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Abstract: We show that the product BMO space can be characterized by iterated
commutators of a large class of Calderón–Zygmund operators. This result follows

from a new proof of boundedness of iterated commutators in terms of the BMO

norm of their symbol functions, using Hytönen’s representation theorem of Calderón–
Zygmund operators as averages of dyadic shifts. The proof introduces some new

paraproducts which have BMO estimates.
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1. Introduction

In [9] the product BMO space on Rd1 ⊗ · · · ⊗ Rdt was characterized
by the multi-parameter iterated commutators of Riesz transforms. This
extended to the product setting the classical results of R. R. Coifman,
R. Rochberg, and G. Weiss [2], a characterization of classical BMO in
terms of boundedness on L2(Rd) of the commutator of a singular integral
operator with a multiplication operator, which by duality also implies a
weak factorization result of H1(Rd).

In the multi-parameter setting, let Mb be the operator of pointwise

multiplication by b ∈ BMOprod(R~d). Let Ti be the Calderón–Zygmund
operators on Rdi . One seeks to characterize product BMO in terms of
commutators in the sense that

‖b‖BMOprod
. ‖[. . . [[Mb, T1], T2] . . . , Tt]‖L2→L2 . ‖b‖BMOprod

,

where the first and second inequality will be referred to as lower bound
and upper bound, respectively.

In the case of Hilbert transform, the above result in bi-parameter
setting was proved by S. H. Ferguson and M. T. Lacey in [4], where
the upper bound was first shown by S. H. Ferguson and C. Sadosky [5].
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M. Lacey and E. Terwilleger [11] then extended the result to the
multi-parameter setting. The Riesz transform result was proved by
M. T. Lacey, S. Petermichl, J. C. Pipher, and B. D. Wick in [9], where
they obtained a more general upper bound result for any Calderón–
Zygmund operators of convolution type with high degree of smoothness.
Later on in [10] they simplified the proof of the upper bound for Riesz
transforms by means of dyadic shifts. Very recently, the first author and
S. Petermichl [3] proved the lower bound for a larger class of Calderón–
Zygmund operators satisfying certain criteria.

In this paper, we prove the upper bound for any given collection of
Calderón–Zygmund operators. As a corollary, we prove new characteri-
zations of product BMO in terms of commutators of Calderón–Zygmund
operators.

The main theorem of the paper is the following:

Theorem 1.1. Let b ∈ BMOprod(R~d) and (Ti)1≤i≤t be a collection of
Calderón–Zygmund operators, with each Ti acting on parameter i of

R~d = Rd1 ⊗ · · · ⊗ Rdt . Then,

‖[. . . [[Mb, T1], T2] . . . , Tt]‖L2→L2 ≤ C‖b‖BMOprod
,

where C depends only on ~d and
∏t
i=1 ‖Ti‖CZ .

One of the interesting results implied directly by the theorem is that
a perturbation of a collection of operators characterizing product BMO
still characterizes product BMO. In other words, characterizing fami-
lies such as the Riesz transforms are stable under small perturbations
in the sense that the Calderón–Zygmund operator norm of the pertur-
bation terms are small. We organize this observation into the following
corollary.

Corollary 1.2. Let (Ti,si)1≤i≤t, 1≤si≤ni be a family of Calderón–

Zygmund operators characterizing the space BMOprod(R~d), that is,
∃ C1, C2>0, such that

C1‖b‖BMOprod
≤ sup

1≤i≤t, 1≤si≤ni
‖[. . . [[Mb, T1,s1 ], T2,s2 ] . . . , Tt,st ]‖L2→L2

≤ C2‖b‖BMOprod
.

Then, ∃ ε > 0 such that for any family of Calderón–Zygmund oper-
ators (T ′i,si)1≤i≤t, 1≤si≤ni satisfying ‖T ′i,si‖CZ ≤ ε, the family (Ti,si +

T ′i,si)1≤i≤t, 1≤si≤ni still characterizes BMOprod(R~d).
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In particular, since Calderón–Zygmund operators form a linear space,
whose norm can be made arbitrarily small by multiplying a small con-
stant, it means that once we have a collection of operators characterizing
BMO, we automatically obtain infinitely many collections of operators
which also characterize BMO. More specifically, let (Ti,si)1≤i≤t, 1≤si≤ni
be a family as in the corollary above, for any arbitrary family of Calde-
rón–Zygmund operators (T ′i,si)1≤i≤t, 1≤si≤ni , there exist ε1, . . . ,εt>0 such
that for any 0<ci<εi, 1≤ i≤ t, the family (Ti,si+ ciT

′
i,si

)1≤i≤t, 1≤si≤ni

characterizes BMOprod(R~d).
The main tool in the proof of the main theorem is the representation

theorem by T. P. Hytönen [6], which states that any Calderón–Zygmund
operator can be represented as an average of dyadic shift operators with
respect to a probabilistic measure on a collection of dyadic grids. While
the earliest version of this theorem appeared in [7], here we choose to
apply a slightly different one given in [6]. In our proof, we will reduce
the problem to the upper bound for commutators with dyadic shifts.
This is the first use of Hytönen’s representation theorem to commutator
theory. The novelty of this approach to the upper bound is twofold.
First, the commutators with dyadic shifts which have infinite complexity
in our case, are carefully studied and effectively reduced to paraproducts
and another class of bounded operators. In contrast to typical methods
dealing with multi-parameter theory, this allows our argument to be
iterated. Second, new paraproducts and a similar type of operators are
introduced, and this is where the delicate estimates in product theory
are required.

The paper is organized as follows. In Section 2, we recall several
preliminary results on dyadic shifts, representation theorem, and multi-
parameter paraproducts. In Section 3, a full proof of the main theorem
in its one-parameter case is introduced, while the proof of the main
theorem in arbitrarily many parameters is presented in Section 4.
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2. Preliminaries

We give some essential background for the proof of the main theorem.

2.1. Dyadic shifts and representation theorem. Recall that while
the standard dyadic grid is defined as

D0 := {2−k([0, 1)d +m) : k ∈ Z, m ∈ Zd},
for any parameter ω = (ωj)j∈Z ∈ ({0, 1}d)Z, one can define an associated
shifted dyadic grid as

Dω := {I+̇ω : I ∈ D0},
where

I+̇ω := I +
∑

j:2−j<`(I)

2−jωj .

For a fixed shifted grid Dω and i, j ∈ Z+, a dyadic shift operator Sijω is
defined to be bounded on L2 with operator norm less than 1. Specifically,

Sijω f :=
∑
K∈Dω

∑
I∈Dω, I⊂K
`(I)=2−i`(K)

∑
J∈Dω, J⊂K
`(J)=2−j`(K)

aIJK〈f, hI〉hJ

=:
∑
K

(i,j)∑
I,J⊂K

aIJK〈f, hI〉hJ ,

with |aIJK | ≤ |I|1/2|J |1/2/|K|. Sijω is called cancellative if all the Haar
functions in the definition are cancellative, otherwise, it is called non-
cancellative.

Recall that in one dimension, any dyadic interval I is associated with a
cancellative Haar function h0

I = |I|−1/2(χIl −χIr ) and a noncancellative

one h1
I = |I|−1/2χI . While in d dimensions, each cube I = I1 × · · · × Id

is associated with 2d Haar functions:

hεI(x) = h
(ε1,...,εd)
I1×···×Id(x1, . . . , xd) =

d∏
i=1

hεiIi(xi), ε ∈ {0, 1}d,

where h1
I is called noncancellative, while all the other 2d − 1 Haar func-

tions hεI for ε ∈ {0, 1}d \ {1} are cancellative. Note that all the cancella-
tive Haar functions for a fixed grid form an orthonormal basis of L2(Rd).
In this paper, we usually suppress the parameter ε to abbreviate the no-
tation.

