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Abstract: Packing measures Pg(E) and Hewitt-Stromberg measures νg(E) and

their relatives are investigated. It is shown, for instance, that for any metric
spaces X, Y and any Hausdorff functions f , g

νg(X) ·Ph(Y ) 6 Pgh(X × Y ).

The inequality for the corresponding dimensions is established and used for a solution
of a problem of Hu and Taylor: If X ⊆ Rn, then

inf{dimPX × Y − dimPY : Y ⊆ Rn} = lim inf
Xn↗X

dimBXn.

Corresponding dimension inequalities for products of measures are established.
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1. Introduction

Consider separable metric spaces and their Hausdorff, packing and
lower packing dimensions denoted, respectively, by dimH, dimP and dimP

(the definitions are provided below). In 1982 Tricot [18] proved that if
X,Y ⊆ Rn, then

(1) dimHX + dimPY 6 dimPX × Y

and this inequality was later generalized to arbitrary separable metric
spaces by Howroyd [11]. In 1993 Hu and Taylor [2, (3.12)] asked if the
inequality is sharp; in more detail, they defined, for X ⊆ R, a dimension

(2) aDimX = inf{dimPX × Y − dimPY : Y ⊆ R},

noticed that (1) yields dimHX 6 aDimX and asked if aDimX =
dimHX for all X ⊆ R.

In 1996 two papers by Bishop and Peres [2] and Xiao [19] indepen-
dently proved that if X,Y ⊆ R are compact, then the inequality (1)
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improves to

(3) dimPX + dimPY 6 dimPX × Y,

doubting thus the conjectured aDimX = dimHX. Can one prove (3) for
arbitrary X,Y ⊆ R or even in a more general setting? The proof in [2]
is very technical and relies upon geometry of Euclidean spaces. On the
other hand, the Xiao’s [19] proof of (3) is a rather straightforward and
simple application of Baire Category Theorem and can be thus easily
extended to any compact metric spaces; and using the Joyce and Preiss
theorem [12], to analytic metric spaces. But it seems impossible to
exploit the idea any further (actually [3] states (3) for arbitrary subsets
of the line, but the proof therein is not very convincing).

It, however, turns out that a much finer, more general and sharper
inequality can be proved in a rather general setting. Let us outline
it in some detail. The dimensions in (3) are, like many other fractal
dimensions, rarefaction indices of fractal measures: the packing dimen-
sion dimPX is the number s0 such that Ps(X) = 0 for all s > s0 and
Ps(X) = ∞ for all s < s0. The lower packing dimension is defined
likewise from the so called Hewitt-Stromberg measures νs(X). The in-
equality (3) is a trivial consequence of the integral inequality

(4) Ps+t(E) >
∫

νs(Ex) dPt(x)

that holds for any subset E ⊆ X×Y of a product of metric spaces. This
inequality, however, does not really help with the solution of the Hu-
Taylor problem. The crucial step towards its solution is the following
observation. Given a set E in a metric space and s > 0, define the
lower box content νs0(E) = lim infδ→0 Cδ(E)/δs, where Cδ(E) is the
maximal number of points within E that are mutually more than δ
apart. The Hewitt-Stromberg measure νs(E) obtains from νs0 by the
standard Method I construction: νs(E) = inf

∑
n ν

s
0(En), where the

infimum is over all countable covers of E. The resulting set function
is an outer Borel measure. Let’s define another set function arising
from νs0 by the formula ν−→

s(E) = inf supn ν
s
0(En), where the infimum

is this time over all increasing covers of E. If νs0 were, like e.g. the
upper box content, subadditive, we would get the same values as from
Method I. But it is not: The set function ν−→

s substantially differs from

the Hewitt-Stromberg measure. It is a not measure, it is not even finitely
subadditive, but it turns to be the right mean for solution of the Hu-
Taylor problem. Once one figures out the proof of (4), it is easy to
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improve it to

(5) Ps+t(E) >
∫

ν−→
s(Ex) dPt(x).

Consequently the rarefaction index dim−−→P of ν−→
s satisfies, for any metric

spaces X, Y ,

(6) dim−−→PX + dimPY 6 dimPX × Y.

Since dim−−→PX can be easily expressed in terms of lower box dimension

(cf. Definition 4.1), it is not that esoteric. This improvement of inequal-
ity (3) gives the best-so-far lower estimate for the dimension of (2):
aDimX > dim−−→PX for all X ⊆ R and actually for any metric space X.

As to the upper estimate of aDim, Xiao [19] proved that for any
X ⊆ R, aDimX is estimated from above by the lower box dimension.
And, luckily, analysis of his proof revealed that one can work upon its
ideas to push the upper estimate down to dim−−→PX. Therefore (6) is

optimal. We arrived at the solution of Hu-Taylor problem:

Theorem. (i) dim−−→PX + dimPY 6 dimPX × Y holds for any metric

spaces X, Y .
(ii) For any X ⊆ Rn there is a compact set Y ⊆ Rn such that dim−−→PX+

dimPY = dimPX × Y .
(iii) In particular, inf{dimPX × Y − dimPY : Y ⊆ Rn} = dim−−→PX for

all X ⊆ Rn.

Actually, with a proper extension of the definition of aDim, the the-
orem remains valid for any space X whose Assouad dimension is finite.

The paper is organized as follows. In Section 2 we recall in detail pack-
ing and Hewitt-Stromberg measures. Then we introduce scaled measures
and upper/lower box and packing measures and list some elementary
properties of these measures. In Section 3 we state and prove (5) and
other integral inequalities involving these measures and derive inequali-
ties for cartesian rectangles. In Section 4 the notions of upper/lower box
and packing dimensions are recalled and the dimension dim−−→P is intro-

duced. Then we set up and prove (6) and other dimension inequalities
following from the respective results of Section 3. Section 5 is devoted
to the solution of the Hu-Taylor problem in a rather general setting.
The paper is concluded with Section 6 that, besides various comments,
presents applications to dimension theory of Borel measures, and lists
some open problems.
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2. The measures

In this section we set up definitions of packing and box measures whose
behavior on cartesian products is investigated in the next section. We
begin with recalling two common measures – the packing measure and
the Hewitt-Stromberg measure. Then we generalize these notions, notice
that via this generalization they are closely related and introduce the
lower packing measure and a couple of more measures and pre-measures.

Since the technique used is rather standard, we present only few brief
proofs.

Throughout the section, X stands for a separable metric space with a
metric d. Notation used includes B(x, r) for the closed ball of radius r >
0 centered at x ∈ X; A for the closure of a set A; |A| for the cardinality
of a set A; and ω for the set of all natural numbers including zero.

Pre-measures. It will be convenient to establish elementary features
of the following constructions of pre-measures from pre-measures.

A set function is a mapping τ that assigns to each E ⊆ X a
value τ(E) ∈ [0,∞]. The notions of monotone, subadditive and count-
ably subadditive set function are self-explaining. A set function will be
called a pre-measure if it is monotone and τ(∅) = 0. A pre-measure τ
is metric if τ(A ∪ B) > τ(A) + τ(B) whenever A,B ⊆ X are sepa-
rated, i.e. dist(A,B) > 0. Departing slightly from the common usage we
call a pre-measure an outer measure if its restriction to the algebra of
Borel sets is a Borel measure. An outer measure τ is Borel-regular if for
each A ⊆ X there is B ⊇ A Borel with τ(B) = τ(A).

The following is the Munroe’s Method I construction, see [17]. Its
point is that it produces a countably subadditive pre-measure from any
pre-measure. Given a pre-measure τ , the new pre-measure τ̂ is defined by

τ̂(E) = inf
{∑

n
τ(En) : E ⊆

⋃
n
En

}
.

We shall also make use of a “directed” variation of Method I. Write
En↗E to denote that 〈En〉 is an increasing sequence of sets with union E.

