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construction generalizes those of Bertolini–Darmon, Bertolini–Darmon–Iovita–Spiess,
and Chida–Hsieh and shows a certain integrality of the interpolation formula even

for non-ordinary forms.

2010 Mathematics Subject Classification: Priimary: 11R23; Secondary: 11F33.

Key words: Iwasawa theory, p-adic L-functions, Gross points, quaternion algebras,

automorphic forms.

Contents

1. Introduction 728
2. Explicit Gross points à la Chida and Hsieh 736
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1. Introduction

1.1. Overview. It is now widely known that “overconvergent meth-
ods” yield simpler and more algorithmically efficient constructions of
p-adic L-functions [Ste], [PS1] and conjectural algebraic points of ellip-
tic curves, so called Darmon–Stark–Heegner points [DP], [GM]. In [Ste],
Stevens provides a simple and beautiful construction of Mazur–Tate–
Teitelbaum p-adic L-functions of modular forms under cyclotomic ex-
tensions using distribution-valued modular symbols. In [GS], measure-
valued modular symbols, which can be regarded as a special case, are
used in the proof of the exceptional zero conjecture [MTT, §15, §16] as
an essential ingredient.

In this article we apply Stevens’ “overconvergent” idea to the anticy-
clotomic setting. Instead of using modular symbols, we use automorphic
forms on a definite quaternion algebra (quaternionic forms, for short).
Although modular symbols and quaternionic forms have certain similar-
ities in their shape, their domains are fundamentally different. Modular
symbols are essentially defined on the upper half plane, which lies in
the complex world, and quaternionic forms are defined on the double
coset space arising from the quaternion algebra. Note that, in the case
of weight two forms, it can be realized in terms of the Bruhat–Tits tree
for PGL2(Qp) or its variant, which lies in the p-adic world.

Using the theory of overconvergent modular symbols, it is proved
that the evaluation of the overconvergent modular symbol attached to
a non-critical slope eigenform at the cycle (i∞)− (0) on the upper half
plane gives us the p-adic distribution corresponding to the Mazur–Tate–
Teitelbaum p-adic L-function of the form.

We develop an analogous theory for overconvergent quaternionic
forms. Since the domain is fundamentally different from the case of
modular symbols, we naturally meet the following question.

Question 1.1. What is an analogue of the geodesic cycle (i∞)− (0) ∈
Div0(P1(Q)) in the quaternionic setting?

The main contribution of this article is to provide an answer to this
question by taking the full advantage of the explicit construction of Gross
points à la Chida–Hsieh. We will call such an analogue the explicit Gross
point. Also, in the case of weight two forms, we give another interpreta-
tion of these points in terms of the Bruhat–Tits tree for PGL2(Qp).

As an application of these points, we are able to generalize the con-
struction of anticyclotomic p-adic L-functions to modular forms of non-
critical slope and to prove an integrally refined interpolation formula
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for those forms. Our construction generalizes those in [BD1], [BDIS],
and [CH]. Comparing with various automorphic constructions of p-
adic L-functions including the works of Deppe [Dep], Bergunde–Gehr-
mann [BG], and Molina [Mol], our construction has advantages due
to its explicit nature. Our construction allows an integrally refined in-
terpolation formula even for modular forms of non-critical slope (with
moderate growth). See Corollary 8.9 and Remark 8.10. Those automor-
phic constructions work only for ordinary automorphic forms of weight
two although they extend in different directions (e.g. GL2 over totally
real or number fields). Also, for the computational aspect, we expect
that an efficient algorithm to compute anticyclotomic p-adic L-functions
can be implemented via our overconvergent construction. See [DHH+]
for the cyclotomic case.

For the construction, we recall the notion of overconvergent quater-
nionic forms and (re)prove the control theorem for overconvergent
quaternionic forms of non-critical slope. This generalizes [LV2, §3],
which deals with the control theorem for the slope zero subspace. Also,
our approach yields a certain integrality of the control theorem for the
slope zero subspace. The reader can easily observe that we care for the
integrality of L-values and automorphic forms even for the non-ordinary
case. Note that the theory of overconvergent quaternionic forms has
many arithmetic applications including the factorization of Hida p-adic
L-functions [BD6] and Teitelbaum L-invariants [BDI].

We expect that the explicit Gross points can be reinterpreted as a
functional on the completed cohomology for quaternion algebras sending
cuspidal eigenforms to (one half of) their anticyclotomic p-adic L-func-
tions.

In the sequel paper in preparation we construct integral anticyclo-
tomic p-adic L-functions for Hida families, which are two variable ones,
and prove the vanishing of µ-invariant of each member of the families
under mild assumptions, generalizing [CKL]. In [CKL] a different ap-
proach was taken following [LV1] and [CL] using compatible families
of Gross points in the tower of Gross curves, so called big Gross points.
Note that the approach using big Gross points does not work for the
non-ordinary case.
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The following diagram describes the flowchart for the classical con-
structions of cyclotomic and anticyclotomic p-adic L-functions of mod-
ular forms. The upper (= cyclotomic) part of the diagram is well-docu-
mented in [Pol2]:

modular symbols

evaluation at
(i∞)− (a/pn) ∈ Div0(P1(Q))

for all a

��

modular forms

Eichler–Shimura

88

Jacquet–Langlands

&&

Mazur–Tate elements
lim←−
// cyclotomic p-adic L-functions

[MS], [MTT]

quaternionic forms

evaluation at
all Gross points
at level 0 or 1

��

Bertolini–Darmon
theta elements lim←−

// anticyclotomic p-adic L-functions
[BD5], [CH]

The overconvergent method shows that it suffices to evaluate overcon-
vergent modular symbols or overconvergent quaternionic forms “at one
point”. This is because the overconvergent method pushes the com-
plexity of the evaluation of classical quaternionic forms at all Gross
points (§3.2) into the complexity of the coefficient modules (the distribu-
tion modules) of overconvergent quaternionic forms (§5.2 and §7.1). The
bold part of the following diagram is the main content of this article:

modular symbols

control
theorem // overconvergent

modular symbols

evaluation at
(i∞)− (0) ∈ Div0(P1(Q))

��

modular forms

Eichler–Shimura

::

Jacquet–Langlands

$$

Mazur–Tate–Teitelbaum
cyclotomic p-adic L-functions

[Ste], [PS1]

quaternionic forms

control
theorem // overconvergent

quaternionic forms

evaluation at ς(1),
the explict Gross point

��

Bertolini–Darmon
anticyclotomic p-adic L-functions



Overconvergent Construction of Lp(K∞, f) 731

1.2. Setting the basic stage. Let p be a prime ≥ 3 and k ∈ Z≥2. Fix

an algebraic closure Q of Q and embeddings ι∞ : Q ↪→ C and ιp : Q ↪→
Cp. Let Γ0(N) be the congruence subgroup of level N with (N, p) =
1. Let fk =

∑
an(fk)qn ∈ Sk(Γ0(Np)) be a p-stabilized newform of

slope h = ordp(αp(fk)) < k− 1 with the convention ordp(p) = 1, i.e. the
slope of f is non-critical.

Fix an imaginary quadratic field K with (disc(K), pN) = 1. The
choice of K determines the decomposition of N as follows:

(1.1) N = N+ ·N−,

where a prime divisor of N+ splits in K and a prime divisor of N− is
inert in K.

Assumption 1.2. In Equation (1.1) N− is square-free and the product
of an odd number of primes.

Let K∞ be the anticyclotomic Zp-extension of K and write Γ∞ =
Gal(K∞/K) ' Zp (non-canonically). Write Kn for the unique subfield
of K∞ such that Γn = Gal(Kn/K) ' Z/pnZ.

Let B be the definite quaternion algebra over Q of discriminant N−

and R = RN+ be an (oriented) Eichler order of level N+. For each
prime ` - N−, we fix an embedding R` := R ⊗Z Z` ↪→ M2(Z`) and we

identify them under this isomorphism. Let Â := A⊗Z Ẑ for any abelian
group A.

For each r ≥ 0, let RN+pr be an Eichler order of level N+pr such that

R×
N+pr,p

:= (RN+pr ⊗Z Zp)× =

{(
a b
c d

)
∈ GL2(Zp) : c ∈ prZp

}
and its prime-to-p component coincides with that of R̂×. We also write

Γ0(prZp) = R×N+pr,p. Note that R̂×N+pr corresponds to Γ0(N+pr)-level

structures in the classical sense.
Let E be a finite extension of Qp large enough to contain all the Hecke

eigenvalues of fk and write O = OE .
Let Dk/Dk be the space of E-valued locally/rigid analytic distribu-

tions on Zp with weight k action of a certain semigroup Σ0(p), respec-
tively. Let Dk(O)/Dk(O) be the subspaces of O-valued locally/rigid
analytic distributions of Dk/Dk, respectively. See §5.2 for detail.

Let SN
−

k (N+p,E) be the space of E-valued quaternionic forms of
weight k, level N+p, and discriminant N−, and denote its overconvergent

variants by SN
−

(N+p,Dk), SN
−

(N+p,Dk), which are defined in §6.
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For any Hecke module S, let S(<h) be the subspace of S consisting
of the members whose slopes are less than h, and S(0) be the slope zero
subspace.

1.3. A precise formulation of Question 1.1 and its answer. For
a cuspidal eigenform fk of non-critical slope, let

φmsfk : Div0(P1(Q)) −→ Symk−2(Z2
p)

be the integrally normalized corresponding modular symbol defined us-
ing the Eichler–Shimura map. Looking at the diagram

SL2(R)

����

P1(Q) h

����

“boundary”
oo

Γ(1)\h the set of homothety classes of lattices in C,

we may consider φmsfk as “a function on the upper half plane h”, at least
intuitively. Indeed, the modular symbols are computed in terms of the
period integrals on h (as in [Pol2, §2]).

By [Ste] (see also [Gre] and [PS1]), we can uniquely lift φfk to the
overconvergent modular symbol

Φmsfk : Div0(P1(Q)) −→ Dk.

Then the overconvergent modular symbol Φmsfk directly yields the Mazur–
Tate–Teitelbaum p-adic L-function as a distribution by

Lp(Q(µp∞), fk) = Φmsfk ((i∞)− (0)).