We now introduce T. P. Hytönen’s representation theorem, a key tool
in our proof. Interested readers can find its proof and a more detailed
discussion in [6] and [7]. The operator T mentioned in the following
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will denote a Calderón–Zygmund operator associated with a δ-standard
kernel K. T. P. Hytönen [6] proved the following theorem.

Theorem 2.1. Let T be a Calderón–Zygmund operator, then it has an
expansion, say for f, g ∈ C∞0 (Rd),

〈g, Tf〉 = c · ‖T‖CZ · Eω
∞∑

i,j=0

2−max (i,j)δ/2〈g, Sijω f〉,

where c is a dimensional constant and Sijω is a dyadic shift of param-
eter (i, j) on the dyadic grid Dω; all of them except possibly S00

ω are
cancellative.

According to the proof of Theorem 2.1, in the representation of any T ,
only S00

ω may be noncancellative, and if this is the case, only one of {hI},
{hJ} in its definition is noncancellative, i.e. S00

ω is a paraproduct with
some BMO symbol a satisfying ‖a‖BMO ≤ 1 and aI = 〈a, hI〉|I|−1/2,
∀ I ∈ D.

2.2. Multi-parameter paraproducts. Recall that a multi-parameter
paraproduct associated with function b can be viewed as a bilinear op-
erator which is defined as

B0(b, f) =
∑
R∈D~d

βR〈b, hε1R 〉〈f, h
ε2
R 〉h

ε3
R |R|

− 1
2 ,

where εj ∈ {0, 1}
~d, D~d denotes the tensor product of dyadic grids, and

{βR}R is a sequence satisfying |βR| ≤ 1. Note that h
εj
R is cancellative

if and only if εj 6= ~1. According to Journé [8] and later on improved
by C. Muscalu, J. Pipher, T. Tao, and C. Thiele [13, 14], one has the
following boundedness result.

Theorem 2.2. Let ~d = (d1, . . . , dt) and εj = (εj,1, . . . , εj,t). If ε1 6= ~1

and ∀ 1 ≤ s ≤ t, there is at most one of j = 2, 3 such that εj,s = ~1, then
the operator B0 satisfies

B0 : BMOprod(R~d)× L2(R~d)→ L2(R~d).

3. Proof of the one-parameter case

In this section, we present a detailed proof of the main theorem in
the one-parameter setting, which will later on be utilized to prove the
multi-parameter result in the next section. As an essential part of the
proof, delicate estimates of new paraproducts and a new operator P will
be introduced.
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Given a BMO function b and a Calderón–Zygmund operator T , one
could represent the commutator [b, T ] as an average of [b, Sijω ] due to
Theorem 2.1. Then, in order to prove the upper bound inequality, it
suffices to prove that for any f ∈ C∞0 (Rd),

(3.1)

∥∥∥∥∥
∞∑

i,j=0

2−max (i,j)δ/2[b, Sijω ]f

∥∥∥∥∥
L2

. ‖b‖BMO‖f‖L2

uniformly in ω. In the following we will write Sij for short as the argu-
ment doesn’t depend on ω explicitly.

As a crucial ingredient in our argument, two kinds of paraproduct-like
operators need to be introduced.

The first one is the bilinear operator Bk which could be viewed as a
generalized dyadic paraproduct:

Bk(b, f) :=
∑
I

βI〈b, hI(k)〉〈f, hI〉hI |I(k)|− 1
2 ,

where {βI}I is a sequence satisfying |βI |≤1, k≥0 is an arbitrary integer,
and I(k) denotes the k-th dyadic ancestor of I. Note that when k=0, this
is exactly the classical paraproduct that we have introduced at the end of
the previous section, whose boundedness is stated in Theorem 2.2. Lem-
ma 3.6 below shows that such boundedness holds uniformly for any Bk.

The second one is the trilinear operator P defined as

P (b, a, f) :=
∑
I

〈b, hI〉〈f, hI〉|I|−1
∑
J:J(I

〈a, hJ〉hJ ,

which will be proved to be bounded on BMO × BMO × L2 → L2 in
Lemma 3.7.

The main theorem we will prove in this section is the following:

Theorem 3.2. For cancellative dyadic shift Sij, [b, Sij ]f can be repre-
sented as a finite linear combination of the following terms:

(3.3) Sij(Bk(b, f)), Bk(b, Sijf),

where the integer k is such that 0 ≤ k ≤ max(i, j) and the total number
of terms is bounded by C(1 + max(i, j)) for some universal dimensional
constant C.

For noncancellative dyadic shift S00 (dyadic paraproduct) with sym-
bol a, [b, S00]f can be represented as a finite linear combination of the
following terms:

(3.4) S00(B0(b, f)), B0(b, S00f), P (b, a, f), P ∗(b, a, f),

where P ∗ is understood as the adjoint of P with b and a fixed, and the
total number of terms is bounded by a universal dimensional constant.
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Remark 3.5. The representation claimed in Theorem 3.2 is far from
unique. In fact, suggested by its proof, the readers can easily come
up with representations of [b, Sij ]f using other types of paraproducts,
by decomposing the Haar sums differently. Moreover, as shown in the
proof, the representation can be made such that except when k = 0, all
the Haar functions appearing in Bk(b, f) are cancellative.

It is easy to see that Theorem 1.1 is implied by Theorem 3.2. Indeed,
given the boundedness of Sij , Lemma 3.6, Lemma 3.7 together with
Theorem 2.2 guarantee the uniform boundedness of each of the terms
in (3.3) and (3.4). Hence,

‖[b, Sij ]f‖L2 . (1 + max(i, j))‖b‖BMO‖f‖L2 .

Note that the uniform boundedness of Bk with respect to k is key
in the above argument, which is also the main difficulty of the proof
of Lemma 3.6. Then, with the decaying factor 2−max(i,j)δ/2 in front,
(3.1) follows from a simple geometric series argument.

Lemma 3.6. Given b ∈ BMO(Rd) and k ≥ 0, let

Bk(b, f) =
∑
I

βI〈b, hI(k)〉〈f, hI〉hI |I(k)|− 1
2 ,

where all the Haar functions are cancellative. Then ‖Bk(b, f)‖L2 .
‖b‖BMO‖f‖L2 with a constant independent of k.

Before we proceed to its proof, note that for the application to our
problem, there is no need to include cases when some of the Haar func-
tions in Bk are noncancellative according to the remark above. Hence,
Bk(b, f) is in fact a martingale transform whose uniform boundedness fol-
lows directly from the observation |〈b, hI(k)〉|/|I(k)|1/2 ≤ ‖b‖BMO. How-
ever, we will present a different proof via square function in the following,
which will provide some insight into the estimates of some other opera-
tors and the multi-parameter analogs of the result, where noncancellative
Haar functions have to be taken into account.

Proof: For any g ∈ L2(Rd),

〈Bk(b, f), g〉 =

〈
b,
∑
I

βI〈f, hI〉〈g, hI〉hI(k) |I(k)|− 1
2

〉
.

