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SOME NON-AMENABLE GROUPS

Aditi Kar and Graham A. Niblo

Abstract: We generalise a result of R. Thomas to establish the non-vanishing of the
first `2 Betti number for a class of finitely generated groups.
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In this note we give the following generalisation of a result of Richard
Thomas [8].

Theorem 1. Let G be a finitely generated group given by the presenta-
tion

〈x1, . . . , xd : um1
1 , . . . , umr

r 〉
such that each relator ui has order mi in G.

(1) If G is finite then 1− d+
∑r
i=1

1
mi

> 0 and |G| ≥ 1
1−d+

∑r
i=1

1
mi

.

(2) If the first `2 Betti number β2
1(G) of G is zero, then

1− d+

r∑
i=1

1

mi
≥ 0.

In particular, the case when all the exponents mi in the presentation
are equal to 1 yields the well known observation that when the first `2

Betti number is zero the deficiency of the presentation d − r must be
at most 1. The vanishing of the first `2 Betti number of a group G
holds for example if G is finite, if it satisfies Kazhdan’s property (T) or
if it admits an infinite normal amenable subgroup (in particular if it is
infinite amenable). We refer to [4] for other interesting examples. We
obtain as a corollary:

Corollary 2. Let G be a finitely generated group given by the presenta-
tion

〈x1, . . . , xd : um1
1 , . . . , umr

r 〉
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such that each relator ui has order mi in G. If d > 1+
∑r
i=1

1
mi

, then G

is infinite, does not satisfy Kazhdan’s property (T) and has no amenable
infinite normal subgroups.

Thomas established the inequality in (1) above by providing a sim-
ple but elegant computation of the dimension of the F2-vector space of
1-cycles of the cellular chain complex of the Cayley graph of G (Thomas
refers to this space as the cycle space of Γ.) If Γ has d edges and v vertices
then the dimension of this vector space is d− v + 1. An alternative ap-
proach, yielding information about the classical first Betti number of G
and its finite index subgroups is explored by Allcock in [1].

We generalise this idea to give the additional inequality in (2) above
by using elementary observations about the `2 Betti numbers β2

i of the
orbihedral presentation 2-complex of G. For an introduction to `2 Betti
numbers, we refer the reader to [3]. The first `2 Betti number vanishes
for all finite groups. Cheeger and Gromov have shown that if a group G is
amenable then β2

1(G) = 0 [2, Theorem 0.2]. More generally, β2
1(G) is zero

for any group G which contains an infinite normal amenable subgroup.

Remark 3. Theorem 1 can be derived from deeper results of Peterson
and Thom; in particular, Equation (3) yields the inequality β2

1(G) ≥
1
|G| + d− 1−

∑
i

1
mi

from [7]. Here, |G| denotes the size of G and 1
|G| is

understood to be zero when G is infinite.

Finitely generated but not finitely presented groups. Lück has
defined `2 Betti numbers for any countable discrete group. The notion
agrees with the cellular `2 Betti numbers for finitely presented groups
and the basic properties including a generalised Euler-Poincaré formula
for G-CW complexes may be found in Chapter 6 of [6]. Working in
this context and arguing as in the proof of Theorem 1, we obtain the
following generalisation.

Theorem 4. Suppose a group G is given by the presentation

G = 〈x1, . . . , xd : umi
i , i ∈ I〉

where I is a countable set and each relator ui has order mi in G. If∑
i∈I

1
mi

converges then β2
1(G) ≥ 1

|G| + d − 1 −
∑
i∈I

1
mi

. In particular

if β2
1(G) = 0 then

∑
i∈I

1
mi
− d+ 1 ≥ 0.

Before we embark on the proof of Theorem 1, we need a short lemma
which says that the orbihedral Euler characteristic of a G-CW complex Y
may be computed from its `2 Betti numbers. The lemma is well known
and may be found in [6].
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Lemma 5 ([6, Theorem 6.80]). If G acts on a connected CW complex

Ỹ with finite quotient Y such that stabilisers of cells are finite, then the
`2-Euler characteristic of Y is equal to the orbihedral Euler characteristic
of Y . More precisely, if for each i, Σi is a choice of representatives for
the orbits of i-cells in Ỹ and the stabiliser of a cell σ in G is written Gσ,
then

(1)
∑
i

(−1)iβ2
i (Y ) =

∑
i

(−1)i
∑
σ∈Σi

1

|Gσ|
.