In the anticyclotomic case, certain special points on the adelic dou-
ble coset space arising from quaternion algebras, called (classical) Gross
points, play the same role as (i∞) − (a/pn) ∈ Div0(P1(Q)) for the
construction of anticyclotomic p-adic L-function of weight two ordinary
forms. We will review this in §3.2.

There are several approaches toward the generalization to the higher
weight forms including [BDIS], [BD6], and [CH] but with limitations.
One of the obstructions is the lack of the “right infinite level space”
where the Gross points live. More precisely, the domain of higher weight
quaternionic forms lies in a “deeper” level than the domain where the
Gross points are canonically defined.
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Mimicking the above picture in the quaternionic setting, we have a
slightly more complicated picture:

B×\B̂×/R̂(p),×

����

the domain of quaternionic forms
of arbitrary weight

R[1/p]×\B×p /Q×p

B×p /Q×p

OOOO

����

= PGL2(Qp)

P1(Qp) B×p /(Q×p ·R×N+p∞,p
)

����

boundary
oo

the set of certain
consecutive sequences

of homothety classes of lattices
(A “natural” domain

for Gross points)

B×p /(Q×p ·R×N+,p
)

����

the set of homothety classes
of lattices in Q2

p

R[1/p]×\B×p /R×N+,p
the domain of weight

two quaternionic forms

The näıve analogy suggests us considering B×\B̂×/R̂×N+p∞ ' B
×
p /(Q×p ·

R×N+p∞,p) or even PGL2(Qp) as the domain of the quaternionic forms,

but it is not true. Thus, the näıve analogy does not gives us a chance to

find an analogous element of (i∞)−(0) ∈ Div0(P1(Q)) in B×\B̂×/R̂(p),×

if the weight of the form > 2. As in the picture, the domain of quater-
nionic forms lies “deeper” than B×p /(Q×p ·R×N+p∞,p) if their weight is > 2,

and even the domain B×\B̂×/R̂(p),× has no direct geometric description
as far as we know. In the case of weight two forms, it suffices to find (clas-
sical) Gross points on B×p /(Q×p · R×N+,p); thus, the näıve analogy works

well and the classical Gross points can be lifted to geometric Gross points
on B×p /(Q×p · R×N+p∞,p). Although it seems difficult to find a geometric

motivation, Chida and Hsieh directly and explicitly constructed Gross

points on B̂× in [CH]. Their construction allows us to find the ana-
logue of (i∞)− (0) for the quaternionic setting. We review their explicit
construction of Gross points (“explicit Gross points”) in §2, give them
an geometric interpretation for the case of weight two forms (“geometric
Gross points”) in §3, and compare these points in §4.



734 C.-H. Kim

1.4. Control theorems. In §6.5, we reprove the following control the-
orem for non-critical slope forms.

Theorem 1.3 (Theorem 6.6). There exist Hecke-equivariant isomor-
phisms

SN
−

(N+p,Dk)(<k−1) '−→ SN
−

(N+p,Dk)(<k−1)

'−→ SN
−

k (N+p,E)(<k−1).

Remark 1.4. Theorem 1.3 is a quaternionic analogue of [PS1, Theo-
rem 1.1 and Theorem 5.12]) and generalizes [LV2, §3] to the non-critical
slope case.

For the slope zero subspace, we obtain an integrally refined control
theorem, which refines [LV2, §3].

Corollary 1.5 (Corollary 6.8). There exist Hecke-equivariant isomor-
phisms

SN
−

(N+p,Dk(O))(0) '−→ SN
−

(N+p,Dk(O))(0)

'−→ SN
−

k (N+p,O)(0).

1.5. Overconvergent construction of p-adic L-functions. Using
the explicit Gross points, we are able to construct anticyclotomic p-adic
L-functions of modular forms of non-critical slope. The following the-
orem generalizes the constructions of Bertolini–Darmon [BD1], [BD5],
Bertolini–Darmon–Iovita–Spiess [BDIS], and Chida–Hsieh [CH]. This
also can be regarded as a quaternionic analogue of [PS1, §6].

Theorem 1.6. Let fk be a newform of slope h < k − 1 and Φfk be the
corresponding overconvergent quaternionic form. Then there exists an el-

ement ς(1) ∈ B̂× (Definition 2.2) such that Φfk(ς(1)) is the h-admissible
distribution (Definition 7.4) which defines one half of the anticyclotomic
p-adic L-functions of fk (Definition 7.8) and satisfies the expected in-
terpolation property (Corollary 8.9).

1.6. Comparison with the former work. We summarize the com-
parison with the former work.

• Gross proved the interpolation formula for weight two forms
of prime level with the twist by unramified ring class character
in [Gro], and the formula is generalized to the weight two forms
of arbitrary level and ring class characters of arbitrary conductor
and finite order in [Zha, Theorem 7.1].
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• In [BD1] and [BD5] the anticyclotomic p-adic L-functions for p-or-
dinary p-stabilized newforms of weight two with the twist by ring
class characters of p-power conductor and of finite order are con-
structed via a Stickelberger type argument.
• In [BDIS] the construction generalizes to p-newforms (the excep-

tional zero case) of even weight with the twist of unramified ring
class characters of finite order. It can be regarded as an overcon-
vergent construction due to [BDIS, (8)] using the p-adic integra-
tion on P1(Qp) à la Schneider–Teitelbaum. In this construction, a
property of p-newforms is used essentially. The interpolation for-
mula for higher weight forms is given in [BDIS, Proposition 2.16]
only for unramified character twists, and the formula for ring class
characters of p-power conductor is stated as a conjecture [BDIS,
Conjecture 2.17]. Indeed, [CH, Proposition 4.3] proves [BDIS,
Conjecture 2.17] as stated in [CH, remark after Proposition 4.3].
See also [Yua].
• In [BD6] the construction generalizes to p-ordinary p-stabilized

newforms but it only allows genus characters [BD6, p. 412] for the
character twist. The construction depends heavily on a quater-
nionic variant of Hida theory and the Hida theory there does not
preserve the integrality.
• In [CH] their construction works for p-ordinary p-stabilized

newforms with limitation of weight k < p + 2 but with much
more general twists by any locally algebraic p-adic characters of
weight (i,−i) with −k/2 < i < k/2 as described in [CH, Introduc-
tion]. Here, the restriction of weight comes from the integrality and
µ-invariant issues. Also, Gross points are explicitly constructed at

the level of B̂×. It is very important in our construction.
• In [CL] and [CKL] the construction works for p-ordinary p-stabi-

lized newforms with the twist by same characters as in [CH]. This
method uses an integral quaternionic Hida theory and big Gross
points.
• In this article the construction works for p-stabilized newforms of

non-critical slope and allows the twist by any locally algebraic p-
adic character of weight (i,−i) with −k/2 < i < k/2 arising from
an anticyclotomic Hecke character (cf. [CH, §4.2]). If the form
is ordinary, then more character twists are allowed as in the case
of [CH, Theorem 4.6]. However, the interpolation formula is given
only by p-power congruences (Corollary 8.9) unless the form is
ordinary or of weight two.
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1.7. Organization. In §2, we review the explicit construction of Gross
points following Chida–Hsieh, which is a key input of this work. In §3,
we give a geometric interpretation of the explicit Gross points for the
case of weight two forms. In §4, we compare these two Gross points. We
also review other descriptions of Gross points. In §5, we fix the conven-
tion of the coefficient modules for quaternionic forms. In §6, we review
quaternionic forms, introduce their overconvergent variants, and prove
the control theorem (Theorem 6.6). In §7, we give the overconvergent
construction of the distribution (Definition 7.4) using the explicit Gross
point, which is one half of the p-adic L-function. Also we recover clas-
sical theta elements from the distribution. In §8, we prove the “weak”
interpolation formula (Corollary 8.9) for the distribution using the for-
mula of Chida–Hsieh (Theorem 8.6). In §9, we give some speculations
and ask questions we do not have answers yet.

2. Explicit Gross points à la Chida and Hsieh

We very closely follow [CH, §2.1 and §2.2] for the explicit construc-
tion. The novelty of this explicit construction of Gross points given by

Chida and Hsieh is that the points lie at the level of B̂×. This allows
us to consider the Gross points at the “deepest” level. This explicit ap-
proach shows us that it seems more natural to look at the “spaces at
certain infinite levels” for the construction of p-adic L-functions.

Also, in the case of weight two forms, these Gross points can be real-
ized purely geometrically in terms of the Bruhat–Tits tree for PGL2(Qp).
We will see this in the next section (§3).

Remark 2.1 (on the tame level structure on the domain). The domain of
modular symbols Div0(P1(Q)) is completely independent of level struc-
ture and the information of the level structure entirely lies in congruence

subgroups. However, the domain of quaternionic forms B×\B̂×/R̂(p),×

depends on its tame level structure obviously. Thus, the shape of Gross
points depends on the tame level structure.

2.1. Explicit setup. Let K be the imaginary quadratic field of dis-
criminant −DK < 0. Define

ϑ :=


DK −

√
−DK

2
if 2 - DK ,

DK − 2
√
−DK

4
if 2 | DK ,

so that OK = Z + Zϑ.
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Let B be the definite quaternion algebra over Q of discriminant N−

and level N+ under Assumption 1.2. Then there exists an embedding
of K into B ([Vig, §3 of chapitre II and §5.C of chapitre III]). More
explicitly, we choose a K-basis (1, J) of B so that B = K ⊕K · J such
that

(1) β := J2 ∈ Q× with β < 0,

(2) J · t = t · J for all t ∈ K,

(3) β ∈ (Z×q )2 for all q | pN+,

(4) β ∈ Z×q for all q | DK .

Fix a square root
√
β ∈ Q of β. Fix an isomorphism

i :=
∏

iq : B̂(N−) ' M2(A(N−∞))

as follows:

(1) For each finite place q | N+p, the isomorphism

iq : Bq ' M2(Qq)

by

iq(ϑ) =

(
trd(ϑ) − nrd(ϑ)

1 0

)
,

iq(J) =
√
β ·
(
−1 trd(ϑ)
0 1

)
,

where trd and nrd are the reduced trace and the reduced norm
on B, respectively. Note that

√
β ∈ Z×q here.