It thus suffices to show that∥∥∥∥∥∑
I

βI〈f, hI〉〈g, hI〉hI(k) |I(k)|− 1
2

∥∥∥∥∥
H1

. ‖f‖L2‖g‖L2 ,
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which is equivalent to∥∥∥∥∥S
(∑

I

βI〈f, hI〉〈g, hI〉hI(k) |I(k)|− 1
2

)∥∥∥∥∥
L1

. ‖f‖L2‖g‖L2 ,

where in the above S denotes the dyadic square function.
To see this, write

S

(∑
I

βI〈f, hI〉〈g, hI〉hI(k) |I(k)|− 1
2

)2

=
∑
J

( ∑
I:I(k)=J

βI〈f, hI〉〈g, hI〉|J |−
1
2

)2
χJ
|J |

which together with ‖ · ‖`2 ≤ ‖ · ‖`1 and Cauchy–Schwarz inequality
implies

S

(∑
I

βI〈f, hI〉〈g, hI〉hI(k) |I(k)|− 1
2

)

≤
∑
J

( ∑
I:I(k)=J

|〈f, hI〉||〈g, hI〉|
χJ
|J |

)

≤
∑
J

( ∑
I:I(k)=J

|〈f, hI〉|2
) 1

2
( ∑
I:I(k)=J

|〈g, hI〉|2
) 1

2
χJ
|J |

≤

(∑
J

∑
I:I(k)=J

|〈f, hI〉|2
χJ
|J |

) 1
2
(∑

J

∑
I:I(k)=J

|〈g, hI〉|2
χJ
|J |

) 1
2

=: (S(k)f)(S(k)g),

where the operator S(k)f := (
∑
J

∑
I:I(k)=J |〈f, hI〉|2|J |−1χJ)1/2. We

claim that S(k) : L2 → L2 with norm bounded by a dimensional constant,
which does not depend on k. This guarantees that our estimate of Bk
becomes independent of k. Combining this with another use of Cauchy–
Schwarz will complete the proof.
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To show the claim, denote αJ = (
∑
I:I(k)=J |〈f, hI〉|2)1/2 for any J

and define F (x) =
∑
J αJhJ(x). Then

‖S(k)f‖2L2 =

∥∥∥∥∥
(∑

J

α2
J

χJ
|J |

) 1
2
∥∥∥∥∥

2

L2

= ‖SF‖2L2 . ‖F‖2L2

=
∑
J

α2
J =

∑
J

∑
I:I(k)=J

|〈f, hI〉|2 =
∑
I

|〈f, hI〉|2 = ‖f‖2L2 ,

where the second to last equality holds because that cube I in the pre-
vious summation ranges over all the dyadic cubes exactly once.

Lemma 3.7. For tri-linear operator

P (b, a, f) :=
∑
I

〈b, hI〉〈f, hI〉|I|−1
∑
J:J(I

〈a, hJ〉hJ ,

there holds

‖P (b, a, f)‖L2 . ‖b‖BMO‖a‖BMO‖f‖L2 .

Proof: The idea of the proof is to employ the H1-BMO duality and the
square function characterization of H1. For any normalized test function
g ∈ L2,

〈P (b, a, f), g〉 =

〈
b,
∑
I

〈f, hI〉|I|−1hI
∑
J:J(I

〈a, hJ〉〈g, hJ〉

〉
.

To see where the BMO norm of a comes into play, observe that for
any fixed I and some 1 < p < 2,∣∣∣∣∣∣
∑
J:J(I

〈a, hJ〉〈g, hJ〉

∣∣∣∣∣∣ =

∣∣∣∣∣∣
〈 ∑
J:J(I

〈a, hJ〉hJ , gχI

〉∣∣∣∣∣∣
≤

∥∥∥∥∥∥
∑
J:J(I

〈a, hJ〉hJ

∥∥∥∥∥∥
Lp′

‖gχI‖Lp

.

∥∥∥∥∥∥
( ∑
J:J(I

|〈a, hJ〉|2
χJ
|J |

) 1
2

∥∥∥∥∥∥
Lp′

‖gχI‖Lp

. ‖a‖BMO|I|1/p
′
‖gχI‖Lp = ‖a‖BMO|I|(〈|g|p〉I)1/p,

where the last inequality follows from John–Nirenberg inequality.
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Therefore,

S

(∑
I

〈f, hI〉|I|−1hI
∑
J:J(I

〈a, hJ〉〈g, hJ〉

)

=

∑
I

|〈f, hI〉|2|I|−2

( ∑
J:J(I

〈a, hJ〉〈g, hJ〉

)2
χI
|I|

 1
2

≤ ‖a‖BMO

(∑
I

|〈f, hI〉|2(〈|g|p〉I)2/pχI
|I|

) 1
2

≤ ‖a‖BMO

(∑
I

|〈f, hI〉|2 sup
I:x∈I

(〈|g|p〉I)2/pχI
|I|

) 1
2

≤ ‖a‖BMOM(|g|p)1/pS(f),

where M is the Hardy–Littlewood maximal function which is bounded
on Lp, 1 < p <∞. Hence,

‖P (b, a, f)‖L2 . ‖b‖BMO‖a‖BMO‖M(|g|p)1/p‖L2‖S(f)‖L2

. ‖b‖BMO‖a‖BMO‖f‖L2 .

Now we turn to the proof of Theorem 3.2 and the strategy is the
following. First, we decompose b and f using Haar bases. Second, we
split the sum into several parts and represent each of them as a linear
combination of terms in Theorem 3.2.

To start with, one decomposes [b, Sij ]f as

[b, Sij ]f =
∑
I,J

〈b, hI〉〈f, hJ〉[hI , Sij ]hJ

=
∑
I,J

〈b, hI〉〈f, hJ〉
(
hIS

ijhJ − Sij(hIhJ)
)

=: I + II,

where in the following I and II will be referred to as first term and second
term, respectively. In order to further organize the sum and extract the
correct paraproduct structure, even in the simplest one-parameter case,
one needs to divide up the sum into many different parts, depending on
the relative sizes of I, J .



Upper Bound for Multi-Parameter Iterated Commutators 201

3.1. Cancellative dyadic shift Sij. Let’s first look at the case when
Sij is cancellative, meaning that all the Haar functions appearing are
cancellative. Hence,

[b, Sij ]f =
∑
I,J

〈b, hI〉〈f, hJ〉

(
hI

(j)∑
J′⊂J(i)

aJJ ′J(i)hJ′

−
∑
K

(i,j)∑
I′′,J′′⊂K

aI′′J′′K〈hIhJ , hI′′〉hJ′′
)
.

First, we claim that it suffices to consider the part I ⊂ J (i). Indeed,
it is obvious that when I ∩ J (i) = ∅, both terms in the parentheses are
zero. Furthermore, by the cancellation structure of the commutator,
when I ) J (i), the term [hI , S

ij ]hJ is also zero. To see this, as hI is
constant on J (i), fixing an arbitrary x0 ∈ J (i) implies

hIS
ijhJ − Sij(hIhJ) = hI(x0)SijhJ − Sij(hI(x0)hJ) = 0.

Note that for the case (i, j) 6= (0, 0), this is the only part of the proof
where one needs the particular cancellation of the commutator structure.

Next, we represent the first term and the second term separately.

3.1.1. First term. Based on the discussion above, for any i, j, the first
term containing hIS

ijhJ is equal to∑
J

∑
I:I⊂J(i)

〈b, hI〉〈f, hJ〉hI
∑

J′:J′⊂J(i)

`(J′)=2i−j`(J)

aJJ ′J(i)hJ′ .