We now proceed with the proof of Theorem 1.

Proof of Theorem 1: Let G be a group given by the presentation 〈x1, . . . ,
xd : um1

1 , . . . , umr
r 〉 where each relator ui has order mi in G. The orbi-

hedral presentation 2-complex of G, which we will denote by P, has one
vertex and d edges forming a bouquet of d circles. Identifying each of the
circles with one of the generators xi we identify the fundamental group
of this bouquet with the free group on {x1, . . . , xd}. Attached to this
are r discs, D1, . . . ,Dr. For each i = 1, . . . , r, the disc Di is endowed
with a cone point of cone angle 2π

mi
and its boundary is attached by a

degree 1 map along the loop in the bouquet of circles corresponding to
the element ui.

Attaching the corresponding stabilisers to cells we obtain, in the lan-
guage of Haefliger [5], a developable complex of groups, meaning that
the orbihedral universal cover X of P exists. In fact, X has a simple
description in terms of the Cayley graph C of G. The 1-skeleton of the
orbihedral universal cover is the Cayley graph of G with respect to the
generating set {x1, . . . , xd}, while the 2-skeleton is obtained from the
2-skeleton of the topological universal cover of the presentation 2-com-
plex by collapsing stacks of relator discs having common boundaries.
Specifically, the relator umi

i corresponds to a loop γi in P bounding a
disc and there is a unique lift γ̃i of γi based at the identity vertex in C.
In the topological universal cover of the presentation 2-complex there
are additional copies of this disc (glued along the same loop) based at
the elements ui, . . . , u

mi−1
i and the action of the subgroup 〈ui〉 permutes

these discs so that each has trivial stabiliser. In contrast, these copies
are identified in the orbihedral cover to give a single disc and it is pre-
served by the element ui. The hypothesis that ui has order mi controls
the order of the cell stabiliser.

We now apply the identity in (1) to our complex X. The action
of G on the vertices and the edges of X is both free and transitive. On
the other hand, by hypothesis, the stabiliser of a lift of a 2-cell Di has
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order mi. Hence, β2
0(P)−β2

1(P)+β2
2(P) = 1−d+

∑
i

1
mi

. We also know

that β2
0(P) = 1

|G| where 1
|G| is understood to be zero when G is infinite.

Therefore,

(2)
1

|G|
− β2

1(P) + β2
2(P) = 1− d+

∑
i

1

mi
.

Finally we remark that the first `2 Betti number of the group G may
be computed as the first `2 Betti number of the orbihedral presentation
complex used above. By definition, β2

1(G) is the von Neumann dimension
of the first `2 homology group of Y with coefficients in the von-Neumann
algebra of G, where Y is the universal cover of the (topological) presen-
tation 2 complex for G. Since both X and Y are simply connected we
deduce from Theorem 6.54(3) of [6] that β2

1(G) = β2
1(P). Therefore,

Equation (2) becomes

(3)
1

|G|
− β2

1(G) + β2
2(P) = 1− d+

∑
i

1

mi
.

Now assume that β2
1(G) = 0. Since β2

2(P) ≥ 0 , we get the identity
we are looking for, namely

1− d+

r∑
i=1

1

mi
≥ 1

|G|
.

In particular, if G is finite, then the `2 cohomology of G is just the
group cohomology with real coefficients, and this vanishes so we obtain
Thomas’s result that 1 − d +

∑r
i=1

1
mi

> 0 and |G| ≥ 1
1−d+

∑r
i=1

1
mi

.

On the other hand, if G is infinite and its first `2 Betti number is zero,
in particular if G is an infinite amenable group, then we obtain the
inequality 1− d+

∑r
i=1

1
mi
≥ 0, as required.
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