(2) For each finite place q - pN+, the isomorphism

iq : Bq ' M2(Qq)

is chosen so that

iq(OK ⊗ Zq) ⊆ M2(Zq).

We fix an embedding iK : B ↪→ M2(K) defined by a+ bJ 7→
(
a bβ

b a

)
and

define iC : B ↪→ M2(C) by ι∞ ◦ iK .

2.2. The construction of the points. Fix a decomposition N+OK =
N+ · N+, which corresponds to the choice of the orientations of lo-
cal Eichler orders at primes dividing N+. We define the local Gross
point ςq ∈ B×q for any rational prime q.

2.2.1. q - N+p. Let q - N+p be a prime. Then

ςq := 1

in B×q .
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2.2.2. q | N+. Let q | N+ be a prime, and write q = qq in OK . Then

ςq :=
1√
DK
·
(
ϑ ϑ
1 1

)
∈ GL2(Kq) = GL2(Qq).

2.2.3. q = p. Suppose that p = pp splits in K. Then we put

ς(n)
p =

(
ϑ −1
1 0

)(
pn 0
0 1

)
∈ GL2(Kp) = GL2(Qp).

Suppose that p is inert in K. Then we put

ς(n)
p =

(
0 1
−1 0

)(
pn 0
0 1

)
∈ GL2(Kp) = GL2(Qp2).

2.2.4. Putting it all together.

Definition 2.2 (Explicit Gross points). We define the explicit Gross

point ς(n) of conductor pn on B̂× by

ς(n) := ς(n)
p ×

∏
q 6=p

ςq ∈ B̂×.

2.3. Anticyclotomic Galois action on Gross points. We define the
map

xn : K̂× −→ B̂×

by
xn(ξ) := ξ · ς(n),

where the action is given by the embedding K into B chosen in §2.1.

Then the set of all points {xn(ξ) : ξ ∈ A(∞),×
K } is called twisted explicit

Gross points of conductor pn.
We also define the map

x−1
n : K̂× −→ B̂×

by
x−1
n (ξ) := ξ−1 · ς(n).

Note that x−1
n (ξ) does not appear as xn(ξ) since the inverse map K× →

K× by x 7→ 1/x does not propagate its domain to K.

2.4. Families of optimal embeddings. Let On = Z + pnOK be the
order of K of conductor pn. Let RN+pr be an Eichler order of level N+pr

prime to N−. By the argument in [CH, §2.2], the embedding of K into B

is an optimal embedding of On into the Eichler order B ∩ ς(n) · R̂×N+pr ·
(ς(n))−1 if r ≤ n, i.e.(

B ∩ ς(n) · R̂×
N+pr

· (ς(n))−1
)
∩K = On.

This is used in the comparison among Gross points defined on different
domains (§4.2).
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Remark 2.3. See [LV1, §4.1(12)] for another recipe of the families of
optimal embeddings. Their recipe calculates the p-part only, but the
oriented optimal embeddings are determined locally ([LV1, Lemma 4.1]).

3. Geometric Gross points for weight two forms

In this section we give a geometric interpretation of the projection of
the explicit Gross points to the double coset space at the Γ0(p∞)-level,
i.e. the Bruhat–Tits tree. Although it does not give us the full informa-
tion of the explicit Gross points, it seems to be helpful for a more the-
oretical understanding of the Gross points. The geometric description
naturally shows us a p-adic intuition in the construction of anticyclo-
tomic p-adic L-functions of modular forms (of weight two, at least).

In the construction of the anticyclotomic p-adic L-functions of an or-
dinary newform of weight two, we choose an infinite sequence of consec-
utive vertices v0, v1, . . . , vn, . . . without backtracking on BTp (We call
them Gross points of conductor pn at level 0). The oriented edge en
on BTp whose source is vn and target is vn+1 is called Gross points
of conductor pn at level 1. By construction, the sequence of the edges
e0, e1, . . . , en, . . . has coherent direction. We also call these two points
classical Gross points.

Remark 3.1. Indeed, the first choice v0 is an infinite line if p splits in K,
but we will call it a “vertex” for convenience. See [DI, Figure 1] for the
picture.

The goal of this section is to reinterpret these infinite choices of clas-
sical Gross points at the Γ0(pr) and Γ0(p∞)-levels. The “Gross points at
the Γ0(p∞)-level” will be called geometric Gross points (Definition 3.11).

3.1. Galois-theoretic setup. Let OK be the ring of integers of K and
OK
[

1
p

]
be the maximal Z

[
1
p

]
-order in K. Let

G̃∞ = K×\K̂×/
(
Q̂× ·

∏
6̀=p

OK [
1

p
]×`

)
be the Galois group of the ring class field K̃∞ of K of conductor p∞ so

that G̃∞ = Gal(K̃∞/K).

Choice 3.2. We choose an oriented optimal embedding Ψ0 : K → B
such that Ψ0(K) ∩ R[1/p] = Ψ0(OK [1/p]) which is as equivalent as the
choice in §2.1.

With Choice 3.2 Ψ0 induces a family of optimal embeddings Ψpr such
that Ψpr (K) ∩RN+pr = Ψpr (Or) for all r ≥ 0 as in §2.4.
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3.2. Classical Gross points: Gross points at level 0 and 1. Let
BTp be the Bruhat–Tits tree for PGL2(Qp). The action of PGL2(Qp)
on BTp is given via right conjugation. The chosen embedding Ψ0 induces
the p-adic embedding (Ψ0)p : K×p /Q×p ↪→ B×p /Q×p ' PGL2(Qp). This

embedding yields the action of K×p /Q×p on BTp via left translation. The

structure of G̃∞ can be described by the following short exact sequence:

K×p /Q×p

�� ((
1 // G∞ := K×p /Q×p (OK [ 1

p
])× // G̃∞ // Cl(OK [ 1

p
]) // 1

Remark 3.3. The class group Cl
(
OK
[

1
p

])
permutes oriented optimal em-

beddings transitively, and the permutation is explicitly defined in [BDIS,
§2.3].

Consider the decreasing filtration of K×p /Q×p
· · · ⊆ Un+1 ⊆ Un ⊆ Un−1 ⊆ · · · ⊆ U1 ⊆ U0 ⊆ K×p /Q×p ,

where U0 is the maximal compact subgroup of K×p /Q×p and Un = (1 +
pnOK ⊗Z Zp)/(1 + pnZp) for each n ≥ 1. Let Gn := G∞/(the image

of Un in G∞) and G̃n := G̃∞/(the image of Un in G̃∞).

Choice 3.4. We choose a sequence of consecutive vertices v0, v1, v2, . . .
of V (BTp) with the coherent orientation and without backtracking such
that Stab(Ψ0)p(K×p /Q×p )(vn) = Un for all n ≥ 0 as equivalent as the choice

in §2.2.3 and §2.2.4.

Definition 3.5 (Classical Gross points).

(1) Each vertex vn in the chosen sequence is called a (classical) Gross
point of conductor pn at level 0.

(2) Each oriented edge en = (vn → vn+1) is called a (classical) Gross
point of conductor pn at level 1.

Remark 3.6 (on the domain of Gross points). Often in the literature,
classical Gross points are defined on the quotient graphs of BTp, which
are equivalent to the double coset spaces via strong approximation. How-
ever, both Gross points on the tree and on the quotient graph give ex-
actly the same result since quaternionic forms are invariant under the
quotient. It seems difficult to observe Gross points at higher level on the
quotient graph intuitively since the images of length n line segments in
the quotient graph may have very random shapes due to the complica-
tion of the quotient graph. For the computation of the graph, see [FM].
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Recently, it seems that this complication has an application to cryptog-
raphy, so called isogeny based cryptography. For example, see [DJP,
§2.2].

3.3. A simple observation: towards higher and infinite level. A
natural idea toward the Gross points on a certain space at the infinite
level begins with the following question.

Question 3.7. How can we regard a coherent infinite sequence of clas-
sical Gross points itself as one element in a more suitable domain than
the set of vertices or oriented edges of the Bruhat–Tits tree?

We recall a strong approximation result.

Proposition 3.8 ([BD5, §1.2(16)]). The embedding into the p-th place(
R

[
1

p

])×
\B×p /Q×p ' B×\B̂×/

(
Q̂×

∏
6̀=p

R×`

)
bp 7−→ (1, . . . , 1, bp, 1, . . . )

is a canonical bijection.

Let ~Er(BTp) be the set of consecutive line segments of length r with
coherent orientation of BTp without backtracking. Let v0, v1, v2, . . . , vr
be the sequence of consecutive vertices of BTp whose stabilizers are Q×p ·
GL2(Zp), Q×p · γ−1 GL2(Zp)γ, . . . ,Q×p · γ−r GL2(Zp)γr with γ =

(
p 0
0 1

)
,

respectively. Thus, the whole sequence is an element of ~Er(BTp). Then
the stabilizer of the whole sequence is Q×p ·R×r,p. We observe the following
statement.

Proposition 3.9. The GL2(Qp)-orbit of the sequence of consecutive

vertices v0, v1, v2, . . . , vr without backtracking is ~Er(BTp).

Proof: Since the action of GL2(Qp) on BTp preserves distance, the

GL2(Qp)-orbit of the sequence v0, v1, v2, . . . , vr is a subset of ~Er(BTp).

It suffices to show the action of GL2(Qp) on ~Er(BTp) is transitive.

Let w0, w1, w2, . . . , wr−1, wr be an arbitrary element of ~Er(BTp). Since

GL2(Qp) acts transitively on ~E1(BTp), we may assume wr−1 = vr−1

and wr = vr. Now we apply induction on r in the decreasing direction.
Let k < r be the smallest integer such that wk = vk, wk+1 = vk+1, . . . ,
and wr = vr. The stabilizer of the sequence wk, . . . wr consists of the

matrices
(

a b/pk

prc d

)
∈ GL2(Qp) with a, b, c, d ∈ Zp.