Introducing index K = J (i) allows us to rewrite this as

∑
K

(i)∑
J:J⊂K

∑
I:I⊂K

〈b, hI〉〈f, hJ〉hI
(j)∑

J′:J′⊂K
aJJ ′KhJ′

=
∑
I

〈b, hI〉hI

( ∑
K:K⊃I

(i)∑
J:J⊂K

(j)∑
J′:J′⊂K

aJJ ′K〈f, hJ〉hJ′
)
.
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Comparing the inner parentheses to the definition of Sij suggests that
the expression above is equal to∑

I

〈b, hI〉hI
∑

J′:J′(j)⊃I

〈Sijf, hJ′〉hJ′

=
∑
I

∑
J′:J′)I

〈b, hI〉〈Sijf, hJ′〉hIhJ′

+
∑
I

∑
J′:J′⊂I⊂J′(j)

〈b, hI〉〈Sijf, hJ′〉hIhJ′ =: I + II.

Note that there are only parts I and II left because of the supports of
Haar functions. For part I, one writes

I =
∑
I

〈b, hI〉hI

( ∑
J′:J′)I

〈Sijf, hJ′〉hJ′
)

=
∑
I

〈b, hI〉hI〈Sijf, h1
I〉h1

I =
∑
I

〈b, hI〉〈Sijf, h1
I〉hI |I|−

1
2 ,

which is of type B0(b, Sijf). In order to deal with part II, observe that
it can be decomposed into finitely many pieces depending on the relative
sizes of I and J ′, i.e.

II =

j∑
k=0

∑
J′

〈b, hJ′(k)〉〈Sijf, hJ′〉hJ′(k)hJ′

=

j∑
k=0

∑
J′

βJ′〈b, hJ′(k)〉〈Sijf, hJ′〉hJ′ |J ′(k)|− 1
2 =

j∑
k=0

Bk(b, Sijf),

where βJ′ ∈ {1,−1} and 0 ≤ k ≤ j. Note that the sum at the end
contains only 1 + j ≤ 1 + max(i, j) terms. Therefore, the representation
of the first term is demonstrated.

3.1.2. Second term. Now we turn to the second term that contains
Sij(hIhJ). Due to the supports of Haar functions, this part is nontrivial
only when I ∩ J 6= ∅. Hence, one can split this term into three parts:
I ( J , I = J , and J ( I ⊂ J (i).
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For I ( J , note that the second term becomes

Sij

(∑
I(J
〈b, hI〉〈f, hJ〉hIhJ

)
= Sij

(∑
I

〈b, hI〉hI
∑
J:J)I

〈f, hJ〉hJ

)

= Sij

(∑
I

〈b, hI〉hI〈f, h1
I〉h1

I

)

= Sij

(∑
I

〈b, hI〉〈f, h1
I〉hI |I|−

1
2

)
,

which is Sij(B0(b, f)).
As the diagonal part I = J is obviously of the form Sij(B0(b, f))

already, we move on to the last piece J ( I ⊂ J (i), which can be written
as

Sij

(∑
J

∑
I:J(I⊂J(i)

〈b, hI〉〈f, hJ〉hIhJ

)
.

Observe that what’s inside the parentheses is of an almost identical
form as part II that appeared at the end of the discussion of the first term
except that j is changed to i and that f takes the place of Sijf . Hence,
the same reasoning implies that it is a sum of at most i ≤ max(i, j)
terms of Sij(Bk(b, f)), 1 ≤ k ≤ i. This proves the representation of the
second term as well as completes the discussion of the case when Sij is
cancellative.

3.2. Noncancellative dyadic shift S00. It suffices to assume that

S00f =
∑
I

aI〈f, h1
I〉hI ,

where aI := 〈a, hI〉|I|−1/2 with ‖a‖BMO ≤ 1. Because if we switch the
positions of cancellative and noncancellative Haar functions, what we
obtain is none other than its adjoint. Moreover, for the Haar expansion

[b, S00]f =
∑
I,J

〈b, hI〉〈f, hJ〉[hI , S00]hJ ,

it is not hard to see, according to a discussion similar to the one at the
beginning of the case (i, j) 6= (0, 0), that one needs only to consider the
part I ⊂ J thanks to the commutator structure. We then split the sum
into two parts: I ( J and I = J .
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3.2.1. Part I ( J . To decompose this part, once again we consider the
first term containing hIS

00hJ and the second term containing S00(hIhJ)
separately, without need to exploit more of the cancellation of the com-
mutator. The second term can be dealt with exactly the same as how
we treated the I ( J part of the second term in the case (i, j) 6= (0, 0),
which we omit. To study the first term, one observes that for any hJ ,

S00hJ =
∑
I(J

aI〈hJ , h1
I〉hI =

∑
I(J

aI |I|
1
2hIhJ .

Hence, the first term becomes∑
J

∑
I,I′(J

〈b, hI〉hI〈f, hJ〉aI′ |I ′|
1
2hI′hJ =

∑
J

∑
I⊂I′(J

+
∑
J

∑
I′(I(J

=:I + II.

One writes

I =
∑
I

〈b, hI〉hI

( ∑
I′:I⊂I′

∑
J:I′(J

aI′〈f, hJ〉hJ |I ′|
1
2hI′

)

=
∑
I

〈b, hI〉hI

( ∑
I′:I⊂I′

aI′ |I ′|
1
2hI′〈f, h1

I′〉h1
I′

)

=
∑
I

〈b, hI〉hI

( ∑
I′:I⊂I′

aI′〈f, h1
I′〉hI′

)

=
∑
I

〈b, hI〉hI

( ∑
I′:I⊂I′

〈S00f, hI′〉hI′
)

=
∑
I

〈b, hI〉hI〈S00f, hI〉hI +
∑
I

〈b, hI〉hI〈S00f, h1
I〉h1

I

=
∑
I

βI〈b, hI〉〈S00f, hI〉hεI |I|−
1
2 +

∑
I

〈b, hI〉〈S00f, h1
I〉hI |I|−

1
2 ,

which is the sum of two B0(b, S00f) with βI ∈ {1,−1}.
To deal with part II, observe that

II =
∑
I′(I
〈b, hI〉hIaI′ |I ′|

1
2hI′〈f, h1

I〉h1
I ,
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by first summing over index J . Thus,

II =
∑
I′

aI′ |I ′|
1
2hI′

( ∑
I:I)I′

〈b, hI〉|I|−
1
2 〈f, h1

I〉hI

)

=:
∑
I′

aI′ |I ′|
1
2hI′

∑
I:I)I′

〈Sbf, hI〉hI

=
∑
I′

aI′〈Sbf, h1
I′〉hI′ = S00(Sbf),

where the operator Sbf :=
∑
I〈b, hI〉|I|−1/2〈f, h1

I〉hI is a classical para-
product B0(b, f), and this completes the discussion of part I ( J .

3.2.2. Part I = J . In this special case, what we try to decompose
becomes

(3.8)
∑
I

∑
ε,ε′∈{0,1}d\{~1}

〈b, hεI〉〈f, hε
′

I 〉
(
hεIS

00hε
′

I − S00(hεIh
ε′

I )
)
.

Here, in order to avoid possible confusion, we wrote out the sum over
index ε, ε′ explicitly. Recall that for each cube I, there are 2d different
Haar functions associated: {hεI}, ε ∈ {0, 1}d, and the Haar function is

noncancellative if and only if ε = ~1. First, it is useful to observe that if
ε 6= ε′, [hεI , S

00]hε
′

I = 0. Indeed, for any fixed I and ε, ε′,

hεIS
00hε

′

I =
∑
J:J(I

aJ |J |
1
2hJ(hεIh

ε′

I ),

and

S00(hεIh
ε′

I ) =
∑
J:J⊃I

aJ |J |−
1
2hJ

(∫
I

hεIh
ε′

I

)
+
∑
J:J(I

aJ |J |
1
2hJ(hεIh

ε′

I ).