−→τ (E) = lim inf
En↗E

τ(En) = inf {supn τ(En) : En↗E} .

Let us call this construction Method D for future reference. We list some
elementary properties of the two operations.

Lemma 2.1. Let τ be a metric pre-measure on X.

(i) τ̂ is an outer measure.
(ii) If τ is Borel-regular, then so is τ̂ and τ̂ 6 −→τ .
(iii) If τ is subadditive, then −→τ = τ̂ .
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Proof: (i) By [17, Theorem 4], τ̂ is countably subadditive. It is easy to
check that since τ is metric, so is τ̂ . Hence (i) follows by [17, Theo-
rem 19].

(ii) It is obvious that since τ is Borel-regular, so is τ̂ . It is also obvious

that τ̂ 6 τ ; thus
−→
τ̂ 6 −→τ . As τ̂ is a Borel-regular outer measure,

supn τ̂(En) = τ̂(E) holds for any sequence En↗E, cf. [17, Theorem 4].

Hence τ̂ 6
−→
τ̂ and τ̂ 6 −→τ follows.

(iii) Let En↗E. Set A0 =E0 and An =En\En−1 for n> 0. Then An’s
cover E and by assumption, supnτ(En)6supn

∑
i6nτ(Ai)=

∑
n∈ωτ(An).

This yields −→τ 6 τ̂ . The opposite inequality follows from (ii).

We now recall two classical measures: the packing measure and the
Hewitt-Stromberg measure. They will play an important role in our
considerations and moreover will motivate our definitions of scaled mea-
sures.

Packing measure. There are perhaps too many notions of packing
and packing measure. We choose the one used e.g. in [11] and [12]; the
other definitions are briefly discussed in Section 6. A family {(xi, ri) :
i ∈ I} ⊆ X× (0,∞) is called a packing if xi /∈ B(xj , rj) for all i 6= j in I.
Equivalently, if d(xi, xj) > ri. It is a packing of a set E ⊆ X if xi ∈ E
for all i ∈ I. It is δ-fine if ri 6 δ for all i ∈ I.

We shall need the following simple lemma at a couple of instances.

Lemma 2.2. For any finite packing {(xi, ri) : i ∈ I} there is ε > 0 such
that {(x′i, r′i) : i ∈ I} is a packing whenever d(x′i, xi) < ε and r′i < ri + ε
for all i ∈ I.

Proof: It is enough to put ε = 1
3 min{d(xi, xj)−max(ri, rj) : i 6= j}.

Following [11], a Hausdorff function is a nondecreasing function
g : (0,∞) → (0,∞). No continuity of g is a priori imposed. Hausdorff
functions are (partially) ordered by f ≺ g iff limr→0 g(r)/f(r) = 0.

If g is a Hausdorff function and π = {(xi, ri) : i ∈ I} a packing, we
write

g(π) =
∑
{g(ri) : i ∈ I}.

Definition 2.3 ([11], [12]). Let g be a Hausdorff function and E ⊆ X.
Let Pg

0 (E) = infδ>0 Pg
δ (E), where

Pg
δ =sup{g(π) : π is a δ-fine packing of E}.

The g-dimensional packing measure of E is defined by Pg(E) = P̂g
0 (E).
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In the particular case when g(r) = rs for some constant s > 0, we
write, as usual, Ps instead of Pg; and the same license is used for other
pre-measures and measures obtained from Hausdorff functions.

It is well-known and easy to see that Pg
0 is an additive Borel-regular

metric pre-measure and thus Pg is a Borel-regular outer measure.

Hewitt-Stromberg measure. For F ⊆ X define gapF = inf{d(x, y) :
x, y ∈ F, x 6= y}. For E ⊆ X and δ > 0 denote

(7) Cδ(E) = sup{|F | : F ⊆ E, gapF > δ}
the δ-capacity of E. The following natural notion appeared first in [10,
(10.51)]. It was investigated and got the name in [8], [9]. Another
excellent reference is [7].

Definition 2.4 ([10]). Let g be a Hausdorff function and E ⊆ X. Let

(8) νg0(E) = lim inf
δ→0

Cδ(E)g(δ).

The g-dimensional Hewitt-Stromberg measure of E is defined by νg(E) =

ν̂g0(E).

It is easy to check that νg0 is a Borel-regular metric pre-measure
(though is does not have to be subadditive) and thus νg is a Borel-
regular outer measure.

Scaled measures. A set ∆ ⊆ (0,∞) such that 0 ∈ ∆ is termed a scale.
We use ∆ as a generic symbol for a scale. A packing {B(xi, ri) : i ∈ I}
is ∆-valued if ri ∈ ∆ for all i ∈ I. A (∆, δ)-packing is a packing that is
∆ ∩ (0, δ]-valued, i.e. ∆-valued and δ-fine. A packing {B(xi, ri) : i ∈ I}
is uniform if ri = rj for all i, j ∈ I.

We now introduce an auxiliary notion of a ∆-scaled packing measure.
It is a straight generalization of the packing measure, the only difference
is that the radii allowed in packings are limited to the set ∆.

Definition 2.5. Let g be a Hausdorff function, ∆ a scale and E ⊆ X.
Let Pg

∆,0(E) = infδ>0 Pg
∆,δ(E), where

Pg
∆,δ(E) = sup{g(π) : π is a (∆, δ)-packing of E}.

The g-dimensional ∆-packing measure of E is defined by Pg
∆(E) =

P̂g
∆,0(E).

Let νg∆,0(E) = infδ>0 ν
g
∆,δ(E), where

νg∆,δ(E) = sup{g(π) : π is a uniform (∆, δ)-packing of E}.

The g-dimensional ∆-box measure of E is defined by νg∆(E) = ν̂g∆,0(E).
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Clearly νg∆,0 6 Pg
∆,0 and νg∆ 6 Pg

∆. It is easy to check that the set

function νg∆,0 can be equivalently defined in terms of capacity:

(9) νg∆,0(E) = lim sup
δ∈∆, δ→0

Cδ(E) · g(δ).

This equation shows the link to the Hewitt-Stromberg measure.
Here are some elementary facts about the scaled measures. (i) and (iv)

are obvious, (ii) is a consequence of Lemma 2.2 and (iii) follows from
Lemma 2.1.

Lemma 2.6. (i) Pg
∆,0 and νg∆,0 are subadditive metric pre-measures,

(ii) Pg
∆,0(E) = Pg

∆,0(E) for any set E ⊆ X, and likewise for νg∆,0.

(iii) Pg
∆ and νg∆ are Borel regular outer measures.

Upper measures. We now define upper packing and box measures
as extreme cases of corresponding scaled measures. Among all scales,
(0,∞) is the largest one. The corresponding scaled measures are thus
largest among all scaled measures.

Definition 2.7. Let g be a Hausdorff function and E ⊆ X. Let

P
g

0(E) = sup
∆

Pg
∆,0(E) = Pg

(0,∞)(E),

νg0(E) = sup
∆

νg∆,0(E) = νg(0,∞)(E).

The g-dimensional upper packing and box measures of E are defined,

respectively, by P
g
(E) = P̂

g

0(E) and νg(E) = ν̂g0(E).

It is clear that the upper packing measure P
g

is nothing but the
packing measure Pg as defined in Definition 2.3. We defined it just
to point out the duality of (upper) packing measure and lower packing

measure defined below. We prefer notation P
g

to make clear distinction
between the upper and lower packing measures. As to νg0, it follows
from (9) that

(10) νg0(E) = lim sup
δ→0

Cδ(E)g(δ)

and thus νg is via (8) dual to the Hewitt-Stromberg measure. The upper
box measures νs appear in many papers and books, explicitly e.g. in [16]
and implicitly e.g. in [15, 5.3].

