ω is compact, we may assume that there is z ∈ Ω such that xi → z and
yi → z. Clearly this would not be possible if z ∈ Ω and therefore z ∈ ∂Ω.
However this contradicts condition (5.4).

Fix η > 0 small enough such that for t < η we have 2g(t) < r. Set
h(t) = 2g(t) and k = 2 · 3n. We claim that Ω satisfies the property (P) with
the constants k, η and the function h.
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Fix x, y ∈ Ω such that |x − y| < η. It follows from the choice of η that
h(|x − y|) < r. By the definition of ρΩ(x, y), there is a continuous curve
γ : [0, 1] → Ω such that γ(0) = x, γ(1) = y and `(γ) < 2ρΩ(x, y). Clearly,

diam(〈γ〉) < 2ρΩ(x, y) ≤ 2g(|x− y|) = h(|x− y|).

For every z ∈ 〈γ〉 we can find B(cz, h(|x− y|)) ⊂ Ω with z ∈ B(cz, h(|x− y|))
since Ω =

⋃
a∈A B(a, r) and h(|x − y|) < r. Applying Lemma 5.3 to R =

h(|x− y|) we obtain points z1, . . . , zk ∈ 〈γ〉 such that B(cz1 , R), . . . , B(czk
, R)

join x and y in Ω.

Thanks to Lemma 5.2 we can rephrase Lemma 5.4 as follows.

Theorem 5.5. Let A ⊂ Rn and r > 0. Suppose that Ω =
⋃

a∈A B(a, r)
is a bounded domain such that for every z ∈ ∂Ω and for every sequences
{xi}∞i=1, {yi}∞i=1 ⊂ Ω we have

xi → z, yi → z =⇒ ρΩ(xi, yi) → 0. (5.5)

Let f : Ω → R be a function such that for every ε > 0 there is δ > 0 such that[
B(c, r) ⊂ Ω, r < δ

]
⇒ oscB(c,r) f < ε. (5.6)

Then there is f̃ ∈ C(Ω) such that f = f̃ on Ω.

Theorem 5.6. Let Ω ⊂ Rn be a domain with C1,1 boundary. Then for every
n-absolutely continuous function f : Ω → R there is f̃ ∈ C(Ω) such that f = f̃
on Ω.

Proof. We only give the main ideas of the proof. We can assume that Ω
is bounded, for the existence of the extension is a local property. Clearly,
every n-absolutely continuous function f : Ω → R satisfies (5.6) and hence it
remains to verify the assumptions of Theorem 5.5 about the domain Ω.

Let x0 ∈ ∂Ω and find r0 > 0, D ⊂ Rn−1 and a function h ∈ C1,1(Rn−1)
occurring in (2.2). Without loss of generality we may assume that i = 1,
x0 = 0,

∂Ω ∩B(0, r0) = {x ∈ Rn : [x2, . . . , xn] ∈ D and h(x2, . . . , xn) = x1},

G+ ⊂ Ω and G− ∩ Ω = ∅ (where G+ and G− are defined in (2.3)). It is clear
from this description that (5.5) holds for z = x0. Now it remains to show that
Ω =

⋃
a∈A B(a, r) for some A ⊂ Rn and r > 0.
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Let us denote by V ∈ Rn−1 the vector of partial derivatives of h at 0.
Choose a constant K > 0 large enough such that K is greater than the Lips-
chitz constant of h′ (i.e., |h′(x)−h′(y)| ≤ K|x− y| for every x, y ∈ Rn−1) and
moreover

B
(
0,

√
1 + |V |2

K

)
⊂ D and B

(
0,

√
1 + |V |2

K

)
⊂ B(x0, r0). (5.7)

We claim that

B̃ := B
([ 1

2K
,
−V1

2K
, . . . ,

−Vn−1

2K

]
,

1
2K

√
1 + |V |2

)
⊂ Ω. (5.8)

Let x ∈ ∂B̃\{0}. Set x̃ = [x2, . . . , xn] and notice that x̃ ∈ D and x ∈ B(x0, r0)
by (5.7). From (5.8) we have |x|2 = 1

K x1 − 1
K V x̃. Proposition 2.1 now gives

h(x̃) ≤ V x̃ +
K

2
|x̃|2 < V x̃ + K|x|2 = x1

which implies x ∈ Ω since G+ ⊂ Ω. Clearly ∂B̃ ⊂ Ω ∪ {0}, implies B̃ ⊂ Ω.
Note that the radius of B̃ depends only on h, r0 and D, and not on a particular
point x0. Therefore it is possible to find r̃0 > 0 and r1 > 0 such that for every
x ∈ ∂Ω ∩B(x0, r̃0) there exists a ball B(cx, r1) ⊂ Ω such that x ∈ ∂B(cx, r1).

Since ∂Ω is compact, this implies that there is r2 > 0 such that for every
x ∈ ∂Ω there is a ball B(cx, r2) ⊂ Ω such that x ∈ ∂B(cx, r2). From this
and the definition of C1,1 boundary it is not difficult to deduce that Ω =⋃

a∈A B(a, r) for some A ⊂ Rn and r > 0.

The following example shows that the assumptions of Lemma 5.4 are not
equivalent to the property (P).

Example 5.7. There is a bounded domain Ω ⊂ R2 which has the property
(P) and does not satisfy the assumptions of Lemma 5.4.

Proof. Set

A =
{
[x, y] : x2 + (y − 1)2 = 1 and

(
(x ≤ 0) or (y ≥ 1)

)}
and

Bi = B

([
1
2i

,
1
2i

+
1

8 22i

]
,

1
2i

)
.

We claim that the domain Ω = conv
(
A∪

⋃∞
i=1 Bi

)
has the desired properties.

Since ∂Bi ∩ ∂Ω 6= ∅ and diam Bi → 0, we have Ω 6=
⋃

a∈A B(a, r) for any
r > 0 and A ⊂ R2. Thus Ω does not satisfy the assumptions of Lemma 5.4.
The proof of the property (P) for Ω is straightforward and not difficult and
hence we omit it.
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Malý, J. Math. Anal. Appl., 252 (2000), 147–166.

[3] S. Hencl, On the notions of absolute continuity for functions of several
variables, Fund. Math., 173 (2002), 175–189.

[4] J. Kauhanen, P. Koskela and J. Malý, On functions with derivatives in a
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