Then wk−1 corresponds to the homothety class of the lattice

(Zp × Zp) ·
(
pk ∆
0 p

)
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for some ∆ = 1, . . . p − 1. Multiplying
(

1 −∆/pk

0 1

)
on the right, the

lattice corresponding to wk−1 changes to the lattice (Zp×Zp) ·
(
pk−1 0

0 1

)
upto homothety. Since the corresponding vertex is vk−1 and

(
1 −∆/pk

0 1

)
is in the stabilizer of the sequence vk, . . . , vr, we reduce k to k − 1 by

multiplying
(

1 −∆/pk

0 1

)
on the right. Repeating the process, we obtain

the conclusion.

Then Proposition 3.9 and the orbit-stabilizer theorem show that there
exist bijections:

~Er(BTp)
Prop. 3.9

'
// (v0, . . . , vr)·GL2(Qp) orbit-stabilizer

'
// GL2(Qp)/(Q×p ·R×r,p).

This identification gives us a hint to define the case of r =∞.
We define

~E∞(BTp) := GL2(Qp)/(Q×p ·R×N+p∞,p) ' (v0, v1, . . . ) ·GL2(Qp).

Then each element here has interpretation as an infinite consecutive
sequence of vertices from a vertex to a boundary of the Bruhat–Tits tree
since each element has the form (v0, v1, . . . )·γ where γ ∈ GL2(Qp). Also,
~E∞(BTp) admits natural quotient maps

~E∞(BTp) −→ ~Er(BTp)

(v0, v1, . . . ) 7−→ (v0, v1, . . . , vr)

for all r ≥ 0. Note that the stabilizer of v0 is U0 and the stabilizer of a
boundary of BTp, an element in P1(Qp), is trivial.

We are now able to give a heuristic definition of geometric Gross points
and a more group-theoretic and axiomatic definition is given in §3.4.

Definition 3.10 (Heuristic definition of geometric Gross points). A
geometric Gross point is the consecutive sequence of classical Gross
points at level 0 depending on Choice 3.2, Choice 3.4, and Definition 3.5

in ~E∞(BTp).

3.4. A group theoretic realization and independence. We give
a more axiomatic definition of geometric Gross points. For notational
convenience, let

• G = GL2(Qp),
• B = the upper Borel subgroup of G,

• K0 = GL2(Zp),
• Kr = Γ(prZp), and

• Z = the center of G ' Q×p .
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Then the Iwasawa decomposition implies that G = B · K. We have
natural projection maps

G/(B ∩K0Z) //

��

G/B
' // P1(Qp)

G/K0Z

'

��

V (BTp)

and embedding

G/(B ∩K0Z) V (BTp)× P1(Qp).

We remark that we do not know how to characterize the image explicitly.
We axiomatize Definition 3.10.

Definition 3.11 (Geometric Gross points). Fix a central Gross point/
line v0 of conductor 1 and level 0. For n ≥ 0, an element σ(n) ∈ G/(B ∩
K0Z) is a geometric Gross point of conductor pn if

(1) the image of σ(0) in G/K0Z is v0 under the natural projection,
(2) the image of σ(n) := σ(0) ·

(
pn 0
0 1

)
in G/K0Z has stabilizer Un under

the action of K×p /Q×p via the chosen optimal embedding Ψ0, and

(3) the image of σ(n) in G/B does not change for all n ≥ 0.

Proposition 3.12 (Uniqueness and Galois properties).

(1) By the embedding, Properties (1) and (3) in Definition 3.11
uniquely determine a point in G/(B ∩K0Z).

(2) The image of σ(r) in G/(Z · R×N+pr,p) is (v0, . . . , vr) where vi =

vi−1 ·
(
p 0
0 1

)
.

Proof: (1) Obvious since G/(B ∩K0Z) ↪→ V (BTp)× P1(Qp).

(2) The image of σ(0) under the natural quotient map G/(B ∩K0Z)→
G/K0Z is v0 and a lifing v0 to G/(Z · R×N+pr,p) gives a length r line

segment whose target endpoint is v0. Shifting by
(
pr 0
0 1

)
gives the con-

clusion.

For a given optimal embedding Ψ0 : K× → B×, we define the reversed
embedding Ψ−1

0 : K× → B× by a 7→ Ψ0(a−1). Then, for n ≥ 0, we

define the dual geometric Gross point to σ(n) by an element σ(n),∗ ∈
G/(B ∩K0Z) as exactly same as Definition 3.11 but with the reversed
embedding Ψ−1

0 in Condition (2).
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Proposition 3.13 (Independence of choices). Let σ
(0)
1 , σ

(0)
2 be two geo-

metric Gross points. Then they differ only by the translation by an ele-
ment of K×p /Q×p .

Proof: We split the proof into two parts depending on whether p is inert
in K or splits in K. This is a slightly refined version of [BD4, Lem-
ma 4.3].

The inert case: From [BD2, Lemma 2.7], we can deduce G̃n acts tran-
sitively on the classical Gross points of conductor pn for any n. With

[BD2, Lemma 2.8], it is easy to see that G̃n acts transitively on higher

Gross points of conductor pn. Note that the subquotient K×p /Q×p of G̃∞
acts on P1(Qp) simply transitively due to [BD4, §4.1, Step 2]. This en-

sures that G̃∞ acts on the set of Gross points at infinite level transitively.

The split case: We can deduce the same conclusion for higher Gross
points of conductor pn following the argument in [BD3, §3]. However,
K×p /Q×p does not act on P1(Qp) transitively in this case. It has 3 orbits:

0, ∞, and Q×p . See [BD3, §7.I] for detail. However, any sequence of

classical Gross points does not converges to 0 or ∞ in P1(Qp) in this
case. See [DI, §2.2 and Figure 1] for detail.

4. Comparison among Gross points

4.1. Comparison of explicit and geometric Gross points. Con-
sidering the strong approximation for quaternion algebras (Proposi-
tion 3.8), we observe more precise relations among the double coset
spaces as follows:

B̂×

����

B×\B̂×/R̂(p),×

����

B×p /Q×p // //

����

R[1/p]×\B×p /Q×p
'

Prop. 3.8
//

����

B×\B̂×/(Q×p ·R̂(p),×)

����

B×p /(Q×p ·R×N+p∞,p
)

����

// // R[1/p]×\B×p /(Q×p ·R×N+p∞,p
)

����

'
Prop. 3.8

// B×\B̂×/R̂×
N+p∞

����

B×p /(Q×p ·R×p ) // // R[1/p]×\B×p /R×p
'

Prop. 3.8
// B×\B̂×/R̂×
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There is no level structure at p in B×\B̂×/R̂(p),×, B×\B̂×/R̂×N+p∞ has

Γ0(p∞)-level structure, and B×\B̂×/R̂× has full level structure at p.

Note that B×\B̂×/R̂(p),× is the domain for quaternionic forms of arbi-

trary weight and B×\B̂×/R̂× is the domain for quaternionic forms of
weight two only.

Let

• ς(n) be the explicit Gross point on B̂× defined in Definition 2.2,
• σ(n) be the geometric Gross point on B×p /(Q×p ·R×N+p∞,p) defined

in Definition 3.11, and
• vn be the classical Gross point on B×p /(Q×p · R×p ) defined in Defi-

nition 3.5.

The classical Gross points vn and the geometric Gross points coin-
cide σ(n) by Proposition 3.12(2). The classical Gross points vn and
the explicit Gross points ς(n) coincide by the construction of the explicit
Gross points and theta elements in [CH, §4.1] (cf. Choice 3.2). Thus,
these points coincide in the above diagram as follows:

ς(n)
_

��

ς(n)
_

��

ς(n) � //
_

��

ς(n)
_

��

σ(n)
_

��

� // ς(n) = σ(n)
_

��

� // ς(n) = σ(n)
_

��

σ(n) = vn
� // ς(n) = σ(n) = vn

� // ς(n) = σ(n) = vn

4.2. Comparison with other Gross points. We also consider other
definitions of Gross points and the relation with them. All the Gross
points here correspond to the classical one (of level 0).

Definition 4.1 (Other definitions of Gross points).

(1) Consider the K-points of the Gross curve of level N+ and discrim-
inant N−

B×\B̂× ×Hom(K,B)/R̂×
N+ .

Following [BD1, §2.1], [Lon, §3.1], (xn,Ψ) is a Gross point of

conductor pn on the Gross curve if Ψ(K) ∩ xnR̂N+x−1
n = Ψ(On).
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(2) Following [CV, §5.3], [Lon, §4.2], we define the set of Gross points
by

Ψ0(K×)\B̂×/R̂×
N+

and a Gross point xn ∈ Ψ0(K×)\B̂×/R̂×N+ has conductor pn if

Ψ0(K) ∩ xnR̂N+x−1
n = Ψ0(On).

(3) The equivalence of the above descriptions comes from the map

Ψ0(K×)\B̂×/R̂×
N+ −→ B×\B̂× ×Hom(K,B)/R̂×

N+

defined by xn 7→ (xn,Ψ0). See [Lon, §3.1] for proof.

Remark 4.2. Since we start with a chosen oriented optimal embed-
ding Ψ0, all the “CM points” in the original reference become Gross
points.

Then it is not difficult to check these Gross points coincide with the
classical points (at least at the level of the values of quaternionic forms)
by comparing two equivalent construction of theta elements of modular
forms of weight two ([BD5, §1.2] with classical Gross points and [BD1,
§2.7] with Gross points on Gross curves). Their relation can be summa-
rized in the following diagram:

Ψ0(K×)\B̂×/R̂×
N+

//

��

B×\B̂×/R̂×
N+ xn

� //
_

��

vn

B×\B̂× ×Hom(K,B)/R̂×
N+ (xn,Ψ0)

5. Coefficients

Let E be a finite extension of Qp and O = OE . Let

Σ0(p) :=

{(
a b
c d

)
∈ M2(Zp) : c ∈ pZp, d ∈ Z×p , and ad− bc 6= 0

}
be the semigroup we concern to see Up-action. It is not as the same one
as given in [PS1, §3.3]. More precisely, if r =

(
a b
c d

)
∈ Σ0(p) then its

adjugate r∗ =
(
d −b
−c a

)
satisfies the condition given in [PS1, §3.3]. Since

we will define our left action by the adjugate right action given in [PS1,
§3.3], the specialization maps will be compatible with the convention
of [PS1].