Note that P
g

and νg and the underlying pre-measures satisfy Lem-
ma 2.6.
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Lower measures. Likewise we define lower packing and box measures
as the lower extreme cases of corresponding scaled measures. The situ-
ation is more delicate, since there is no minimal scale.

Definition 2.8. Let g be a Hausdorff function and E ⊆ X. Let

Pg
0(E) = inf

∆
Pg

∆,0(E), νg0(E) = inf
∆

νg∆,0(E),

the infima over all scales. The g-dimensional lower packing and box

measures of E are defined, respectively, by νg(E) = ν̂g0(E) and νg(E) =

ν̂g0(E).

Since the upper pre-measures P
g

0 and νg0 are subadditive, Method D
yields the same measures as Method I. It, however, is not the case of lower

measures. That is why we also define P−→
g(E) =

−−→
Pg

0(E) and ν−→
g(E) =

−→
νg0(E).

It follows from (9) that νg0(E) = lim infδ→0 Cδ(E)g(δ). Thus νg0 = νg0
and νg = νg, i.e. the lower box measure is just another name for the
Hewitt-Stromberg measure. The lower packing measure and the two
directed pre-measures seem to be new concepts.

Lemma 2.9. (i) Pg
0 and νg0 are metric pre-measures,

(ii) Pg
0(E) = Pg

0(E) for any set E ⊆ X, and likewise for νg0,

(iii) Pg and νg are Borel-regular outer measures,

(iv) if Pg
0(E) <∞, then E is totally bounded, and likewise for νg0.

Proof: (i) is straightforward, (ii) follows from Lemma 2.6(ii) and (iii)
is a consequence of (ii). To prove (iv) it is enough to notice that if
νg0(E) <∞, then by (8) Cδ(E) <∞ for all δ > 0.

Lemma 2.10. For any Hausdorff function g

(i) Pg
0(E) = inf∆ sup{g(π) : π is a ∆-valued packing of E},

(ii) νg0(E) = inf∆ sup{g(π) : π is a ∆-valued uniform packing of E},
(iii) P−→

g 6 inf∆ Pg
∆,

(iv) ν−→
g = inf∆ νg∆.

Proof: (i) For each scale ∆ denote S∆ = sup{g(π) : π is a ∆-valued
packing of E} and S = inf∆ S∆. Note that if ∆ is a scale and δ > 0, then
∆∩(0, δ) is also a scale. By the definition, Pg

∆,0(E)=infδ>0 S∆∩(0,δ)>S,
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which in turn yields Pg
0(E) > S. The reverse inequality is obvious. (ii) is

proved in the same manner.

(iii) Clearly Pg
0 6 Pg

∆,0. Hence P−→
g 6
−−−→
Pg

∆,0 and since Lemma 2.1(iii)

yields
−−−→
Pg

∆,0 = Pg
∆, we are done.

(iv) ν−→
g 6 inf∆ νg∆ is proved the same way as (iii). To prove the reverse

inequality, let E ⊆ X and s > ν−→
g(E). There is En↗E such that

νg0(En) < s for all n, i.e. there are scales ∆n such that CEn
(r)g(r) < s

for all n and r ∈ ∆n. Choose rn ∈ ∆n so that the resulting sequence
decreases to zero and let ∆ = {rn : n ∈ ω}. Proving that νg∆,0(En) 6 s

for all n, and thus νg∆(E) 6 s, is straightforward.

We do not know if the inequality (iii) can be reversed.

Comparison. The inequalities Pg 6 P−→
g 6 Pg

0 and νg 6 ν−→
g 6 νg0

are trivial. As follows from Example 4.2, none of these four inequalities
can be reversed. It is also clear that νg0 6 Pg

0, νg 6 Pg and ν−→
g 6 P−→

g,

but we do not know if they can be reversed. We only know that νg0
and Pg

0 have the same null sets.

Proposition 2.11. For any set E ⊆ X, Pg
0(E) = 0 if and only if

νg0(E) = 0.

Proof: The forward implication is obvious. To prove the backward one
assume νg0(E)=0. Then there is a sequence rn ↓0 such that Crn(E)g(rn)6
2−n. For m ∈ ω define a scale ∆m = {rn : n > m}. If π is a ∆m-valued
packing, then

g(π)=
∑
n>m

∑
{g(rn) : (x, rn) ∈ π}6

∑
n>m

Crn(E)g(rn)6
∑
n>m

2−n=2−m.

Therefore Pg
∆m,0

(E) 6 2−m and thus Pg
0(E) 6 infm∈ω 2−m = 0.

This proposition is enough to show that the measures νg and Pg are
close to each other:

Proposition 2.12. The following are equivalent:

(i) there is a countable cover {En} of E such that νg0(En) = 0 for all
n,

(ii) there is h ≺ g such that νh(E) = 0,

(iii) there is h ≺ g such that Ph(E) = 0.
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Proof: (i) ⇔ (ii) is proved in [8, Proposition 6]. The proof therein can
be easily adapted to show that, via Proposition 2.11, (i) ⇒ (iii), and
(iii) ⇒ (ii) is obvious.

The directed pre-measures are also close:

Proposition 2.13. The following are equivalent:

(i) there is En↗E such that νg0(En) = 0 for all n,

(ii) there is En↗E and a sequence rn ↓ 0 such that Crn(En)g(rn)→ 0,

(iii) there is h ≺ g such that ν−→
h(E) = 0,

(iv) there is h ≺ g such that P−→
h(E) = 0,

(v) there is h ≺ g and a scale ∆ such that Ph
∆(E) = 0.

Proof: (i) ⇒ (ii): By virtue of (9) there is, for each n, a sequence rni ↓ 0
such that rnn → 0 and limi→∞ Crni (En)g(rni ) = 0. It is enough to set
rn = rnn.

(ii) ⇒ (v): Since limn→∞ Crn(En)g(rn) = 0, there is clearly h ≺ g such
that limn→∞ Crn(En)h(rn) = 0. Letting ∆ = {rn : n ∈ ω} we have
Ph

∆(E) = 0.

(v) ⇒ (iv) ⇒ (iii) are obvious and (iii) ⇒ (i) follows from Proposi-
tion 2.14(i) below.

Proposition 2.14. If g ≺ h, then for any set E ⊆ X
(i) νg0(E) <∞⇒Ph

0 (E) = 0,

(ii) νg(E) <∞⇒Ph(E) = 0,

(iii) ν−→
g(E) < ∞ ⇒ P−→

h(E) = 0 and there is a scale ∆ such that

Ph
∆(E) = 0.

Proof: (i) Using (9) it is clear that if g ≺ h, then νg0(E) < ∞ yields
νh0 (E) = 0. Now use Proposition 2.11. (ii) is an obvious consequence
of (i). (iii) Suppose ν−→

g(E) < ∞. Then, by (i), condition (i) of the

above proposition is satisfied. Hence also conditions (iv) and (v) of
Proposition 2.13 are satisfied, which is enough.

These three propositions show that νg and Pg, as well as ν−→
g and P−→

g,

respectively, are in a sense very close, as contrasted by the corresponding
upper measures: As to the comparison of νg and P

g
, needless to say

that νg 6 P
g
, but not much more can be said, except that if 0 <

s < t and νs(E) = 0, then P
t
(E) = 0. This fact can be extracted

e.g. from the proof of [15, Theorem 5.11]. It, however, is not difficult to
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show by example that the upper measures fail statements analogical to
Propositions 2.11, 2.12 and 2.14.

Lipschitz maps. All of the (pre-)measures under consideration behave
under Lipschitz maps as expected. The simple proof of the following is
omitted.

Lemma 2.15. Let s > 0 and let f : X → Y be a c-Lipschitz map. Then
Ps(f(X)) 6 csPs(X) and likewise for νs0, νs0, Ps

0, P
s

0, νs, ν−→
s, νs,

P−→
s and P

s
.

