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SOME NON-AMENABLE GROUPS

ADITI KAR AND GRAHAM A. NIBLO

Abstract: We generalise a result of R. Thomas to establish the non-vanishing of the
first £2 Betti number for a class of finitely generated groups.
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In this note we give the following generalisation of a result of Richard
Thomas [8].

Theorem 1. Let G be a finitely generated group given by the presenta-

tion
(@1, eoyxg o ul™y o ur)
such that each relator u; has order m; in G.
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(2) If the first £? Betti number B3(G) of G is zero, then

-
1
_ - >
1—d+ ; 20,

In particular, the case when all the exponents m; in the presentation
are equal to 1 yields the well known observation that when the first ¢2
Betti number is zero the deficiency of the presentation d — r must be
at most 1. The vanishing of the first /2 Betti number of a group G
holds for example if G is finite, if it satisfies Kazhdan’s property (T) or
if it admits an infinite normal amenable subgroup (in particular if it is
infinite amenable). We refer to [4] for other interesting examples. We
obtain as a corollary:

Corollary 2. Let G be a finitely generated group given by the presenta-
tion

(X1, oymg o u™y o u)
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such that each relator u; has order m; in G. Ifd > 1+3%"_, mii, then G
is infinite, does not satisfy Kazhdan’s property (T) and has no amenable

infinite normal subgroups.

Thomas established the inequality in (1) above by providing a sim-
ple but elegant computation of the dimension of the Fa-vector space of
1-cycles of the cellular chain complex of the Cayley graph of G (Thomas
refers to this space as the cycle space of I'.) If I" has d edges and v vertices
then the dimension of this vector space is d — v + 1. An alternative ap-
proach, yielding information about the classical first Betti number of G
and its finite index subgroups is explored by Allcock in [1].

We generalise this idea to give the additional inequality in (2) above
by using elementary observations about the £? Betti numbers 32 of the
orbihedral presentation 2-complex of G. For an introduction to £ Betti
numbers, we refer the reader to [3]. The first /2 Betti number vanishes
for all finite groups. Cheeger and Gromov have shown that if a group G is
amenable then 5%(G) = 0 [2, Theorem 0.2]. More generally, 57(G) is zero
for any group G which contains an infinite normal amenable subgroup.

Remark 3. Theorem 1 can be derived from deeper results of Peterson
and Thom; in particular, Equation (3) yields the inequality A?(G) >
ﬁ +d—-1-3", m% from [7]. Here, |G| denotes the size of G and ‘1?' is
understood to be zero when G is infinite.

Finitely generated but not finitely presented groups. Liick has
defined ¢? Betti numbers for any countable discrete group. The notion
agrees with the cellular ¢2 Betti numbers for finitely presented groups
and the basic properties including a generalised Euler-Poincaré formula
for G-CW complexes may be found in Chapter 6 of [6]. Working in
this context and arguing as in the proof of Theorem 1, we obtain the
following generalisation.

Theorem 4. Suppose a group G is given by the presentation

G=(x1,...,xq:u", i €1)

?

where I is a countable set and each relator w; has order m; in G. If
dicr mil converges then $3(G) > ﬁ +d—1-3% s mil In particular
if B3(G) =0 then >, .; -+ —d+1>0.

i€l m;
Before we embark on the proof of Theorem 1, we need a short lemma
which says that the orbihedral Euler characteristic of a G-CW complex Y

may be computed from its 2 Betti numbers. The lemma, is well known
and may be found in [6].
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Lemma 5 ([6, Theorem 6.80]). If G acts on a connected CW complex
Y with finite quotient Y such that stabilisers of cells are finite, then the
2-Euler characteristic of Y is equal to the orbikedral Euler characteristic
of Y. More precisely, if for each i, 3; is a choice of representatives for
the orbits of i-cells in Y and the stabiliser of a cell o in G is written G,
then

(1) SV EY) = X0 Y o

i [ oEY;
We now proceed with the proof of Theorem 1.

Proof of Theorem 1: Let G be a group given by the presentation (z1, ...,
g ul", ..., u) where each relator u; has order m; in G. The orbi-
hedral presentation 2-complex of GG, which we will denote by P, has one
vertex and d edges forming a bouquet of d circles. Identifying each of the
circles with one of the generators z; we identify the fundamental group
of this bouquet with the free group on {x1,...,24}. Attached to this
are r discs, Dq,...,D,. For each i = 1,...,r, the disc D; is endowed
with a cone point of cone angle 72,—22 and its boundary is attached by a
degree 1 map along the loop in the bouquet of circles corresponding to
the element wu;.

Attaching the corresponding stabilisers to cells we obtain, in the lan-
guage of Haefliger [5], a developable complex of groups, meaning that
the orbihedral universal cover X of P exists. In fact, X has a simple
description in terms of the Cayley graph C of G. The 1-skeleton of the
orbihedral universal cover is the Cayley graph of G with respect to the
generating set {z1,...,24}, while the 2-skeleton is obtained from the
2-skeleton of the topological universal cover of the presentation 2-com-
plex by collapsing stacks of relator discs having common boundaries.
Specifically, the relator «;"* corresponds to a loop v; in P bounding a
disc and there is a unique lift §; of 7; based at the identity vertex in C.
In the topological universal cover of the presentation 2-complex there
are additional copies of this disc (glued along the same loop) based at
the elements u;, ... ,ulm"_l and the action of the subgroup (u;) permutes
these discs so that each has trivial stabiliser. In contrast, these copies
are identified in the orbihedral cover to give a single disc and it is pre-
served by the element u;. The hypothesis that u; has order m; controls
the order of the cell stabiliser.

We now apply the identity in (1) to our complex X. The action
of G on the vertices and the edges of X is both free and transitive. On
the other hand, by hypothesis, the stabiliser of a lift of a 2-cell D; has
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order m;. Hence, B2(P)— B (P)+B3(P) =1—d+>_, mil We also know
that 82(P) = ﬁ where ﬁ is understood to be zero when G is infinite.
Therefore,

) G~ AP P = 1=+ Y

Finally we remark that the first £2 Betti number of the group G may
be computed as the first 2 Betti number of the orbihedral presentation
complex used above. By definition, 3?(G) is the von Neumann dimension
of the first £2 homology group of Y with coefficients in the von-Neumann
algebra of G, where Y is the universal cover of the (topological) presen-
tation 2 complex for G. Since both X and Y are simply connected we
deduce from Theorem 6.54(3) of [6] that B7(G) = B3(P). Therefore,
Equation (2) becomes

1 1
(3) @fﬂf(G)+6§(7’):1*d+§;E~

Now assume that 87(G) = 0. Since 33(P) > 0, we get the identity
we are looking for, namely

"1 1
1—d > .
+;mi — G|

In particular, if G is finite, then the ¢2 cohomology of G is just the
group cohomology with real coefficients, and this vanishes so we obtain
Thomas’s result that 1 —d + >_, = > 0 and |G| >

1
m; 1-d+>77_ "%L :
On the other hand, if G is infinite and its first £2 Betti number is zero,
in particular if G is an infinite amenable group, then we obtain the

inequality 1 —d +>._, mi > 0, as required. O
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