5.1. Symmetric powers. Our convention is similar to but not exactly
the same as those of [CH] and [PS1]. We also introduce an equivariant
pairing to obtain the distribution relation later.
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5.1.1. Semigroup action. Let Lk(E) := Symk−2(E2) and Lk(O) :=

Symk−2(O2). They admit the left actions of Σ0(p) and GL2(Zp) via the
representation

ρk : Σ0(p) (or GL2(Zp)) ⊆ M2(O) −→ EndO(Lk(O))

defined by

(ρk(r) ◦ P )(X,Y ) = P (r∗(X,Y )) = P (dX − bY,−cX + aY ),

where r =
(
a b
c d

)
∈ Σ0(p) and P (X,Y ) ∈ Lk(O) is a homogeneous

polynomial of variables X, Y of degree k − 2.

5.1.2. An (ad hoc) equivariant pairing. Consider the following per-
fect GL2(Qp)-equivariant pairing:

〈−,−〉k : Lk × Lk(det2−k) −→ E

(Xi · Y k−2−i, Xk−2−j · Y j) 7−→ (−1)i ·

(
k − 2

i

)−1

· δi,j ,

where δi,j is the Kronecker delta. The equivariant property is given as
follows:

〈ρk(r) ◦ P1(X,Y ), ρ∗k(r) ◦ P2(X,Y )〉k = 〈P1(X,Y ), P2(X,Y )〉k,

where ρ∗k := ρk ⊗ det2−k. We also write Lk(2− k) = Lk(det2−k).

Remark 5.1 (Normalization of GL2(Qp)-action). In [CH, §2.3], the ac-
tion of GL2(Qp) is unitarily normalized, i.e. the action on the both side is

given by ρk⊗det
2−k
2 . However, the unitary normalization is not compat-

ible with the integral theory of quaternionic forms. See §6.3 and Corol-
lary 6.8.

The pairing itself is not expected to be p-integral unless k − 2 < p
since it involves (k − 2)! in the denominator. In other words, we have

〈−,−〉k : Lk(O)× Lk(
2−k
det)(O) −→ 1

(k − 2)!
O.

5.2. Distributions (as coefficient modules). In order to introduce
the p-adic deformation of quaternionic forms, we record the standard
notion of p-adic distributions and fix convention here. Since distribution
modules themselves are independent of types of Zp-extensions, the argu-
ment of [PS1, §3.3 and §3.4] applies to our setting directly. See [PS1,
§3] for detail.

Let f(z) be a rigid analytic or locally analytic function on Zp. It
admits right weight k action of Σ0(p) as follows:

(5.1) (f |k r)(z) := (cz + d)k−2 · f
(
az + b

cz + d

)
.
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Let Dk/Dk be the module of E-valued rigid analytic/locally analytic
distributions on Zp with left weight k action of Σ0(p), respectively. The
action is defined as dual:

(r ◦ µk)(f(z)) := µk((f |k r)(z)),

where µk ∈ Dk or Dk. Note that there is a natural inclusion Dk ↪→ Dk as
in [PS1, §3.1]. We regard the action as the representation ρ̃k : Σ0(p)→
AutE(Dk) where Dk = Dk or Dk.

The Σ0(p)-equivariant specialization map spk : Dk → Lk is defined by

spk : µk 7−→
∫
Zp

(Y − zX)k−2 dµk(z),

where Dk = Dk or Dk. We follow [PS1, §3.4] for the convention of the
specialization. Also, we defined the actions of Σ0(p) on both sides to
make the map equivariant.

Notation 5.2. We omit ρk and ρ̃k if there is no confusion.

6. Overconvergent quaternionic forms and control
theorems

In this section we define quaternionic forms and their overconvergent
variants. We prove the control theorem to compare them. We also give
a completed cohomological description of quaternionic forms.

6.1. Classical p-adic quaternionic forms.

Definition 6.1 (Classical p-adic quaternionic forms).

(1) A continuous function φk : B×\B̂×/R̂(p),× → Lk(E) is called a
p-adic quaternionic form of discriminant N−, level N+pr, and
weight k if φk satisfies the following transformation property:

φk(αbu) = ρk(u−1
p ) ◦ φk(b),

where α ∈ B× and u ∈ R̂×N+pr , and up is the p-part of u.

(2) The space of such p-adic quaternionic forms is denoted by

SN
−

k (N+pr, E) if k 6= 2. If k = 2, then SN
−

k (N+pr, E) denotes
the space of p-adic quaternionic forms which are not constant.

(3) If one changes the level structure by Ur, Zr, or other level struc-

tures, one may easily define SN
−

k (N+, pr, E), SN
−

k (Zr, E), or spaces
of quaternionic forms of various levels.

Remark 6.2. Our quaternionic forms corresponds to “`-adic modular
forms” or “`-adic avatar” (with ` = p) in [CH, §4.1]. See §8.1 for detail.
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Let TN−k (N+pr)E be the full Hecke algebra over E acting faithfully

on SN
−

k (N+pr, E) and TN−k (N+, pr)E be the full Hecke algebra over E

acting faithfully on SN
−

k (N+, pr, E). We compare their structures with

classical modular forms. Let Sk(Npr, E)N
−-new or Sk(N, pr, E)N

−-new

be the N−-new subspace of cuspforms of weight k and level Γ0(Npr) or

Γ0(N)∩ Γ1(pr) whose Fourier coefficients lie in E and Tk(N+pr)N
−-new

E

or Tk(N+, pr)N
−-new

E be the corresponding quotient Hecke algebra, re-
spectively.

Then the Jacquet–Langlands correspondence (over fields) shows the
following relation between classical modular forms and quaternionic
forms.

Theorem 6.3 ([LV2, §3.3]). There exist isomorphisms of Hecke algebras
over E

TN
−

k (N+pr)E ' Tk(N+pr)N
−-new

E ,

TN
−

k (N+, pr)E ' Tk(N+, pr)N
−-new

E

and (non-canonical) isomorphisms of Hecke modules

SN
−

k (N+pr, E) ' Sk(Npr, E)N
−-new,

SN
−

k (N+, pr, E) ' Sk(N, pr, E)N
−-new

as TN−k (N+pr)E-modules and TN−k (N+, pr)E-modules, respectively. For
a classical modular form fk, we denote the corresponding quaternionic
form by φfk .

Remark 6.4 (on Theorem 6.3). See also [BD6, Theorem 2.4] for r =
0, 1 cases. From this case, one can deduce the general result without any
serious difficulty as in [LV2, §3.3].

6.2. Overconvergent quaternionic forms and control theorems.
We mainly follow [PS1]. See also [WXZ, §3] and [LWX, §2]. Let Dk

be either Dk or Dk.

Definition 6.5 (Overconvergent quaternionic forms).

(1) A continuous function Φk : B×\B̂×/R̂(p),× → Dk is a Dk-valued
overconvergent quaternionic form of discriminant N−, level N+pr,
and weight k if Φk satisfies the following transformation property:

Φk(αbu) = ρ̃k(u−1
p ) ◦ Φk(b),

where α ∈ B× and u ∈ R̂×r , and up is the p-part of u.
(2) The space of such overconvergent quaternionic forms is written as

SN
−

(N+pr, Dk).
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(3) More generally, for a Σ0(p)-module A, we similarly define A-val-
ued quaternionic forms and denote the space of such forms by

SN
−

(N+pr, A) and its variants.

Using the specialization map as in §5.2, we give an explicit relation
between classical and overconvergent quaternionic forms for the non-
critical slope case. Let S(<k−1) be the submodule of a Hecke module S

of slope < k − 1 and TN−k (N+p)
(<k−1)
E be the Hecke algebra acting

faithfully on the subspace of the forms of slope less than k − 1.

Theorem 6.6 (Control theorem). There exist TN−k (N+p)
(<k−1)
E -equi-

variant isomorphisms

SN
−

(N+p,Dk)(<k−1) ' SN
−

(N+p,Dk)(<k−1)

' SN
−

k (N+p,E)(<k−1),

where the first map is induced from the natural inclusion between distri-
butions and the second map is induced from the specialization map spk.

For the first isomorphism, see [PS2, Lemma 5.3]. We prove the second
isomorphism in §6.5.2.

6.3. Integral normalizations and integral refinement of control
theorems. We introduce an optimal integral normalizations of classical
and overconvergent quaternionic forms. These will be used for the slope
zero case.

Choice 6.7 (of the “explicit” integral normalizations). Note that all the
choices implies that nonvanishing of the form modulo $.

(1) If Φk ∈ SN
−

(N+p,Dk(O))(0), then we normalize that the values
of Φk lie in Dk(O) but not in $Dk(O).

(2) If φk ∈ SN
−

k (N+p,O)(0), then we normalize that the values of φk
lie in Lk(O) = Symk−2(O) but not in $ Symk−2(O).

Choice (1) and (2) are compatible under the specialization map spk.

Let S(0) be the slope zero submodule of a Hecke module S and

TN−k (N+p)(0) be the slope zero quotient of TN−k (N+p).

Corollary 6.8 (Integral refinement of Theorem 6.6). There exists a

TN−k (N+p)(0)-equivariant isomorphism

SN
−

(N+p,Dk(O))(0) ' SN
−

k (N+p,O)(0).

Remark 6.9. This is a quaternionic analogue of [DHH+, Lemma 6.4].
Note that this explicit integral normalization is not compatible with the
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integral normalization for Hida theory. See [DHH+, Lemma 6.3] for
the other integral normalization, which is more relevant to the integral
Hida theory. We call the other normalization by the “canonical” integral
normalization. These two integral normalizations coincide if k − 1 < p.
See the proof of [DHH+, Theorem 6.8].

6.4. A cohomological interpretation. We give a cohomological in-
terpretation of the space of quaternionic forms adapting the approach
of completed cohomology à la Emerton with the “trivial” spectral se-
quence. See [Eme1, (3.2)]. We expect that the explicit Gross points
plays the role of the functional on the completed cohomology whose
values are (one half of) anticyclotomic p-adic L-functions as the cycle
(0)−(i∞) ∈ Div0(P1(Q)) plays the same role on the completed cohomol-
ogy for GL2/Q to produce cyclotomic p-adic L-functions. This idea comes
from Emerton’s comment when the author gave a talk at University of
Chicago.