3. Packing measures on cartesian products

This section is devoted to investigation of integral and product inequal-
ities involving packing and box measures. Fix two metric spaces X, Y
and provide their cartesian product X × Y with the maximum metric.
For a set E ⊆ X×Y and x ∈ X, the cross section {y ∈ Y : (x, y) ∈ E} is
denoted Ex or (E)x. Fix also a scale ∆ and two Hausdorff functions g, h.

Lemma 3.1. For any set E ⊆ X × Y
Pgh

∆,0(E) > Ph
∆(X) · inf

x∈X
νg0(Ex).

Proof: Let c < infx∈X νg0(Ex). For each x there is a number n ∈ ω such
that νgδ(Ex) > c for all δ < 1

n . Setting

Bn = {x : νgδ(Ex) > c for all δ < 1
n}

we thus have Bn↗X. Let d < Ph
∆(X). Lemmas 2.6(iii) and 2.1(iii)

yield n such that d < Ph
∆,0(Bn). Hence there is δ0 > 0 such that for

all δ < δ0 there is a (∆, δ)-packing π = {(xi, ri) : i ∈ I} of Bn such
that h(π) > d. We may assume δ0 <

1
n . Thus for each i ∈ I there is a

uniform δ-fine packing πi = {(yij , ri) : i ∈ Ki} of Exi such that g(πi) =
|Ki| ·g(ri) > c. The collection σ =

{(
(xi, yij), ri

)
: i ∈ I, j ∈ Ki

}
is thus

a (∆, δ)-packing of A and

gh(σ) =
∑
i∈I

∑
j∈Ki

g(ri)h(ri) =
∑
i∈I
|Ki|g(ri)h(ri) > c

∑
i∈I

h(ri) > cd.

Therefore Pgh
∆,δ(A) > cd. As this holds for any δ < δ0 and all d <

Ph
∆(X) and c < infx∈X νg0(Ex), we are done.

Lemma 3.2. If E ⊆ X × Y is compact, then the mapping x 7→ νg0(Ex)
is Borel measurable and

(11) Pgh
∆,0(E) >

∫
νg0(Ex) dPh

∆(x).
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Proof: We first show that if E is compact, then x 7→ νg0(Ex) is Borel
measurable. It follows from Lemma 2.2 that

(12) ∀ r > 0 ∃ ε > 0Cr+ε(E) = Cr(E).

Thus for x ∈ X fixed, the mapping δ 7→ Cδ(Ex) is right-continuous.
Therefore the mapping δ 7→ Cδ(Ex) · g(δ) is right-continuous at each
point of (right-)continuity of g. So if Q ⊆ (0,∞) is a dense countable
set and D the set of points of discontinuity of g, then

νg0(Ex) = lim inf
δ→0

δ∈Q∪D

Cδ(Ex) · g(δ).

As g is nondecreasing, the set D is countable. Therefore x 7→ νg0(Ex)
obtains from a countable family of mappings of the form

x 7→ Cδ(Ex) · g(δ), δ ∈ Q ∪D.

Borel measurability of x 7→ νg0(Ex) will thus follow if we show that each
of these mappings is Borel measurable. To that end we prove that for
any δ > 0 and each integer n the set L = {x ∈ X : Cδ(Ex) > n} is Borel,
which is enough, as g(δ) is constant and Cδ(Ex) is integer-valued. For
each ε > 0 set

L(ε) = {x : there is {y1, y2, . . . , yn} ⊆ Ex, gap{y1, y2, . . . , yn} > δ + ε}.

By (12), L =
⋃
ε>0 L(ε). Each of the sets L(ε) is closed: Let xk → x be a

sequence in L(ε) and {yk1, yk2, . . . , ykn} ⊆ Exk
sets witnessing xk ∈ L(ε).

Choosing a subsequence if necessary, for each i 6 n the sequence (xk, yik)
converges to a point (x, yi) ∈ E; this follows from compactness of E. The
set {y1, y2, . . . , yn} obviously witnesses x ∈ L(ε). So L(ε) is closed and
therefore L =

⋃
m∈ω L(1/m) is Fσ and hence Borel.

The next goal is to derive (11) from Lemma 3.1. As E is compact,
replacing X and Y with projections of E we may assume both X, Y com-
pact. Write µ = Ph

∆.

We need to show that Pgh
∆,0(E) >

∫
sdµ for each simple function

s 6 νg0(Ex). Let s =
∑m
i=1 ciχAi

be such a function, with Ai’s disjoint
Borel sets and ci’s positive. If there is i such that µ(Ai) = ∞, then

Pgh
∆,0(E) > ciµ(Ai) = ∞ by Lemma 3.1. Otherwise µ(Ai) < ∞ for

all i and thus Ai’s may be approximated from within with compact sets,
for X is compact: For any ε > 0 and each i there is a compact set
Ki ⊆ Ai such that µ(Ki) > µ(Ai)− ε

mci
. Therefore∫

sdµ =

m∑
i=1

ciµ(Ai) 6
m∑
i=1

ci

(
µ(Ki) +

ε

mci

)
= ε+

m∑
i=1

ciµ(Ki).
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For each i put Ei = E ∩ (Ki × Y ). Apply Lemma 3.1 to Ei’s to get

ciµ(Ki) 6 Pgh
∆,0(Ei), i = 1, 2, . . . ,m.

Thus
∫
sdµ 6 ε+

∑m
i=1 Pgh

∆,0(Ei). As Ki’s are disjoint compacta, so are

Ei’s. Therefore Ei’s, being disjoint, are separated and thus Lemma 2.6(i)
yields

m∑
i=1

Pgh
∆,0(Ei) = Pgh

∆,0

(⋃m

i=1
Ei

)
6 Pgh

∆,0(E).

Therefore
∫
sdµ 6 ε + Pgh

∆,0(E). Since ε > 0 and s 6 νg0(Ex) were

arbitrary, (11) follows.

Since the mappings x 7→ νg0(Ex), x 7→ νg(Ex), x 7→ ν−→
g
0(Ex) etc. need

not be Borel measurable, we set up the following theorems in terms of
the upper integral∫ ∗

f dµ = inf

{∫
φ dµ : φ > f Borel measurable

}
.

Lemma 3.3. For any set E ⊆ X × Y

Pgh
∆,0(E) >

∫ ∗
νg0(Ex) dPh

∆(x).

Proof: As all quantities are intrinsic properties of E, mutatis mutandis

we may assume X, Y be complete metric spaces. If Pgh
∆,0(E) =∞, there

is nothing to prove. If Pgh
∆,0(E) <∞, then E is by Lemma 2.9(iv) totally

bounded. Therefore its closure E is compact: for X × Y is complete.
Hence Lemma 3.2 yields, with the aid of Lemma 2.6(ii),

Pgh
∆,0(E)=Pgh

∆,0(E)>
∫
νg0
(
(E)x

)
dPh

∆(x)>
∫ ∗

νg0(Ex) dPh
∆(x).

Theorem 3.4. Let X, Y be metric spaces. For any set E ⊆ X × Y

Pgh
∆ (E) >

∫ ∗
ν−→
g(Ex) dPh

∆(x).

Proof: Let En↗E. By Lemma 3.3, Pgh
∆,0(En) >

∫ ∗
νg0(En)x dPh

∆(x) for
each n. Therefore Levi’s monotone convergence theorem yields

(13) sup
n

Pgh
∆,0(En)>

∫ ∗
sup
n

νg0(En)x dPh
∆(x)>

∫ ∗
ν−→
g(E)x dPh

∆(x),

because (En)x↗Ex for all x ∈ X. Take the infimum over all sequences

En↗E to get
−−−→
Pg

∆,0(E) >
∫ ∗

ν−→
g(E)x dPh

∆(x). By Lemmas 2.6(iii) and

2.1(iii),
−−−→
Pg

∆,0(E) = Pg
∆(E).
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The main theorem of this section follows.