As a result of cancellation and the fact that
∫
I
hεIh

ε′

I is nonzero if and

only if ε = ε′, i.e. hεIh
ε′

I = |I|−1χI , [hεI , S
00]hε

′

I 6= 0 only when ε = ε′.
Therefore, one can safely suppress the dependence on ε when studying
this part of the sum.

Furthermore, it is easily seen that the second term containing
S00(hIhI) here can be estimated exactly the same as before, it thus
suffices to deal with the first term containing hIS

00hI , which is equal to∑
I

〈b, hI〉〈f, hI〉hIS00hI =
∑
I

〈b, hI〉〈f, hI〉|I|−1
∑
J:J(I

〈a, hJ〉hJ

= P (b, a, f),

hence the proof is complete.
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4. Proof of the main theorem

In this section, we present the proof of the main theorem in the general
setting by iterating the one-parameter result, i.e. Theorem 3.2, in the
previous section. For the sake of brevity, we consider the bi-parameter
case as an example, while the strategy can be easily generalized to work
for arbitrarily many parameters. The main idea is to show that the
commutator can be represented as a finite linear combination of the bi-
parameter analogs of terms in Theorem 3.2, for which one needs to define
and estimate the following new bi-parameter operators, including all the
possible “tensor products” of the one-parameter operators Bk and P .

Lemma 4.1. Given b ∈ BMOprod(Rn×Rm) and integers k, l ≥ 0, define
the following operators

Bk,l(b, f)=
∑
I1,I2

βI1I2〈b, hI(k)1
⊗u

I
(l)
2
〉〈f, hε1I1⊗u

ε2
I2
〉hε
′
1

I1
⊗uε

′
2

I2
|I(k)

1 |−
1
2 |I(l)

2 |−
1
2 ,

where βI1I2 is a sequence satisfying |βI1I2 | ≤ 1. When k > 0, all the Haar
functions in the first variable are cancellative, while when k = 0, there

is at most one of hε1I1 , h
ε′1
I1

being noncancellative. The same assumption
goes for the second variable. Then, ‖Bk,l(b, f)‖L2 . ‖b‖BMOprod

‖f‖L2

with a constant independent of k, l.

In the above, we use uI2 to denote Haar functions in the second vari-
able, for any dyadic cube I2 ⊂ Rm. Note that when k = l = 0, Bk,l be-
comes the classical bi-parameter B0 we have seen at the end of Section 2.
When all the Haar functions are cancellative, the proof of the lemma
proceeds exactly the same as its one-parameter counterpart, except that
one needs bi-parameter dyadic square function as majorization instead.
Therefore in the following, we will only prove the lemma assuming that
k = 0, l > 0, and hε1I1 = h1

I1
is the only noncancellative Haar. Note that

in the setting of arbitrarily many parameters, parallel results still hold.

Proof: We are going to follow the strategy in the proof of Lemma 3.6
and use hybrid maximal-square functions as majorization.

Pairing B0,l(b, f) with a normalized L2 function g and applying the
product H1-BMO duality, it suffices to show that∥∥∥∥∥∥SS

(∑
I1,I2

βI1I2〈f, h1
I1⊗uI2〉〈g, hI1⊗uI2〉hI1⊗uI(l)2

|I1|−
1
2 |I(l)

2 |−
1
2

)∥∥∥∥∥∥
L1

. ‖f‖L2 ,
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where SS is the dyadic double square function whose L1 norm charac-
terizes product H1.

To see this, one calculates

SS

(∑
I1,I2

βI1I2〈f, h1
I1 ⊗ uI2〉〈g, hI1 ⊗ uI2〉hI1 ⊗ uI(l)2

|I1|−
1
2 |I(l)

2 |−
1
2

)2

=
∑
I1,I2

( ∑
J2:J

(l)
2 =I2

〈f, h1
I1⊗ uJ2〉〈g, hI1⊗uJ2〉|I1|

− 1
2 |I2|−

1
2

)2
χI1⊗χI2
|I1||I2|

≤
∑
I1

(∑
I2

∑
J2:J

(l)
2 =I2

sup
I1

(〈〈f, uJ2〉2〉I1)〈g, hI1 ⊗ uJ2〉
χI2
|I2|

)2
χI1
|I1|

,

where the last inequality follows from ‖ · ‖`2 ≤ ‖ · ‖`1 , and 〈·〉I1 denotes
the average value over I1. Then the above is controlled by

∑
I1

(∑
I2

∑
J2:J

(l)
2 =I2

M1(〈f, uJ2〉2)|〈g, hI1 ⊗ uJ2〉|
χI2
|I2|

)2
χI1
|I1|

,

where M1 is the Hardy–Littlewood maximal function in the first variable.
Next, Cauchy–Schwarz inequality implies that

≤
∑
I1

(∑
I2

∑
J2:J

(l)
2 =I2

M1(〈f, uJ2〉2)2χI2
|I2|

)

×

(∑
I2

∑
J2:J

(l)
2 =I2

|〈g, hI1 ⊗ uJ2〉|2
χI2
|I2|

)
χI1
|I1|

=

(∑
I2

∑
J2:J

(l)
2 =I2

M1(〈f, uJ2〉2)2χI2
|I2|

)

×

(∑
I1

∑
I2

∑
J2:J

(l)
2 =I2

|〈g, hI1 ⊗ uJ2〉|2
χI1 ⊗ χI2
|I1||I2|

)
=: I · II.
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II could be written as the square of SS acting on a normalized L2 func-
tion, similarly as the last part of the proof of Lemma 3.6. For I, Feffer-
man–Stein inequality implies that

‖I 1
2 ‖L2(Rn×Rm) =

∫
Rm

∥∥∥∥∥
(∑

I2

∑
J2:J

(l)
2 =I2

M1(〈f, uJ2〉2)2χI2
|I2|

)1
2

∥∥∥∥∥
2

L2(Rn)

dx2


1
2

.

∫
Rm

∥∥∥∥∥
(∑

I2

∑
J2:J

(l)
2 =I2

|〈f, uJ2〉2|2
χI2
|I2|

)1
2

∥∥∥∥∥
2

L2(Rn)

dx2


1
2

.

(∫
Rm
‖f(·, x2)‖2L2(Rn) dx2

) 1
2

= ‖f‖L2(Rn×Rm),

where once again the last inequality is due to the same argument in the
last part of the proof of Lemma 3.6, thus the proof is complete.

Lemma 4.2. Given b, a ∈ BMOprod(Rn × Rm), define

PP (b, a, f) :=
∑
I1,I2

〈b, hI1 ⊗ uI2〉〈f, hI1 ⊗ uI2〉|I1|−1|I2|−1

×
∑

J1:J1(I1

∑
J2:J2(I2

〈a, hJ1 ⊗ uJ2〉hJ1 ⊗ uJ2 ,

and let PP1 be its partial adjoint in the first variable with b, a fixed.
Then,

‖PP (b, a, f)‖L2 . ‖b‖BMOprod
‖a‖BMOprod

‖f‖L2 ,(4.3)

‖PP1(b, a, f)‖L2 . ‖b‖BMOprod
‖a‖BMOprod

‖f‖L2 .(4.4)

Recall that for a bi-parameter singular integral T , its partial adjoint T1

is defined via

〈T (f1 ⊗ f2), g1 ⊗ g2〉 = 〈T1(g1 ⊗ f2), f1 ⊗ g2〉.