We recall the Γ0(p∞)-variant of completed cohomology for quaternion
algebras.

Definition 6.10 (Completed cohomology for quaternion algebras).

H̃0(N+p∞) := lim←−
s

lim−→
r

H0(B×\B̂×/R̂×
N+pr

,O/$sO).

Let Lk,O = Lk(O) = Symk−2(O2) equipped with a continuous action
of an open subgroup (Rr ⊗Z Zp)× of B×p ' GL2(Qp). We define the

associated p-adic local system Lk,O = Lk(O) on Hida variety XN−

N+pr as

follows:

Lk,O := Lk(O) := B×\
(

(B̂×/R̂
(p),×
N+pr

)× Lk,O
)
/R×

N+pr,p
.

For a more detailed description of the local system, see [Eme1, Defini-
tion 2.2.3] and [Eme2, 2.1.3]. Then the trivial Hochschild–Serre spectral
sequence shows

Hom
R×

N+pr,p

(L∨k,O, H̃
0) ' H0(B×\B̂×/R̂×

N+pr
,Lk,O),

where L∨k,O = Hom(Lk,O,O) as in [Eme2, 2.1.3]. Dualizing the first
term, we have

Hom
R×

N+pr,p

(L∨k,O, H̃
0) ' Hom

R×
N+pr,p

(H̃0, Lk,O)

= H0(R×
N+pr,p

,HomO(H̃0, Lk,O)) = SN
−

k (N+pr,O),

where H̃0 is the O-dual of H̃0. The first isomorphism comes from the

fact that Lk,O is a torsion-free O-module of finite rank and H̃0 is also a
torsion-free O-module.
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6.5. Proof of control theorems. The goal of this subsection is to prove
Theorem 6.6 and Corollary 6.8. We follow the strategy of M. Greenberg
[Gre, §4] very closely, which studies the case of modular symbols. Note
that the proof is almost identical due to Greenberg’s “geometry free”
approach. Another virtue of this approach is that it is easy to see the in-
tegral nature for the slope zero subspace (Corollary 6.8). See also [Buz1,
Proposition 4] for another proof. Buzzard’s approach seems more adapt-
able with the setting of eigenvarieties as in [Buz2].

6.5.1. Preliminaries on distribution modules. Let Dk(O) = {µ ∈
Dk : µ(zn) ∈ O for all n ≥ 0} and it is known that Dk(O) is a Σ0(p)-sta-
ble submodule of Dk.

Lemma 6.11 ([Gre, Lemma 1]). Let µ ∈ Dk. Then the moments µ(zn)
of µ are uniformly bounded. Consequently, we have

Dk ' Dk(O)⊗O E.

Define the filtration of Dk(O) as follows:

Fil0 Dk(O) := {µ ∈ Dk(O) : µ(zi) = 0 for all i = 0, . . . k − 2},

FilmDk(O) := {µ ∈ Fil0 Dk(O) : µ(zk−2+j) ∈ $m−j+1O for all j = 1, . . .m}

for m ≥ 1.

Lemma 6.12 ([Gre, Lemma 2]). The submodule Film Dk(O) is Σ0(p)-
stable, for each m ≥ 0.

Consider the quotients

AmDk(O) := Dk(O)/FilmDk(O)

for all m ≥ 0. We call AmDk(O) the m-th approximation to the mod-
ule Dk(O). Note that Lk(O) ' A0Dk(O).

Lemma 6.13 ([Gre, Lemma 8]).

SN
−

(N+p,Dk) ' SN
−

(N+p,Dk(O))⊗O E.

Letm ∈ Lk and let µ be the unique preimage ofm under spk satisfying
µ(zj)=0 for j>k−2. We define the j-th moment of m by m(zj) :=µ(zj).

The specialization map spk naturally induces the Hecke-equivariant
map between the spaces of quaternionic forms

spk,∗ : SN
−

(N+p,Dk) −→ SN
−

k (N+p,E).

Consider two natural projections

spmk : Dk(O) −→ AmDk(O), spm+1,m
k : Am+1Dk(O) −→ AmDk(O).

Then the induced maps spmk,∗ and spm+1,m
k,∗ on the spaces of quaternionic

forms are also Up-equivariant.
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6.5.2. Lifting and control theorems: Proof of Theorem 6.6 and
Corollary 6.8. Most of the argument does not concern the domain,
so the proofs are identical for the case of modular symbols except the
convention of group actions.

Let α = αp(fk) and h = ordp(α) for convenience. Set

Lαk (O) := {m ∈ Lk(O) : m(zi) ∈ $h−e·iO, 0 ≤ i ≤ bh/ec},

where e is the ramification index of E/Qp and b·c is the floor function.

Remark 6.14.

(1) It is known that Lαk (O) is Σ0(p)-stable.

(2) Lαk (O) = Lk(O) if h = 0, i.e. slope zero.

Note that Lαk (O)⊗O E = Lk(E) for any α.

Let φ0 ∈ SN−2 (N+p,E) be an eigenform with Up-eigenvalue α in E
of slope strictly less than k− 1. Assume that φ0 is normalized, i.e. φ0 ∈
SN

−

2 (N+p,O).

Lemma 6.15 ([Gre, Lemma 11]).

(1) Let µ ∈ Dk(O) be such that spk(µ) ∈ Lαk (O). Then(
p a
0 1

)
◦ µ ∈ αDk(O).

(2) Let µ ∈ Film Dk(O). Then(
p a
0 1

)
◦ µ ∈ αFilm+1 Dk(O).

Assume the existence of a lift φm of φ0 to SN
−

(N+p,AmDk(O)) such
that φm is also a Up-eigenform with eigenvalue α. Choose an arbitrary

lift Φ of φm to an element of Hom(B×\B̂×/R̂(p),×,Dk(O)). Since Φ is
also a lift of φ0, Lemma 6.15(1) implies that(

1

α
· Up

)
Φ ∈ Hom(Z[B×\B̂×/R̂(p),×],Dk(O)).

Now we define the one step lifting φm+1 by

φm+1 := spm+1
k,∗

((
1

α
· Up

)
Φ

)
∈Hom(Z[B×\B̂×/R̂(p),×], Am+1Dk(O)).

The Up-equivariance of the projection maps together with the relation

spmk = spm+1,m
k ◦ spm+1

k implies that φm = spm+1,m
k,∗ (φm+1).

Lemma 6.16 ([Gre, Claim 1]). The lifted form

φm+1 ∈ Hom(Z[B×\B̂×/R̂(p),×], Am+1Dk(O))

is independent of the choice of lift Φ used in the construction.
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Proof: The claim immediately follows from Lemma 6.15(2).

Remark 6.17. We do not need to have an analogue of [Gre, Claim 2] since
it concerns the special property of the fundamental domain of modular
symbols.

The following lemma says that the lift is also R×N+p,p-equivariant.

Lemma 6.18 ([Gre, Claim 3]). The lifted form φm+1 is R×N+p,p-invari-

ant. In other words,

γ ◦ φm+1 = φm+1,

where γ ∈ R×N+p,p.

Proof: It is a standard computation with help of Lemma 6.16.

The following lemma directly follows from the Σ0(p)-equivariance
of spm+1

k,∗ .

Lemma 6.19. φm+1 is a Up-eigenform with eigenvalue α.

Lemma 6.16, Lemma 6.18, and Lemma 6.19 directly imply the follow-
ing proposition.

Proposition 6.20 ([Gre, Proposition 12]). The lifted form φm+1 ∈
SN

−
(N+p,Am+1Dk(O)) is well-defined and independent of the choice

of lift Φ used in the construction. Moreover, Upφ
m+1 = αφm+1 in

SN
−

(N+p,Am+1Dk(O)).

In order prove Theorem 6.6, it suffices to prove

SN
−

(N+p,Dk)Up=α ' SN
−

k (N+p,E)Up=α

for each α with ordp(α) < k − 1. Also, due to Remark 6.14(2), the
following theorem implies Corollary 6.8 immediately.

Theorem 6.21 (Analogue of [Gre, Theorem 9]). Let α ∈ E be an Up-

eigenvalue acting on SN
−

k (N+p,E) with noncritical slope h = ordp(α) <
k−1. Then the specialization map induces an Hecke-equivariant isomor-
phism

spk,∗ : SN
−

(N+p,Dk(E))Up=α −→ SN
−

k (N+p,E)Up=α.

Proof: A proof can be taken verbatim from that of [Gre, Theorem 9].
We just remark that Lemma 6.13 and Lemma 6.15(2) are used to prove
the injectivity, and Proposition 6.20 is used to prove the surjectivity.
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7. Construction of p-adic L-functions

The goal of this section is to give an overconvergent construction of
anticyclotomic p-adic L-functions as admissible distributions and recon-
struct the corresponding theta elements from the distributions.

Let h < k − 1. We briefly recall the h-admissibility of distributions
on locally polynomials on Zp, and the work of Amice–Vélu [AV] and
Vǐsik [Vǐs] (Theorem 7.2) on the lifting of h-admissible distributions on
locally polynomial functions on Γ∞ ' Zp of degree ≤ k − 2, to locally
analytic distributions on Γ∞. Then we explicitly define the h-admissible
distribution on locally polynomial functions on Γ∞ of degree ≤ k − 2 in
terms of the values of quaternionic forms. Applying the lifting result,
the distribution extends to a locally analytic distribution on Γ∞.

7.0.1. Preliminaries on distributions. We recall the unique lifting
of h-admissible distributions on locally polynomial functions of degree ≤
k − 2 to locally analytic distributions. See [Vǐs, §1.3] and [Pol1, §2.1]
for detail.

Let Ch(Zp) be the space of Cp-valued functions on Zp which are locally
polynomials of degree ≤ h.

Definition 7.1 (h-admissible distributions on locally polynomials). An
h-admissible distribution µ on Zp is a Cp-linear map from Ch(Zp) to Cp
such that

sup
a∈Zp

|µ((z − a)i · 1a+pnZp(z))|

is O(pn(h−i)) for 0 ≤ i ≤ h.