Theorem 3.5. Let X, Y be metric spaces. For any set E ⊆ X × Y

(i) P
gh

(E) >
∫ ∗

ν−→
g(Ex) dP

h
(x),

(ii) Pgh(E) >
∫ ∗

νg(Ex) dPh(x),

(iii) P−→
gh(E) >

∫ ∗
ν−→
g(Ex) dPh(x),

(iv) P−→
gh(E) > inf

x∈X
ν−→
g(Ex) ·P−→

h(X).

Proof: (i) is a particular case of the above theorem with ∆ = (0,∞).

(ii) Let E ⊆
⋃
nEn. Use Lemma 3.3 for each n and take infima over

all scales, first on the right and then on the left, to get Pgh
0 (En) >∫ ∗

νg0(En)x dPh(x). Thus by Lebesgue Theorem∑
n

Pgh
0 (En) >

∫ ∗∑
n

νg0(En)x dPh(x) >
∫ ∗

νg(E)x dPh(x).

Take the infimum over all sequences En such that E ⊆
⋃
nEn to get the

required inequality.

(iii) Let En↗E. As above, Pgh
0 (En) >

∫ ∗
νg0(En)x dPh(x). Now pro-

ceed as in the proof of Theorem 3.4, using Levi’s monotone convergence
theorem. (iv) can be proved in the same manner.

Letting E = X ×Y , we get the following estimates for cartesian rect-
angles. The last inequality follows by analysis of the proof of Lemma 3.1.

Corollary 3.6. For any metric spaces X, Y

(i) P
gh

(X × Y ) > P
h
(X) · ν−→

g(Y ),

(ii) P−→
gh(X × Y ) > P−→

h(X) · ν−→
g(Y ),

(iii) Pgh(X × Y ) > Ph(X) · νg(Y ),

(iv) Pgh
0 (X × Y ) > Ph

0 (X) · νg0(Y ).

A number of consequences can be derived from these theorems. As
a sample we prove an estimate of packing measure of a domain of a
Lipschitz mapping, similar to [15, 7.7].
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Corollary 3.7. Let X, Y be metric spaces and c > 1. Let f : X → Y
be a c-Lipschitz map. For any s, t > 0∫ ∗

ν−→
t
(
f−1(y)

)
dP

s
(y) 6 cs+tP

s+t
(X),∫ ∗

νt
(
f−1(y)

)
dPs(y) 6 cs+tPs+t(X).

Proof: Let E = {(x, f(x)) : x ∈ X} ⊆ X ×Y be the graph of f . Switch-

ing the roles of X and Y , Theorem 3.4 yields
∫ ∗

ν−→
t
(
f−1(y)

)
dP

s
(y) 6

P
s+t

(E). Since the mapping x 7→ (x, f(x)) is c-Lipschitz, Lemma 2.15

yields P
s+t

(E) 6 cs+tP
s+t

(X). The second inequality is proved the
same way.

Remark 3.8. All of the inequalities of this section remain true if all P’s
are replaced with ν’s, with the same proofs, one only has to use uniform
packings in place of packings. In particular, Theorem 3.5 reads

Theorem 3.9. Let X, Y be metric spaces. For any set E ⊆ X × Y

(i) νgh(E) >
∫ ∗

ν−→
g(Ex) dνh(x),

(ii) νgh(E) >
∫ ∗

νg(Ex) dνh(x),

(iii) ν−→
gh(E) >

∫ ∗
ν−→
g(Ex) dνh(x),

(iv) ν−→
gh(E) > inf

x∈X
ν−→
g(Ex) · ν−→

h(X).

4. Packing dimensions on cartesian products

In this section we interpret the inequalities of the previous section
in terms of fractal dimensions. We first recall the dimensions and in-
troduce a new one related to the pre-measures ν−→

s and P−→
s. General

reference: [15].
Fix E ⊆ X. A family C of sets is a δ-cover of E if it covers E and

diamC 6 δ for each C ∈ C. In this section we shall make frequent use
of the covering number function

(14) Nδ(E) = min{|C| : C is a δ-cover of E}, δ > 0.
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The well-known lower and upper box dimensions, (also called box-
counting or Minkowski) of a nonempty set E ⊆ X are equivalently de-
fined, respectively, by

dimBE = lim inf
δ→0

logNδ(E)

|log r|
= lim inf

δ→0

logCδ(E)

|log r|
,

dimBE = lim sup
δ→0

logNδ(E)

|log r|
= lim sup

δ→0

logCδ(E)

|log r|
.

Since

(15) N2δ(E) 6 Cδ(E) 6 Nδ(E)

for any set E, the limits in these definitions indeed equal. The upper
and lower packing dimensions are, respectively, defined by, cf. [15],

dimPE = inf

{
sup
n

dimBEn : E ⊆
⋃
n

En

}
,

dimPE = inf

{
sup
n

dimBEn : E ⊆
⋃
n

En

}
.

It is easy to check that the upper packing dimension may be equiva-
lently defined by dimPE = inf{supn dimBEn : En↗E}. However, this
modification of lower packing dimension gives a rise to a new dimension:

Definition 4.1. dim−−→PE = inf{supn dimBEn : En↗E}.

It is clear that dimPX 6 dim−−→PX 6 dimBX for any set X. The

following example shows that the three dimensions are distinct: There
is a compact set X ⊆ R such that dimPX < dim−−→PX < dimBX.

Example 4.2. We will define three sets compact K0,K1, E ⊆ R such
that

(i) dimBK0 = dimBK1 = 0,

(ii) dim−−→PK0 ∪K1 = 1
2 ,

(iii) dimBE = 1,

(iv) E is countable.

The required set is X = K0∪K1∪E. Indeed, (i) and (iv) imply dimPX =
0, (ii) and (iv) imply dim−−→PX = 1

2 and (iii) implies dimBX = 1.

To define the sets K0 and K1 consider the set 2ω of all binary se-
quences and also the corresponding tree 2<ω of finite binary sequences,
and the canonical mapping of 2ω onto [0, 1] given by x̂=

∑
n∈ω2−n−1x(n).
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For p ∈ 2<ω let [p] = {x ∈ 2ω : p ⊆ x} be the cone determined by p. It
is clear that Cp = {x̂ : x ∈ [p]} is a closed binary interval of length 2−|p|.

Choose an infinite set D ⊆ ω such that

(16) lim
n→∞

|D ∩ n|
n

= 0 and lim
n→∞

|D ∩ n|
n

= 1

and set

K0 = {x̂ : x(n) = 0 for all n ∈ D},
K1 = {x̂ : x(n) = 0 for all n /∈ D}.

Let n ∈ ω. There are exactly 2|n\D| binary intervals of length 2−n that
meet K0. Hence

(17) N2−n(K0) = 2|n\D|

and likewise

(18) N2−n(K1) = 2|n∩D|.

Therefore (16) yields

dimBK0 = lim
n→∞

logN2−n(K0)

|log 2−n|
= lim
n→∞

|n \D|
n

= 1− lim
n→∞

|n ∩D|
n

= 0

and likewise

dimBK1 = lim
n→∞

logN2−n(K1)

|log 2−n|
= lim
n→∞

|n ∩D|
n

= 0.

Thus the sets K0,K1 satisfy (i). To show (ii), we first claim that there
is an infinite set F ⊆ ω such that

(19) n−1
2 < |n ∩D| 6 n

2 .

Indeed, (16) yields n arbitrarily large such that |D∩n|n 6 1
2 but |D∩(n+1)|

n+1 >
1
2 . Hence |D∩ (n+ 1)| = |D∩n|+ 1 and the two inequalities imply (19).

Using (17), (18) and (19) it follows that

dimBK0 ∪K1 6 lim
n→∞

log(2|n\D| + 2|n\D|)

|log 2−n|

6 lim
n∈F

log(2(n+1)/2 + 2n/2)

n
6 lim
n∈F

log 21+(n+1)/2

n
=

1

2

and in particular dim−−→PK0 ∪K1 6 1
2 .