It is known that the L2 boundedness of T does not imply the L2 bound-
edness of T1 (see [8] or [12] for a detailed discussion and counterexam-
ples). Hence, in the following, we need to prove the boundedness of PP
and PP1 separately.
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Proof: We first note that the proof of PP is essentially the same as
Lemma 3.7. In the bi-parameter setting, one needs to use the double
square function SS to characterize product H1 and the strong maximal
function MS as majorization. The key observation is that there holds
the following bi-parameter John–Nirenberg inequality (see [1]):

∥∥∥∥∥∥
(∑
R⊂Ω

|〈a, hR〉|2
χR
|R|

) 1
2

∥∥∥∥∥∥
Lp

≤ ‖a‖BMOprod
|Ω|1/p, 1 < p <∞,

where Ω is any open set in Rn × Rm of finite measure, and R denotes
dyadic rectangles. It thus easy to verify that a same argument as in
Lemma 3.7 implies (4.3).

The estimate of (4.4) involves the hybrid maximal-square functions,
which we have seen in the proof of Lemma 4.1. To be specific, let g ∈ L2

be a normalized test function,

〈PP1(b, a, f), g〉=

〈
b,
∑
I1,I2

|I1|−1|I2|−1hI1 ⊗ uI2

×
∑

J1:J1(I1

∑
J2:J2(I2

〈a, hJ1⊗uJ2〉〈f, hJ1⊗uI2〉〈g, hI1⊗uJ2〉

〉
.

Note that by bi-parameter John–Nirenberg inequality,

∣∣∣∣∣ ∑
J1:J1(I1

∑
J2:J2(I2

〈a, hJ1 ⊗ uJ2〉〈f, hJ1 ⊗ uI2〉〈g, hI1 ⊗ uJ2〉

∣∣∣∣∣
=

∣∣∣∣∣ ∑
J1:J1(I1

∑
J2:J2(I2

〈a, hJ1 ⊗ uJ2〉〈〈f, uI2〉2 ⊗ 〈g, hI1〉1, hJ1 ⊗ uJ2〉

∣∣∣∣∣
≤ ‖a‖BMOprod

|I1||I2|(〈|〈f, uI2〉2|p〉I1)1/p(〈|〈g, hI1〉1|p〉I2)1/p,



210 L. Dalenc, Y. Ou

for some 1 < p < 2. Hence,

SS

(∑
I1,I2

|I1|−1|I2|−1hI1 ⊗ uI2

×
∑

J1:J1(I1

∑
J2:J2(I2

〈a, hJ1 ⊗ uJ2〉〈f, hJ1 ⊗ uI2〉〈g, hI1 ⊗ uJ2〉

)

≤‖a‖BMOprod

(∑
I1,I2

(〈|〈f, uI2〉2|p〉I1)2/p(〈|〈g, hI1〉1|p〉I2)2/pχI1⊗χI2
|I1||I2|

)1
2

≤‖a‖BMOprod

(∑
I2

M1(|〈f, uI2〉2|p)2/pχI2
|I2|

)1
2

×

(∑
I1

M2(|〈g, hI1〉1|p)2/pχI1
|I1|

)1
2

.

The two terms on the last line above can be viewed as generalized hybrid
maximal-square functions, whose boundedness is easy to obtain. For
example,∥∥∥∥∥∥

(∑
I2

M1(|〈f, uI2〉2|p)2/pχI2
|I2|

) 1
2

∥∥∥∥∥∥
L2

=

∫
Rn

∥∥∥∥∥
(∑

I2

M1(|〈f, uI2〉2|p)2/pχI2
|I2|

) 1
2

∥∥∥∥∥
2

L2(Rm)

dx1

 1
2

=

(∫
Rn

∑
I2

M1(|〈f, uI2〉2|p)2/p dx1

) 1
2

.

(∑
I2

∫
Rn
|〈f, uI2〉2|2 dx1

) 1
2

= ‖f‖L2 .

Therefore, ‖PP1(b, a, f)‖L2 . ‖b‖BMOprod
‖a‖BMOprod

‖f‖L2 .

In addition to the above two types of operators, in the bi-parameter
setting, a new type of operator that mixes the paraproduct and P arise
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naturally in our argument. We show that they have the following uniform
BMO estimates.

Lemma 4.5. Given b ∈ BMOprod(Rn × Rm), a1 ∈ BMO(Rn), and
a2 ∈ BMO(Rm). For integers k, l ≥ 0, define

BPk(b, a2, f) :=
∑
I1,I2

βI1〈b, hI(k)1
⊗ uI2〉〈f, h

ε1
I1
⊗ uI2〉|I

(k)
1 |−

1
2 |I2|−1h

ε′1
I1

×
∑

J2:J2(I2

〈a2, uJ2〉2uJ2 ,

PBl(b, a
1, f) :=

∑
I1,I2

βI2〈b, hI1 ⊗ uI(l)2
〉〈f, hI1 ⊗ u

ε2
I2
〉|I1|−1|I(l)

2 |−
1
2h

ε′2
I2

×
∑

J1:J1(I1

〈a1, hJ1〉1hJ1 ,

where βI1 , βI2 are sequences satisfying |βI1 |, |βI2 | ≤ 1. When k > 0, all
the Haar functions in the first variable are cancellative, while when k =

0, there is at most one of hε1I1 , h
ε′1
I1

being noncancellative. The same
assumption goes for the second variable. Then, there holds

‖BPk(b, a2, f)‖L2 . ‖b‖BMOprod
‖a2‖BMO‖f‖L2 ,

‖PBl(b, a1, f)‖L2 . ‖b‖BMOprod
‖a1‖BMO‖f‖L2 .

Proof: By symmetry, it suffices to estimate PBl. The strategy is sim-
ilar as before: a square function argument encoding the product BMO
estimate of b, combined with a John–Nirenberg inequality taking advan-
tage of the BMO estimate of a1. Note that the arguments slightly vary
depending on whether noncancellative Haar functions appear. Taking g
such that ‖g‖L2 ≤ 1,

〈PBl(b, a1, f), g〉 =

〈
b,
∑
I1,I2

〈f, hI1 ⊗ u
ε2
I2
〉|I1|−1|I(l)

2 |−
1
2hI1 ⊗ uI(l)2

×
∑

J1:J1(I1

〈a1, hJ1〉1〈g, hJ1 ⊗ u
ε′2
I2
〉

〉
.
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A similar application of John–Nirenberg inequality as before implies
that

SS

∑
I1,I2

〈f, hI1 ⊗ u
ε2
I2
〉|I1|−1|I(l)

2 |−
1
2hI1 ⊗ uI(l)2

×
∑

J1:J1(I1

〈a1, hJ1〉1〈g, hJ1 ⊗ u
ε′2
I2
〉


≤‖a1‖BMO

∑
I1,J2

(
(l)∑

I2⊂J2

〈f, hI1⊗u
ε2
I2
〉(〈|〈g, uε

′
2

I2
〉2|p〉I1)1/p

)2
χI1⊗χJ2
|I1||J2|2

1
2

.

(4.6)

(a) Case l > 0.