Let D be the algebra of locally analytic distributions on Zp with
convolution product ∗ but forgetting the weight k action of Σ0(p).

Theorem 7.2 (Amice–Vélu, Vǐsik). Let µ be an h-admissible distribu-
tion on locally polynomial functions on Zp of degree less than or equal
to k − 2. Then µ extends uniquely to a distribution on locally analytic
functions on Zp, i.e. µ ∈ D .

Proof: See [AV, Proposition II.2.4], [Vǐs, Lemma 2.10 and Theorem 3.3],
[MTT, Theorem in §11], and [Ste, (6.5) Corollary] for detail. Note that
the original statement is given with distributions on Z×p rather than
on Zp. See [Vǐs, §1.8 and §2.4] for the modification.

7.1. The distribution. Let fk ∈ Sk(Γ0(Np)) be a p-stabilized new-
form of non-critical slope and φfk be the associated integrally normalized

quaternionic form in SN
−

k (N+p,O)(<k−1) as in §6.3.

Proposition 7.3 ([PS1, Lemma 6.2]). All the values of Φfk are (k−1)-
admissible distributions.
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From now on, we explicitly determine the distribution Φfk(ς(1)), which
is one half of the p-adic L-function.

Definition 7.4 (The distribution).

µfk,K∞ := Φfk (ς(1)).

Notation 7.5. Let Wn = (Γ∞)p
n ⊆ Γ∞ be the unique subgroup of Γ∞

of index pn. For a ∈ Z/pnZ, there exists a unique ξa ∈ Γn = Γ∞/Wn

such that

xn(ξa) = ς(1) ·
(
pn a
0 1

)
.

Then ξaWn is (non-canonically but explicitly) identified with a + pnZp
in Γ∞ ' Zp.

Due to Theorem 7.2 and Proposition 7.3, in order to determine the
distribution explicitly, it suffices to compute the values

Φfk (ς(1))(zj · 1ξaWn)

explicitly for all n ≥ 1, a ∈ Z/pnZ, and j = 0, . . . , k − 2.

Definition 7.6 (The j-th component of an quaternionic form). We de-

fine the j-th component φ
[j]
fk

of φfk by the composition

B×\B̂×/R̂(p),×
φfk //

φ
[j]
fk

77Lk(O)
〈−,Xk−2−jY j〉k // E

for j = 0, . . . , k − 2.

First, we compare the evaluation of overconvergent quaternionic forms
and the specialization map, which describe the “total measure”.

Lemma 7.7 (on the comparison of the total measure). Given any b ∈
B×\B̂×/R̂(p),×, we have

Φfk (b)(zj) = φ
[j]
fk

(b)

for j = 0, . . . k − 2.

Proof: Recall the specialization map

spk(Φfk (b)) =

∫
Zp

(Y − zX)k−2 dΦfk (b)(z).

Also, the control theorem (Theorem 6.6) implies that

spk,∗(Φfk )(b) = spk(Φfk (b))

= φfk (b).



Overconvergent Construction of Lp(K∞, f) 757

Thus, we have

φfk (b) =

∫
Zp

(Y − zX)k−2 dΦfk (b)(z) ∈ Lk.

Pairing with 〈−, Xk−2−jY j〉k as in §5.1.2, we have the following equality
of the total measure. ∫

Zp

zj dΦfk (b)(z) = φ
[j]
fk

(b)

for all j = 0, . . . , k − 2.

Now we compute all the values following [PS1, Proposition 6.3]. Since
Φfk is an Up-eigenform with eigenvalue α, we have

Φfk (ς(1)) = α−n(Unp Φfk )(ς(1))

= α−n
pn−1∑
b=0

(
pn b
0 1

)
◦
(

Φfk

(
ς(1) ·

(
pn b
0 1

)))

= α−n
pn−1∑
b=0

(
pn b
0 1

)
◦ (Φfk (xn(ξb))).

For any distribution µ ∈ Dk, the support of
(
pn a
0 1

)
◦ µ is contained

in a+ pnZp. Thus, for 0 ≤ j ≤ k − 2, we have

Φfk (ς(1))(zj · 1a+pnZp(z))

= α−n · (Unp Φfk )(ς(1))(zj · 1a+pnZp(z))

= α−n ·
pn−1∑
b=0

(
pn b
0 1

)
◦ (Φfk (xn(ξb)))(z

j · 1a+pnZp(z))

= α−n ·
pn−1∑
b=0

(Φfk (xn(ξb)))((p
nz + b)j · 1a+pnZp(pnz + b))

= α−n · Φfk (xn(ξa))((pnz + a)j)

= α−n ·
j∑
i=0

Φfk (xn(ξa))

((
j

i

)
· (pnz)i · aj−i

)

=

j∑
i=0

(
pi

α

)n
· φ[i]

fk
(xn(ξa)) · aj−i,
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by Lemma 7.7. Thus, the distribution Φfk(ς(1)) is completely deter-
mined. Also, for j ≥ 1, we have

(7.1) Φfk (ς(1))((zj − a · zj−1) · 1a+pnZp(z)) =

(
pj

α

)n
· φ[j]

fk
(xn(ξa)).

Let µ−1
fk,K∞

is the distribution in D determined by the values

µ−1
fk,K∞

(zj · 1a+pnZp) =

j∑
i=0

(
pi

α

)n
· φ[i]

fk
(x−1
n (ξa)) · aj−i.

Definition 7.8 (p-adic L-functions). The p-adic L-function Lp(K∞, f)
is defined by the convolution product of distributions

µfk,K∞ ∗ µ
−1
fk,K∞

∈ D .

Remark 7.9. This element is well-defined up to a nonzero constant in O×E
since all the choices defining µfk,K∞ and µ−1

fk,K∞
cancel each other.

7.2. Reconstruction of theta elements. In order to obtain the in-
terpolation formula more explicitly, we compare our p-adic L-functions
and those of [CH] at the level of theta elements (finite layers).

Definition 7.10 (Theta elements). Let

θ̃n(fk) :=
∑
ξ∈G̃n

(
1

α

)n
· φ[0]

fk
(xn(ξ))ξ−1 ∈ E[G̃n]

and

θ̃∗n(fk) :=
∑
ξ∈G̃n

(
1

α

)n
· φ[0]

fk
(x−1
n (ξ))ξ−1 ∈ E[G̃n].

We define the n-th theta elements of fk by

θn(fk) := the image of θ(K̃n, fk) under the projection E[G̃n]→ E[Γn]

and

θ∗n(fk) := the image of θ∗(K̃n, fk) under the projection E[G̃n]→ E[Γn].

Remark 7.11 (on the well-definedness). Each element is defined only up

to multiplication by an element of G̃n due to the choices we made. Only
the element

Lp,n(K∞, fk) := θn(fk) · θ∗n(fk) ∈ E[Γn]

is well-defined.

Remark 7.12 (on the boundedness of coefficients). By construction, it is
easy to observe that

θn(fk) ∈ 1

αn
OE [Γn].

(cf. [CL, Remark 2.5 and Definition 2.6], [CH, Lemma 4.4(1)]).
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8. The “weak” interpolation formula

The goal of this section to prove the “weak” interpolation formula for
our p-adic L-functions, indeed p-adic theta elements. We use the inter-
polation formula for complex theta elements in [CH]. Since our p-adic
theta elements and complex theta elements of [CH] are only congruent
modulo pn at explicit Gross points of conductor pn (Corollary 8.8), the
integrally refined interpolation formula (Corollary 8.9) is given only as
a congruence formula unless the form is ordinary or of weight two.

Remark 8.1. All the normalizations are slightly different from those
of [CH] mainly due to the normalization of the pairing. The index is
also different because [CH] mainly focus on the central critical L-values
and we mainly concern the growth of the distribution we defined.

8.1. Complex quaternionic forms and p-adic quaternionic forms.
Using iC, we define the representation

ρk,∞ : B(R)× −→ GL2(C) −→ AutC(Lk(C)).

Then C · XiY k−2−i ⊆ Lk(C) or Lk(2 − k)(C) is the eigenspace on

which ρk,∞(t) acts with eigenvalue t
i · tk−2−i or ρ∗k,∞(t), with eigen-

value t
i−(k−2) · t−i for t ∈ (K ⊗ R)× (cf. [CH, §2.3]).

Let U be an open compact subgroup of B̂×.

Definition 8.2 (Complex quaternionic forms). A function fk : B̂× →
Lk(C) is a complex quaternionic form of weight k and level U if fk satisfies
the transformation property

fk(αbu) = ρk,∞(α) ◦ fk(b),

where α ∈ B× and u ∈ U .

The space of complex quaternionic forms is denoted by SN
−

k (U,C).

Then SN
−

k (C) := lim−→
U

SN
−

k (U,C) becomes an admissible representation

of B̂×.
Let B(A)× = (B ⊗ A)× where A is the ring of adeles over Q. For

fk ∈ SN
−

k (C) and P (X,Y ) ∈ Lk(2− k)(C), we define a function Ψ(fk ⊗
P (X,Y )) : B×\B(A)× → C by

Ψ(fk ⊗ P (X,Y ))(g) := 〈fk(gf ), ρ∗k,∞(g∞) ◦ P (X,Y )〉k,

where ρ∗k,∞(g∞) = det2−k(g∞) · ρk,∞(g∞) (cf. [CH, (2.11)]).
We define

ρk,p : B×p −→ AutCp(Lk(Cp))
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by ρk,p(g) := ρk ◦ ιp ◦ iK(g) for g ∈ B×p , and define ρ∗k,p(g) := det2−k(g) ·
ρk,p(g). By [CH, §4.1], we have

ρk,p(g) = ρk,∞(g)

for g ∈ B×, and
ρk,p(g) = ρk(γp · ip(g) · γ−1

p )

for g ∈ B×p , where γp :=
(√

β −
√
βθ

−1 θ

)
∈ GL2(Kp) and ip is the fixed

isomorphism Bp ' M2(Qp).
Let A be a subring of C and SN

−

k (N+p,A) ⊆ SN
−

k (N+p,C) and

SN
−

k (N+p,A) ⊆ SN
−

k (N+p,Cp) (via ιp and ι∞) be the submodules
of A-valued forms. If 1

p ∈ A, then we have the isomorphism

SN
−

k (N+p,A)
'−→ SN

−
k (N+p,A)

fk 7−→ f̂k(g) = φfk (g) := ρk(γ−1
p ) · ρk,p(g−1

p ) ◦ fk(g),

where g ∈ B̂× and gp is the p-part of g. Furthermore, with the Jacquet–
Langlands correspondence (Theorem 6.3), we identify

SN
−

k (N+p,A)
' // SN

−
k (N+p,A) Sk(N+p,A)N

−-new'oo

fk
� // f̂k = φfk fk

�oo
(8.1)

up to multiplication by an element of A×.