To prove the opposite inequality suppose for contradiction that
Xn↗K0 ∪K1 are such that dimBXn <

1
2 for all n. With no harm done

we may suppose Xn’s closed. By the Baire category argument there is
an open set U that meets both K0 and K1 and dimBU ∩ (K0 ∪K1) < 1

2 .
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Suppose without loss of generality that U = I0 ∪ I1, where I0 meets
K0, I1 meets K1 and I0 and I1 are non-overlapping binary intervals
of the same length, say 2−m. If n > m, then the number of binary
intervals of length 2−n that meet I0 ∩ K0 (I1 ∩ K1, respectively) is
exactly 2|An| (2|Bn|), where An = {i ∈ ω \ D : m 6 i < n} and
Bn = {i ∈ ω ∩ D : m 6 i < n}. Since |An ∪ Bn| = n − m, we have
max(|An|, |Bn|) > n−m

2 . Thus N2−n((K0 ∪K1) ∩ U) > 2(n−m)/2, which

in turn yields dimB(K0 ∪ K1) ∩ U > 1
2 : the desired contradiction. We

conclude that dim−−→PK0 ∪K1 > 1
2 . Thus (ii) holds.

Finally let E =
{

1
logn : n ∈ ω, n > 2

}
∪ {0}. Routine calculation

proves that dimBE = 1. Thus (iii) and (iv) hold.

Let us now see how the dimensions we described are related to the
measures and pre-measures defined in the previous section. It is easy to
check that all of the measures P

s
, νs, Ps, νs and the pre-measures P

s

0,
νs0, Ps

0, νs0, P−→
s, ν−→

s are “rarefaction indices”: If L s is any of them,

then

inf{s : L s(E) = 0} = sup{s : L s(E) =∞}.

Each of these (pre-)measures is linked to one of the above fractal dimen-
sions by a common pattern: Tricot [18] proved that dimBE = inf{s :

P
s

0(E) = 0} = inf{s : νs0(E) = 0} and also that dimPE = inf{s :

P
s
(E) = 0} = inf{s : νs(E) = 0}. It is folklore (and very easy to prove)

that dimBE = inf{s : νs0(E) = 0} and dimPE = inf{s : νs(E) = 0},
cf. e.g. [15]. Combining with Propositions 2.11–2.14 yields a list of equiv-
alent definitions of the dimensions under consideration.

Proposition 4.3. For any set E ⊆ X

(i) dimBE = inf{s : P
s

0(E) = 0} = inf{s : νs0(E) = 0},
(ii) dimBE = inf{s : Ps

0(E) = 0} = inf{s : νs0(E) = 0},
(iii) dimPE = inf{s : P

s
(E) = 0} = inf{s : νs(E) = 0},

(iv) dimPE = inf{s : Ps(E) = 0} = inf{s : νs(E) = 0},
(v) dim−−→PE = inf{s : P−→

s(E) = 0} = inf{s : ν−→
s(E) = 0}

= inf{s : ∃ ∆ Ps
∆(E) = 0} = inf{s : ∃ ∆ νs∆(E) = 0}.

Straightforward application of these identities to Theorems 3.9, 3.5
and Corollary 3.6 yields the corresponding dimension inequalities:
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Theorem 4.4. Let X, Y be metric spaces and E ⊆ X × Y . Let A ⊆ X
be a set such that Ex 6= ∅ for all x ∈ A. Then

(i) dimPE > dimPA+ infx∈A dim−−→PEx,

(ii) dimPE > dimPA+ infx∈A dimPEx,

(iii) dim−−→PE > dim−−→PA+ infx∈A dim−−→PEx.

Corollary 4.5. For any nonempty metric spaces X, Y

(i) dimPX × Y > dimPX + dim−−→PY ,

(ii) dim−−→PX × Y > dim−−→PX + dim−−→PY ,

(iii) dimPX × Y > dimPX + dimPY .

5. Solution of the Hu-Taylor problem

The Hu and Taylor [2] definition of aDim (cf. (2)) trivially extends to
subsets of Euclidean spaces: for X ⊆ Rm let

aDimX = min{dimPX × Z − dimPZ : Z ⊆ Rm}.
We employ the idea of Xiao [19] to show that aDimX = dim−−→PX for any

X ⊆ Rm and actually for any metric space of finite Assouad dimension.
We make heavy use of the capacity and covering number functions

introduced in (7) and (14). The following elementary estimates will be
needed. If X, Y are metric spaces and r > 0, then

Cr(X × Y ) 6 Nr(X)Cr(Y ),(20)

Nr(X × Y ) 6 Nr(X)Nr(Y ).(21)

Let us recall the notion of Assouad dimension and related material.
The interested reader is referred to J. Luukkainen’s paper [14]. Given
Q > 0 and m > 0, a metric space (X, d) is termed (Q,m)-homogeneous
if |A| 6 Q(b/a)m whenever a > 0 and b > a are numbers and A ⊆ X a
set with a 6 d(x, y) 6 b if x, y ∈ A and x 6= y. It is easy to check that

X is (Q,m)-homogeneous if and only if Cr(E) 6 Q
(

diamE
r

)m
for every

set E ⊆ X and every r 6 diamE, and that is the definition we shall use.
The space X is termed m-homogeneous if it is (Q,m)-homogeneous

for some Q; and X is termed countably (Q,m)-homogeneous if it is a
countable union of (Q,m)-homogeneous subspaces, and likewise count-
ably m-homogeneous if it is a countable union of m-homogeneous sub-
spaces.

P. Assouad [1] defined what is now called Assouad dimension: If X
is a metric space, then

dimAX = inf{m > 0 : X is m-homogeneous}.
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We also introduce the countably stable modification of dimAX:

dimσAX = inf{sup
i

dimAXi : {Xi} is a countable cover of X}.

Spaces of finite Assouad dimension are also called β-spaces or dou-
bling spaces and various other names and similar concepts are in use,
e.g. D. G. Larman’s [13]. J. Luukkainen’s paper [14] is a good source of
information including an ample list of references.

We shall need the following simple lemma.

Lemma 5.1. Let X be a (Q,m)-homogeneous metric space.

(i) If 0 < r < t, then Cr(X)rm 6 2mQCt(X)tm,

(ii) νm0 (X) 6 2mQνm0 (X).

Proof: (i) Suppose Ct(X) < ∞ and let E ⊆ X be a maximal set with
gapE > t. Then the family of balls {B(x, t) : x ∈ E} covers X. There-
fore

Cr(X) 6
∑
x∈E

Cr(B(x, r)) 6 |E|Q
(

2t
r

)m
6 Ct(X)Q 2m

(
t
r

)m
.

(ii) Let rn ↓ 0 be such that limCrn(X)rmn = νm0 (X). If rn+1 6 r 6 rn,
then (i) yields Cr(X)rm 6 2mQCr(X)rmn and (ii) follows on letting
n→∞.

Theorem 5.2. Let ∆ be a scale and 0 6 s 6 m ∈ ω. There is a compact
set Z ⊆ Rm such that νm−s(Z) = νm−s0 (Z) = 1 and

(i) νm0 (X×Z) 6 2mQνs∆,0(X) for every (Q,m)-homogeneous space X,

(ii) νm(X×Z) 6 2mQνs∆(X) for every countably (Q,m)-homogeneous
space X.

Proof: We prove only statement (i), as (ii) is its trivial consequence. If
s = 0, put Z = [0, 1]m. In this case the inequality reduces to νm0 (X ×
[0, 1]m) 6 2mQ |X|, which is trivially satisfied for X both finite or infi-
nite.