In this case, all the Haar functions that appear are cancellative, hence
by omitting the dependence on ε2, ε′2 and applying Cauchy–Schwarz
inequality, there holds

(4.6) ≤ ‖a1‖BMO

∑
I1,J2

(
(l)∑

I2⊂J2

|〈f, hI1 ⊗ uI2〉|2
)

×

(
(l)∑

I2⊂J2

(〈|〈g, uI2〉2|p〉I1)2/p

)
χI1 ⊗ χJ2
|I1||J2|2

 1
2

≤ ‖a1‖BMO

∑
J2

(∑
I1

(l)∑
I2⊂J2

|〈f, hI1 ⊗ uI2〉|2
χI1
|I1|

)

×

(
(l)∑

I2⊂J2

M1(|〈g, uI2〉2|p)2/p

)
χJ2
|J2|2

 1
2

,

which by ‖ · ‖`2 ≤ ‖ · ‖`1 and another use of Cauchy–Schwarz is bounded
by

‖a1‖BMO

(∑
I1

∑
J2

(l)∑
I2⊂J2

|〈f, hI1 ⊗ uI2〉|2
χI1 ⊗ χJ2
|I1||J2|

) 1
2

×

(∑
J2

(l)∑
I2⊂J2

M1(|〈g, uI2〉2|p)2/p χJ2
|J2|

) 1
2

.
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Therefore, a similar double square function and hybrid maximal-square
function argument as in Lemma 4.1 and Lemma 4.2 implies that

‖(4.6)‖L1 . ‖a1‖BMO‖f‖L2‖g‖L2 .

(b) Case l = 0 and ε2 = ~1.

In this case,

(4.6) = ‖a1‖BMO

(∑
I1,I2

(
〈〈f, hI1〉1〉I2

)(
〈|〈g, uI2〉2|p〉I1

)2/pχI1 ⊗ χI2
|I1||I2|

) 1
2

≤

(∑
I1

M2(〈f, hI1〉1)2χI1
|I1|

) 1
2
(∑

I2

M1(|〈g, uI2〉2|p)2/pχI2
|I2|

) 1
2

,

which shows that ‖(4.6)‖L1 . ‖a1‖BMO‖f‖L2‖g‖L2 .

(c) Case l = 0 and ε′2 = ~1.

This last case can be dealt with similarly by noticing that

(4.6) = ‖a1‖BMO

(∑
I1,I2

|〈f, hI1 ⊗ uI2〉|2(〈|〈g〉I2 |p〉I1)2/pχI1 ⊗ χI2
|I1||I2|

) 1
2

≤ ‖a1‖BMO (M1(|M2(g)|p))1/p
SS(f).

The boundedness of M1 and M2 in each variable implies that

‖ (M1(|M2(g)|p))1/p ‖L2 . ‖g‖L2 .

To conclude, we’ve demonstrated in each case that

‖PBl(b, a1, f)‖L2 . ‖b‖BMOprod
‖a1‖BMO‖f‖L2 ,

which completes the proof.

Now let’s proceed with the proof of Theorem 1.1. Using Theorem 2.1
twice for both variables we have

[[b, T1], T2]f = c‖T1‖CZ‖T2‖CZEω1
Eω2

×
∞∑

i1,j1=0

∞∑
i2,j2=0

2−max(i1,j1) δ2 2−max(i2,j2) δ2 [[b, Si1j1ω1
], Si2j2ω2

]f.
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Since our estimate in the following doesn’t depend on the parame-
ters ω1, ω2 explicitly, we will omit them in the notation. Our goal is
to prove that

‖[[b, Si1j11 ], Si2j22 ]f‖L2(Rn×Rm)

. (1+max(i1, j1))(1+max(i2, j2))‖b‖BMOprod(Rn×Rm)‖f‖L2(Rn×Rm),

which can be achieved by showing that any [[b, Si1j11 ], Si2j22 ]f can be
represented as a finite linear combination of the following terms and their
adjoints (which is understood as the adjoint operator with b, ai fixed):

Bk,l(b, S
i1j1
1 Si2j22 f), Si1j11 (Bk,l(b, S

i2j2
2 f)),

BPk(b, a2, Si1j11 f), PBl(b, a
1, Si2j22 f),

PP (b, a1 ⊗ a2, f), PP1(b, a1 ⊗ a2, f),

where k, l ≥ 0, and ai is the BMO symbol of the dyadic shift S00 if it
appears in the i-th variable. The total number of terms in the represen-
tation is no greater than C(1+max(i1, j1))(1+max(i2, j2)) for some uni-
versal constant C. Note that for a1 ∈ BMO(Rn) and a2 ∈ BMO(Rm),
there holds a1 ⊗ a2 ∈ BMOprod(Rn × Rm). Hence, implied by Theo-
rem 2.2, Lemma 4.1, Lemma 4.2, and Lemma 4.5, the L2 norm of all of
the terms above are uniformly bounded, independent of k, l in particular.

To derive the desired representation, we argue by an iteration of The-
orem 3.2.

4.1. Cancellative dyadic shifts Si1j1
1 and Si2j2

2 . In the case when

both Si1j11 and Si2j22 are cancellative, only operators Bk,l need to be
involved. In order to make the notations clear, in the following, we
will use Bτk to denote the one-parameter paraproducts that appeared in
the previous section for the τ -th variable, where k ≥ 0 and τ = 1, 2.
Calculation shows that

[[b, Si1j11 ], Si2j22 ]f

=
∑
I1,J1

∑
I2,J2

〈b, hI1⊗uI2〉〈f, hJ1⊗uJ2〉[hI1 , S
i1j1
1 ]hJ1⊗ [uI2 , S

i2j2
2 ]uJ2 ,
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which by iteration equals

∑
I2,J2

( ∑
t1∈Λ1

B1
k,t1(〈b, uI2〉2, S

i1j1
1 (〈f, uJ2〉2))

+
∑
t2∈Λ2

Si1j11 (B1
k,t2(〈b, uI2〉2, 〈f, uJ2〉2))

)
⊗
(

[uI2 , S
i2j2
2 ]uJ2

)
,

where B1
k,ti

are paraproducts of type B1
k in the first variable, and for

each ti, k is an arbitrary nonnegative integer. Note that in the first
parentheses we have a finite linear combination of terms that have al-
ready been studied in the previous section, and all of the index set Λi
satisfy |Λi| ≤ C(1+max(i1, j1)), i = 1, 2. Since the terms inside the first
parentheses can be treated similarly, let’s study one of the terms B1

k,t1
as

an example. We will also omit the subscript t1 as the choice is arbitrary.
Then, the sum corresponding to B1

k is equal to

∑
I2,J2

B1
k(〈b, uI2〉2, S

i1j1
1 (〈f, uJ2〉2))⊗

(
[uI2 , S

i2j2
2 ]uJ2

)
=
∑
I2,J2

∑
I1

βI1〈b, hI(k)1
⊗ uI2〉〈S

i1j1
1 (f), hε1I1 ⊗ uJ2〉h

ε′1
I1
|Ik1 |−

1
2

⊗
(

[uI2 , S
i2j2
2 ]uJ2

)
=
∑
I1

βI1h
ε′1
I1
|I(k)

1 |−
1
2 ⊗

(
[〈b, h

I
(k)
1
〉1, Si2j22 ]〈Si1j11 f, hε1I1〉1

)

=
∑
I1

βI1h
ε′1
I1
|I(k)

1 |−
1
2⊗

( ∑
s1∈Γ1

B2
l,s1(〈b, h

I
(k)
1
〉1, Si2j22 (〈Si1j11 (f), hε1I1〉1))

+
∑
s2∈Γ2

Si2j22 (B2
l,s2(〈b, h

I
(k)
1
〉1,〈Si1j11 (f), hε1I1〉1))