8.2. Complex theta elements of higher weight. From now on, we

assume fk ∈ SN
−

k (N+p,C) is a p-stabilized newform with Up-eigenvalue α
with non-critical slope (cf. [CH, §3.2]). Let

v∗i :=(−1)
k−2
2 · (−1)i ·

(
k − 2

i

)
·
√
β
k−2−i

·
√
−DK

k−2·XiY k−2−i∈Lk(2−k)(C)

for i = 0, . . . , k − 2 (cf. [CH, (3.1)]).
Let

fk,i := Ψ(fk ⊗ v∗i ).

Let G̃n := K×\K̂×/O×n ·Q̂× be the Galois group of the ring class field
of K of conductor pn. It coincides with the same notation in §3.2. Here,

On = Z + pnOK . Let [·]n : K̂× → G̃n be the geometrically normalized
reciprocity map.

Definition 8.3 (Complex theta elements, [CH, Definition 4.1]). Fix a

set Ξn of representatives of G̃n in K×\K̂×. We define the n-th complex

theta element Θ
[i]
n (fk) of weight i− k−2

2 by

Θ[i]
n (fk) :=

1

αn

∑
a∈Ξn

fk,i(xn(a)) · ι−1
p (ai−(k−2)

p · a−ip ) · [a]n ∈ C[G̃n].
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Remark 8.4. Note that the index and the weight of the complex theta
element are different due to Remark 8.1.

8.3. The interpolation formula for the complex theta elements.

Definition 8.5. Let χ be an anticyclotomic Hecke character of conduc-
tor ps and weight

(
i − k−2

2 , i + k−2
2

)
where i = 1, . . . k − 1. We define

the (central critical twisted) p-adic avatar χ̂ of χ by

χ̂(a) = χ(a) · aip · ak−2−i
p

with respect to the weight k of f (cf. [CH, Introduction]).

Next we state the interpolation formula for the complex theta ele-

ment Θ
[i]
n (fk). Note that the formula is slightly different from the original

one, but this is only because of the difference of the normalization.

Theorem 8.6 ([CH, Proposition 4.3]). Suppose that χ has the conduc-
tor ps. For every n ≥ max{s, 1}, we have the interpolation formula

χ̂(Θ[i]
n (fk)2) = (k − 2)! ·

L(fk, χ,
k
2
)

Ωfk,N−
· ep(fk, χ)j · 1

α2s
· (psDK)k−1 · u2

K√
DK

·χ(N+) · εp(fk),

where

• Ωfk,N− is the Gross period defined in [CH, (4.3)] (cf. [Kim, Ap-
pendix]),

• ep(fk, χ) is the p-adic multiplier defined by

ep(fk, χ) =


1 if n > 0,(

1− p
k−2
2 αp(fk)−1

)2

if n = 0 and p splits in K,

1− pk−2αp(fk)−2 if n = 0 and p is inert in K,

and

j =

{
1 if fk is new at p,

2 if fk is old at p,

• u2
K = #(O×K/2),

• N+ is the ideal of OK satisfying N+ = N+ ·N+ in K depending
on the orientation of the optimal embedding, and

• εp(fk) is the eigenvalue of the Atkin–Lehner involution of fk at p.

In [CH, Theorem A] there are certain restrictions on weight (k− 2 <
p) and slope (slope zero). However, Theorem 8.6 does not have such a
restriction.
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8.4. An integral comparison of complex and p-adic quater-
nionic forms. The following proposition plays the key role in the inte-
gral connection between complex and p-adic theta elements.

Proposition 8.7 ([CH, Lemma 4.4]). Let A ⊂ Cp be a subring which

contains OE and OKp
. For a ∈ K̂×, we have

pn(k−2) · fk,i(xn(a)) · ai−(k−2)
p · a−ip ∈ A,

and

pn(k−2) · fk,i(xn(a)) · ai−(k−2)
p · a−ip

≡ (−1)
k−2
2 · (−1)i ·

(
k − 2

i

)
·
√
β

2−k
· 〈φfk (xn(a)), Xk−2〉k (mod pnA)

up to multiplication by an element of A×, where ap ∈ (K ⊗Qp)× is the

p-part of a ∈ K̂× and ap is the conjugate of ap.

Proof: This is [CH, Lemma 4.4] with change of normalization of the
pairing (§5.1.2) and [CL, Remark 2.5].

The following corollary is an immediate consequence.

Corollary 8.8.

pn(k−2) ·Θ[i]
n (fk)≡(−1)

k−2
2 · (−1)i ·

(
k − 2

i

)
·
√
β

2−k
· θn(fk)

(
mod

pn

αnp
OE
)

up to multiplication by an element of O×E .

Combining Theorem 8.6 and Corollary 8.8, we have the following
interpolation formula.

Corollary 8.9 (“Weak” interpolation formula). Let χ̂ be a character as
in Definition 8.5. Then:

(−1)
k−2
2 · (−1)i ·

(
k − 2

i

)
·
√
β

2−k
· χ̂(θn(fk))

≡
(
pn(k−2) · (k − 2)! ·

L(fk, χ,
k
2
)

Ωf,N−
· ep(fk, χ)j · 1

α2s
· (psDK)k−1 · u2

K√
DK

·χ(N+) · εp(fk)

)1/2(
mod

pn

αnp
OE
)

up to multiplication by an element of O×E . If fk is ordinary or k = 2,
then the congruence becomes equality.
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Remark 8.10. In the “weak” interpolation formula, the congruence im-
mediately becomes equality due to the isomorphism (8.1) if we do not
care their integrality, i.e. if we allow they may differ by an element of E×.
If the form is ordinary, then the congruence in the weak interpolation
formula becomes equality by taking the limit n→∞. Then the range of
interpolating characters becomes larger, namely the set of locally alge-
braic p-adic characters of weight (i,−i) with −k/2 < i < k/2 as in [CH,
Theorem 4.6].

9. Speculations and questions

9.1. “Deformation” of explicit Gross points. This is inspired by
[Eme1, (4.5)]. We may interpret the explicit Gross point ς(1) as a func-

tional on SN
−

k (N+p,E)(<k−1) via the overconvergent construction:

(ς(1))∗ : SN
−

k (N+p,E)(<k−1) // D

φfk
� // Φfk (ς(1)).

This can be regarded as a functional on a small piece (i.e. fixed weight)
of the completed cohomology as in §6.4 or the corresponding eigenva-
riety. If we can “patch” this functional on all the weight coherently,
the map (ς(1))∗ would extend to the functional on the whole completed
cohomology or the corresponding eigenvariety, which may produce two
variable anticyclotomic p-adic L-functions on the eigenvariety. In the
sequel paper in preparation, we construct two variable anticyclotomic
p-adic L-functions of Hida families and study their Iwasawa theory.

Furthermore, if we work with geometry of the eigenvariety attached
to a definite quaternion algebra (e.g. [Buz2]) or uses a relevant p-adic
extension of Jacquet–Langlands correspondence (e.g. [HIS]) in more de-
tail, then we may be able to generalize the main result of this article to
the critical slope case as in [Bel]. In fact, our setting prevents CM forms;
thus, it would be easier than the case of modular symbols.

9.2. Growth of the size of noncommutative class numbers. It
seems very interesting if we see a certain Iwasawa-theoretic phenomena

in the growth behavior of the size of B×\B̂×/R̂×N+pr as r → ∞. Then

the study of this growth would be regarded as a “noncommutative Iwa-
sawa theory” in a completely different sense. Maybe a p-adic variation
of the Eichler trace formula [Vig, chapitre III, §5.C] would yield an as-
ymptotic formula like Iwasawa’s formula on the p-class numbers of the
p-cyclotomic fields.

9.3. Geometric aspect of quaternionic Hida theory. In [LV1, §2
and §6], Longo and Vigni investigate the geometric aspect of quaternionic
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Hida theory. If we can capture the Γ1(pr) and Γ1(p∞)-level structures
in the context of the Bruhat–Tits tree or its suitable coverings, then it
may allow us to consider a direct connection of the Bruhat–Tits tree
and quaternionic Hida theory. Also, it would naturally explain the rela-
tion between geometric Gross points and big Gross points à la Longo–
Vigni [LV1, §7] in the ordinary case.

9.4. Explicit computation. One may implement an explicit overcon-
vergent algorithm, which is expected to be as effective as one in [GM],
to improve the computation of theta elements given in [BD1, §5.1]. The
explicit computation of the quotient graph [FM] seems helpful to do this
at least for the case of weight two forms. In [Grä], P. M. Gräf explicitly
computed Teitelbaum L-invariants of p-newforms. If one implement the
computation of theta elements for not only p-newforms but also p-sta-
bilized newforms, then it would have many arithmetic applications. For
the cyclotomic case, see [DHH+].
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pp. 23–44. DOI: 10.1007/978-3-0348-7919-4−2.
[Buz2] K. Buzzard, Eigenvarieties, in: “L-functions and Galois Representations”,

London Math. Soc. Lecture Note Ser. 320, Cambridge Univ. Press, Cam-

bridge, 2007, pp. 59–120. DOI: 10.1017/CBO9780511721267.004.
[CKL] F. Castella, C.-H. Kim, and M. Longo, Variation of anticyclotomic Iwa-

sawa invariants in Hida families, Algebra Number Theory 11(10) (2017),

2339–2368. DOI: 10.2140/ant.2017.11.2339.
[CL] F. Castella and M. Longo, Big Heegner points and special values of L-se-
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