If s = m > 0, put Z = {0}. In this case the inequality reduces to
νm0 (X) 6 2mQνm∆,0(X), which is nothing but Lemma 5.1. We will thus
suppose that 0 < s < m and let p = s

m throughout the proof.
We first construct recursively a decreasing sequence rn → 0 in ∆ and

an integer-valued sequence g ∈ ωω such that, letting

G(n) = g(0)g(1) . . . g(n− 1),

un = g(n) rn+1



Packing Measures on Cartesian Products 413

we have, for all n,

1− 1
n < G(n)r1−p

n < 1 + 1
n ,(22)

rn+1 < un <
rn
n .(23)

Let G(0) = 1, choose any r0 ∈ ∆ and recursively choose rn+1 ∈ ∆ small

enough so that rpn+1 < rn and the interval
(

1− 1
n+1

G(n)r1−p
n+1

,
1+ 1

n+1

G(n)r1−p
n+1

)
is long

enough to contain an even integer. Let it be g(n). Thus

(24)
1− 1

n+1

G(n)r1−p
n+1

< g(n) <
1 + 1

n+1

G(n)r1−p
n+1

and therefore 1 − 1
n+1 < G(n + 1)r1−p

n+1 < 1 + 1
n+1 , as required. Since

g(n) > 2, we also have rn+1 < un. Condition rpn+1 < rn in conjunction
with (24) ensures un < rn/n.

Next we define the space Z. Let

T = {x ∈ ωω : ∀ nx(n) < g(n)},
T• = {τ ∈ ω<ω : ∃ x ∈ T τ ⊆ x},
T•n = {τ ∈ T• : |τ | = n}.

For each τ ∈ T• define intervals Iτ = [aτ , bτ ] recursively as follows.
I∅ = [0, r0]. Now suppose n ∈ ω, τ ∈ T•n and Iτ = [aτ , bτ ] is defined. For
i < g(n) let aτi = aτ + irn+1, bτi = aτi + rn+1 = aτ + (i + 1)rn+1. It
is clear that, for any τ of length n, the family {Iτi : i < g(n)} consists
of adjacent non-overlapping equally sized intervals of length rn+1 and
that its union is an interval of length un; and since un < rn, the union
is contained in Iτ . Set

K =
⋂
n∈ω

⋃
{Iτ : τ ∈ T•n}, Z = Km.

In order to show that νm−s(Z) = νm−s0 (Z) = 1 it is enough to establish
the following claim. Let µ be the evenly distributed Borel probability
measure on Z. In more detail, µ is the cartesian power of the Borel
measure λ on K that is determined by its values on Iτ ’s: if τ ∈ T•n, then
λ(Iτ ) = 1/G(n).

Lemma 5.3. µ(E)=νm−s(E) for every Borel set E⊆Z and νm−s0 (Z)=1.

Proof: For each n ∈ ω and every τ = 〈τi : i < m〉 ∈ (T•n)m define
Jτ =

∏
i<m[aτi , aτi+un). Let B ⊆ K be Borel. Consider the set S =

{τ ∈ (T•n)m : Jτ ∩B 6= ∅}. Pick one point of B in every Jτ , τ ∈ S. Thus
chosen points are mutually more than rn − un apart and thus witness
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Crn−un
(B) > |S|. On the other hand, µ(B) 6

∑
I∈S µ(I) = |S| · 1

G(n)m .

Therefore

µ(B) 6
|S|

G(n)m
6
Crn−un(B)

G(n)m

(22)

6 Crn−un
(B)rm−sn

1

(1− 1/n)m

and since 1
(1−1/n)m → 1 and, by (23), un

rn
→ 0, we get

µ(B) 6 lim
n→∞

Crn−un
(B)(rn − un)m−s 6 νm−s0 (B).

Since this holds for every Borel set B, we get µ(E) 6 νm−s(E) for
every E ⊆ Z Borel.

It remains to show that νm−s0 (Z) 6 1. Write θn = 1 + 1
n . Since

obviously Nun(K) = G(n), we have, for all r ∈ [un, rn],

(25) Nr(K)r1−p 6 Nun(K)r1−p
n = G(n)r1−p

n

(22)

6 θn.

Now suppose r ∈ [rn+1, un]. Note first that Nr(E) 6 diamE
r + 1 for any

set E ⊆ R and therefore Nr(K) 6 Nt(K)
(
t
r + 1

)
whenever r < t. In

particular,

(26) Nr(K) 6 Nun
(K)

(un
r

+ 1
)
6 2G(n)

un
r
,

Nr(K)r1−p6G(n)(un

r + 1
)
r1−p = G(n+ 1)rn+1r

−p +G(n)r1−p

6G(n+1)r1−p
n+1+G(n)r1−p

n

(
un

rn

)1−p (22)

6 θn+1+θn
(
un

rn

)1−p
.

(27)

Since Cr(Z) 6 (Nr(K))m (cf. (15) and (21)) and since θn → 1 and
un

rn
6 1

n , the estimates (25) and (27) give

νm−s0 (Z) 6 lim
r→0

Nr(Z)rm−s 6 lim
n→∞

(θn+1 + θn/n
1−p)m = 1.

We proceed with the proof of the theorem. It remains to estimate
νm0 (X × Z) from above. For r ∈ [un, rn] we employ Lemma 5.1(i).

Cr(X×Z)rm6Cr(X)rm
(
Nr(K)

)m
6 2mQCrn(X) rmn G(n)m

62mQCrn(X) rsn
(
G(n)r1−p

n

)m (22)

6 2mQCrn(X) rsn θ
m
n .

(28)
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For r ∈ [rn+1, un] we employ the latter estimate (26).

Cr(X × Z)rm 6 Cr(X)rm
(
Nr(K)

)m
6 Crn+1

(X)rsn+1

(
2G(n)unr

−p
n+1

)m
6 Crn+1(X)rsn+1

(
2G(n+ 1)r1−p

n+1

)m
(22)

6 2mθmn+1Crn+1
(X)rsn+1.

(29)

Since θn → 1, (28) and (29) yield

νm0 (X × Z) 6 lim
n→∞

2mQCrn(X)rsn 6 2mQνs∆,0(X).

The simple proof of the following corollary is omitted.

Corollary 5.4. Let 0 6 s 6 m ∈ ω. Let X be a countably m-ho-
mogeneous metric space such that ν−→

s(X) < ∞. There is a compact

set Z ⊆ Rm such that νm−s(Z) = 1 and νm(X × Z) is σ-finite.

Theorem 5.5. Let X be a metric space X and dimσAX 6 m ∈ ω.
There is a compact set Z ⊆ Rm such that dimPX×Z = dim−−→PX+dimPZ.

Proof: Fix s > dim−−→PX. By Proposition 4.3 there is a scale ∆ such that

νs∆(X) = 0. Let Zs be the space Z of Theorem 5.2.
Let ε > 0. There is a coverX =

⋃
i∈ωXi such that for each i ∈ ω there

is Qi such that Xi is (Qi,m+ε)-homogeneous and moreover νs∆,0(Xi) <

1. Inspect the estimates (28) and (29): If we use (Qi,m+ε)-homogeneity
of Xi instead of (Q,m)-homogeneity of X, we get for r ∈ [un, rn]

Cr(Xi × Zs)r
m+ε 6 2m+εQiθ

m
n Crn(Xi)r

s
nr
ε
n

and since (29) does not depend on homogeneity of X, we get for r ∈
[rn+1, un]

Cr(Xi × Zs)r
m+ε 6 Cr(Xi × Zs)r

mrε 6 2mθmn+1 Crn+1
(Xi)r

s
n+1u

ε
n.