)
,

where B2
l,si

are paraproducts of type B2
l in the second variable, and all

the index sets Γi satisfy |Γi| ≤ C(1 + max(i2, j2)), i = 1, 2. Again,
since all the terms in the parentheses are similar, we only consider one
of B2

l,s2
and omit the subscript s2. This is a mixed case, and all the



216 L. Dalenc, Y. Ou

other combinations follow similarly. Thus, noticing that∑
I1

βI1h
ε′1
I1
|I(k)

1 |−
1
2 ⊗ Si2j22 (B2

l (〈b, h
I
(k)
1
〉1, 〈Si1j11 (f), hε1I1〉1))

= Si2j22

(∑
I1,I2

βI1βI2〈b, hI(k)1
⊗ u

I
(l)
2
〉〈Si1j11 f, hε1I1 ⊗ u

ε2
I2
〉hε
′
1

I1

⊗ uε
′
2

I2
|I(k)

1 |−
1
2 |I(l)

2 |−
1
2

)

is exactly Si2j22 (Bk,l(b, S
i1j1
1 f)), where Bk,l is the bi-parameter para-

product we’ve studied in Lemma 4.1, and the only case involving non-
cancellative Haar functions is when the corresponding k or l is 0. We
therefore obtain the desired representation of this term. All the other
terms can be treated similarly, by noticing that paraproducts Bk,l can be
obtained by combining B1

k and B2
l through the same process described

above. And it is easily seen that the total number of terms is bounded
by (1 + max(i1, j1))(1 + max(i2, j2)) up to a dimensional constant.

4.2. Cancellative dyadic shift Si1j1
1 and noncancellative dyadic

shift S00
2 . We assume that S00

2 f =
∑
I2
〈a2, uI2〉2|I2|−1/2〈f, u1

I2
〉2uI2 .

Following from Theorem 3.2, in the first variable, the commutator can
be represented as a linear combination of paraproducts, i.e.

[[b, Si1j11 ], S00
2 ]f

=
∑

I1⊂J
(i1)
1

∑
I2⊂J2

〈b, hI1⊗uI2〉〈f, hJ1⊗uJ2〉[hI1 , S
i1j1
1 ]hJ1⊗[uI2 , S

00
2 ]uJ2

=
∑
I2⊂J2

( ∑
t1∈Λ1

B1
k,t1(〈b, uI2〉2, S

i1j1
1 (〈f, uJ2〉2))

+
∑
t2∈Λ2

Si1j11 (B1
k,t2(〈b, uI2〉2, 〈f, uJ2〉2))

)
⊗
(
[uI2 , S

00
2 ]uJ2

)
.

Recall that by Theorem 3.2, in the one-parameter setting, the noncan-
cellative dyadic shift S00 can be represented as a finite linear combination
of paraproducts (corresponding to the sum over I ( J and the second
term in the sum over I = J) and operator P (corresponding to the first



Upper Bound for Multi-Parameter Iterated Commutators 217

term in the sum over I = J). Hence,∑
I2⊂J2

B1
k,t1(〈b, uI2〉2, S

i1j1
1 (〈f, uJ2〉2))⊗ [uI2 , S

00
2 ]uJ2

=
∑
I1

βI1h
ε′1
I1
|I(k)

1 |−
1
2 ⊗

(
[〈b, h

I
(k)
1
〉1, S00

2 ]〈Si1j11 f, hε1I1〉1
)

=
∑
I1

βI1h
ε′1
I1
|I(k)

1 |−
1
2⊗

( ∑
s1∈Γ1

B2
0,s1(〈b, h

I
(k)
1
〉1, S00

2 (〈Si1j11 f, hε1I1〉1))

+
∑
s2∈Γ2

S00
2 (B2

0,s2(〈b, h
I
(k)
1
〉1, 〈Si1j11 f, hε1I1〉1))

+ P (〈b, h
I
(k)
1
〉1, a2, 〈Si1j11 f, hε1I1〉1)

)

=

( ∑
s1∈Γ1

Bk,0,s1(b, Si1j11 S00
2 f)

)
+

( ∑
s2∈Γ2

S00
2 (Bk,0,s2(b, Si1j11 f))

)

+BPk(b, a2, Si1j11 f).

Similarly, the other term can be treated exactly the same:∑
I2⊂J2

Si1j11 (B1
k,t2(〈b, uI2〉2, 〈f, uJ2〉2))⊗ [uI2 , S

00
2 ]uJ2

=

( ∑
s1∈Γ1

Si1j11 (Bk,0,s1(b, S00
2 f))

)
+

( ∑
s2∈Γ2

Si1j11 S00
2 (Bk,0,s2(b, f))

)

+ Si1j11 (BPk(b, a2, f)).

The desired representation is hence obtained. Note that by symmetry
and duality, this implies the boundedness of other types of the mixed
cases as well.

4.3. Noncancellative dyadic shfits S00
1 and S00

2 . Write

[[b, S00
1 ], S00

2 ]f

=
∑
I1⊂J1

∑
I2⊂J2

〈b, hI1 ⊗ uI2〉〈f, hJ1 ⊗ uJ2〉[hI1 , S00
1 ]uJ1 ⊗ [hI2 , S

00
2 ]uJ2 .
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First, we deal with the case when both S00
1 and S00

2 are of the same
type, for instance,

S00
1 f :=

∑
I1

〈a1, hI1〉1|I1|−
1
2 〈f, h1

I1〉hI1 ,

S00
2 f :=

∑
I2

〈a2, uI2〉2|I2|−
1
2 〈f, u1

I2〉2uI2 .

Observe that compared with Subsections 4.1 and 4.2, after decomposing
the commutator in each variable into paraproducts and operator P , the
only new case that arises here is the “tensor product” of operator P in
both variables, which is equal to∑

I1,I2

〈b, hI1 ⊗ uI2〉〈f, hI1 ⊗ uI2〉|I1|−1|I2|−1

×
∑

J1:J1(I1

∑
J2:J2(I2

〈a1 ⊗ a2, hJ1 ⊗ uJ2〉hJ1 ⊗ uJ2

= PP (b, a1 ⊗ a2, f).

Second, we discuss the case when S00
1 and S00

2 are of different types,
for instance,

S00
1 f :=

∑
I1

〈a1, hI1〉1|I1|−
1
2 〈f, hI1〉h1

I1 ,

S00
2 f :=

∑
I2

〈a2, uI2〉2|I2|−
1
2 〈f, u1

I2〉2uI2 .

It is implied by Theorem 3.2 that in the first variable, the commutator
is a linear combination of paraproducts and operator P ∗. Therefore, the
only new case that arises here in the representation is P ∗ in the first
variable mixed with P in the second variable, which is∑

I1,I2

〈b, hI1 ⊗ uI2〉|I1|−1|I2|−1

×
∑

J1:J1(I1

∑
J2:J2(I2

〈a1 ⊗ a2, hJ1 ⊗ uJ2〉〈f, hJ1 ⊗ uI2〉hI1 ⊗ uJ2

= PP1(b, a1 ⊗ a2, f).

Hence the main theorem in the bi-parameter setting is proved. As a
final remark, the proof in the multi-parameter setting proceeds exactly
the same as this one. Clearly, in the desired representation of commu-
tators with dyadic shifts, one needs to involve a larger number of basic
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operators which mix together Bk and P in each variable, but the uni-
form boundedness of such operators can all be obtained similarly as in
Lemmas 4.1, 4.2, and 4.5.
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Primera versió rebuda el 28 d’abril de 2014,
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