Since θn → 0, rn → 0, un → 0 and limn→∞ Crn(Xi)r
s
n 6 νs∆,0(Xi) <

1, these estimates yield νm+ε
0 (Xi × Zs) = 0 for all i. Consequently

νm+ε(X × Zs) = 0 for all ε > 0, whence dimPX × Zs 6 m.
Now let sk = dim−−→PX+ 1

k . Consider the spaces Zsk . Mutatis mutandis

we may assume Zsk ⊆ [2−k−1, 2−k]. Let Z =
⋃
k∈ω Zsk∪{0}. It is clearly

compact and dimPX × Z 6 sup dimPX × Zsk 6 m. On the other hand,

dimPZ > supm−sk = m−dim−−→PX. Thus dimPX×Z 6 dim−−→PX+dimPZ.

The opposite inequality follows from Corollary 4.5.
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In particular, if X ⊆ Rm, the above theorem yields a solution to the
problem of Hu and Taylor:

Corollary 5.6. For every set X ⊆ Rm there is a compact set Z ⊆ Rm
such that dimPX × Z − dimPZ = dim−−→PX. In particular, aDimX =

dim−−→PX.

6. Comments and questions

Other packing measures. The packings we used are sometimes called
weak packings or pseudo-packings. There are other kinds of packing in
use. The most common that we shall call true packing is this: {(xi, ri) :
i ∈ I} is a true packing if the balls B(xi, ri), B(xj , rj) are disjoint for
distinct i, j ∈ I. There are also open balls variants. Some definitions of
packing measures are based on diameters of the underlying balls, instead
of radii. Various packing measures and their relations are discussed in
detail e.g. in [5], [6], [4]. Analysis shows that our results are to some
extent valid also for other packing measures.

Hausdorff measures. We intentionally neglected results involving
Hausdorff measure and dimension. The reason is that for any Hausdorff
function h we have H h2 6 νh, where h2(r) = h(r/2) and H h2 is the
corresponding Hausdorff measure. (Hint: If {(xi, δ)} is a maximal uni-
form packing, then {B(xi, δ)} is a 2δ-cover.) Thus e.g. Howroyd’s [11,

Theorem 13] stating that P
gh

(X × Y ) > P
g
(X) H h2(Y ) follows at

once from Corollary 3.6.

Upper estimates of cartesian products measures. All inequalities
of Section 3 estimate the measures on a product by means of measures on
coordinate spaces from below. We paid no attention to reverse estimates.
Basic results in this direction are due to Tricot [18] and Howroyd [11],

see also [5]. Howroyd has the following: Let P
g

denote the upper pack-
ing measure obtained from true packings. Let g, h be right-continuous

Hausdorff functions. Then P
gh

(X × Y ) 6 P
g
(X)P

h
(Y ) for any met-

ric spaces X, Y , as long as the product on the right is not 0 · ∞ or
∞· 0. Inspection of the proof shows that restricting the admissible radii
to a given scale does not matter. One can thus conclude that, under

the same conditions and with the obvious definitions, P
gh

∆ (X × Y ) 6

P
g

∆(X)P
h

∆(Y ) for any scale ∆ and also Pgh(X × Y ) 6 Pg(X)P
h
(Y )

and P−→
gh(X × Y ) 6 P−→

g(X)P
h
(Y ).
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Corresponding inequalities for the box measures can be derived
from (20). Corresponding inequalities for dimensions (due to Tricot [18])
are well-known (except dim−−→PX×Y 6 dim−−→PX+dimPY ). Combining Tri-

cot’s inequalities with the one just mentioned and Corollary 4.5 we thus
have:

Theorem 6.1. For any metric spaces X, Y

dimPX + dimPY 6 dimPX × Y 6 dimPX + dimPY,

dim−−→PX + dim−−→PY 6 dim−−→PX × Y 6 dim−−→PX + dimPY

6 dimPX × Y 6 dimPX + dimPY.

Comparison of lower packing and box measures. As is obvious
from Section 2, the measures Ph and νh are closely related, much closer
than their upper counterparts, but we do not really know much about
their relation. We even do not know if they are equal. The following
problems seem interesting.

Question 6.2. Is there a (compact) set X ⊆ R and s > 0 such that

(i) νs(X) < Ps(X)?

(ii) νs(X) = 0 and Ps(X) =∞?

(iii) νs(X) = 0 and 0 < Ps(X) <∞?

A related problem, perhaps the most interesting one, is whether one
can replace νg with Pg in the integrands in Theorem 3.5:

Question 6.3. Is it true that inequalities in Theorem 3.5 improve to

P
gh

(E) >
∫ ∗

P−→
g(Ex) dP

h
, Pgh(E) >

∫ ∗
Pg(Ex) dPh and P−→

gh(E) >∫ ∗
P−→

g(Ex) dPh?

A modest variation of this problem:

Question 6.4. Let X, Y be metric spaces and g, h Hausdorff functions.

(i) Suppose P−→
g(X) > 0 and P

h
(Y ) > 0. Does it follow that P

gh
(X×

Y ) > 0?

(ii) Suppose Pg(X) > 0 and Ph(Y ) > 0. Does it follow that Pgh(X×
Y ) > 0?

Another interesting problem is that of semifiniteness of the Ph and νh.
Recall that a Borel measure is semifinite if every Borel set of infinite mea-
sure contains a Borel subset of finite positive measure. By a theorem

of H. Joyce and D. Preiss [12] the upper packing measure P
h

on an
analytic metric space is semifinite.
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Question 6.5. (i) Under what conditions imposed on X and g are
the measures Pg and νg on X semifinite?

(ii) Is there s > 0 such that Ps is not semifinite on R?

Directed pre-measures. We also do not know if ν−→
g and P−→

g may

differ.

Question 6.6. Is there a (compact) set X ⊆ R and s > 0 such that

(i) ν−→
s(X) < P−→

s(X)?

(ii) ν−→
s(X) = 0 and P−→

s(X) =∞?

(iii) ν−→
s(X) = 0 and 0 < P−→

s(X) <∞?

Finite Assouad dimension hypothesis. Proofs of Section 5 in-
evitably depend on the finite Assouad dimension of the metric space
under consideration, but there is no clue that this hypothesis is not su-
perfluous.

Question 6.7. Is there a metric space X such that dimPX <∞ and

dim−−→PX < inf{dimPX × Z − dimPZ : dimPZ <∞}?

Dimensions of Borel measures. Our dimension inequalities have
counterparts for dimensions of finite Borel measures. Recall that if µ is
a finite Borel measure in a metric space X and dim is any of the fractal
dimension under consideration, the corresponding dimensions of µ are
defined by

dimµ = inf{dimE : B ⊆ X Borel, µ(E) > 0}.

It is easy to check that dimPµ = dim−−→Pµ = dimBµ and dimPµ = dimBµ.

Another equivalent definition of the two dimensions is dimPµ = sup{s :

µ � Ps} = sup{s : µ � νs} and dimPµ = sup{s : µ � P
s} = sup{s :

µ� νs}, where � denotes absolute continuity.
The following theorem is a straightforward consequence of Corol-

lary 4.5.

Theorem 6.8. Let µ, ν be finite Borel measures in metric spaces.

(i) dimPµ× ν > dimPµ+ dimPν,
(ii) dimPµ× ν > dimPµ+ dimPν.

There is also a measure counterpart to Theorem 5.5.

Theorem 6.9. Let µ be a finite Borel measure in a metric space X. If
dimσAX 6 m ∈ ω, then

inf{dimPµ× ν − dimPν : ν is a finite Borel measure in Rm} = dimPµ.
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Proof in outline: Let ε > 0 and s = dimPµ+ε. There is a set E ⊆ X such
that µ(E) > 0 and dim−−→PE < s. By Theorem 5.5 and its proof there is a

compact set Zs ⊆ Rm such that dimPE × Zs 6 m and, by Lemma 5.3,
the corresponding measure µs on Zs satisfies dimPµs > m − s. Thus
dimPµ× µs 6 dimPE × Zs 6 m 6 dimPµs + dimPµ+ ε.
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