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OKUTSU-MONTES REPRESENTATIONS OF PRIME

IDEALS OF ONE-DIMENSIONAL INTEGRAL

CLOSURES

Enric Nart

Abstract

This is a survey on Okutsu-Montes representations of prime ideals
of certain one-dimensional integral closures. These representa-
tions facilitate the computational resolution of several arithmetic
tasks concerning prime ideals of global fields.

Introduction

In 1923, Øystein Ore found a method to construct the prime ideals
of a number field, dividing a given prime number p, in terms of a defin-
ing equation f(x) ∈ Z[x], provided that this equation satisfies certain
p-regularity condition [Ore23]. The idea was to detect first a p-adic fac-
torization of f(x) according to the sides of certain Newton polygonN(f),
and then, to detect a further factorization of each of these factors accord-
ing to the different irreducible polynomials that divide certain residual
polynomials Rλ(f) with coefficients in a finite field, for λ running on the
slopes of the different sides of N(f).

He raised then the question of the existence of an iterative proce-
dure to compute the prime ideals in the p-irregular case, based on the
consideration of similar Newton polygons Ni(f) and residual polynomi-
als Rλ,i(f) of higher order i ≥ 1.

Saunders MacLane attacked this problem in 1936 from the point of
view of valuations. Given any discrete valuation v on a field k, he
parametrized all discrete valuations of the rational function field k(x)
that extend v. Then, given an irreducible polynomial f(x) ∈ k[x], he
characterized all valuations of the field k[x]/(f(x)) that extend v, as lim-
its of infinite families of valuations of k[x] whose value on f(x) grows to
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infinity. Finally, he gave a criterion to decide when a valuation of k[x]
was sufficiently close to a valuation of k[x]/(f(x)), to uniquely represent
it [McL36], [McL36b].

In 1999, Jesús Montes developed an algorithm that carries out Ore’s
program [Mon99]. The algorithm follows MacLane’s pattern, but the
introduction of the right concept of residual polynomial of higher or-
der Rλ,i(f) makes the whole theory constructive and well adapted to
computational applications. The algorithm is highly recursive: each
computation in order i requires auxiliary computations in all previous
orders 1, . . . , i − 1. This led Montes, for purely computational reasons,
to optimize the algorithm so that it keeps working at certain order i as
long as possible and it does not pass to work at order i+ 1 until this is
absolutely unavoidable. It turns out that the optimized algorithm has
an output with unexpected canonical properties, linked to invariants of
extensions of local fields that had been studied by Kousaku Okutsu in
1982 [Oku82].

The algorithm of Montes computes what we call Okutsu-Montes rep-

resentations of prime ideals of one-dimensional integral closures. These
computational representations single out the prime ideals and they carry
on essential data of the corresponding extensions of local fields. More-
over, these objects have proved to be an efficient and malleable tool for
a computational resolution of several arithmetic tasks concerning prime
ideals of integral closures of subrings of global fields.

In this survey notes I explain the structure of Montes algorithm and
describe some of its applications, with special emphasis on the com-
putation of integral closures. Most of this material is joint work with
Jordi Guàrdia and Jesús Montes. This survey grew out from the notes
of a seminar delivered at the MSRI in Berkeley, California, as part of
the workshop Computation of integral closures, that took place during
the week of 26th to 30th of July 2010. We thank the organizer, David
Eisenbud, for giving us the opportunity to present these results, and the
participants for the charming atmosphere and the fruitful exchange of
ideas that contributed to a substantial improvement of the final write
up.

1. Overview

1.1. Local fields. Let K be a local field with perfect residue class field.
Let O be its ring of integers, m the maximal ideal, π ∈ m a generator

of m, and v : K
∗ −→ Q, the canonical extension of the discrete valuation
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of K to an algebraic closure, normalized by v(K∗) = Z. Let Ksep ⊂ K
be the separable closure of K in K.

Let us sketch the application of Montes algorithm [HN08], [GMN08]
(HN stands for “higher Newton”). The design of the algorithm will be
described in more detail in Section 2.

Montes algorithm.

Input: A monic separable polynomial f(x) ∈ O[x].

Output: A family t1, . . . , tg of f -complete and optimal types, parame-
terizing the monic irreducible factors F1(x), . . . , Fg(x) of f(x) in O[x].

For K a finite extension of the field Qp of p-adic numbers, recent
estimations for the complexity of this algorithm have been obtained by
Veres [Ver09], Ford-Veres [FV10], and Pauli [Pau10]. The finer es-
timation is O(n2+ǫδ2+ǫ) operations of integers less than p, where δ =
v(disc(f)).

Let F (x) be one of these irreducible factors, θ ∈ Ksep a root of F ,
L = K(θ) the corresponding finite separable extension of K, and OL its
ring of integers.

Let t be the type corresponding to F . For simplicity, we represent

t = [φ1, . . . , φr+1]

as a sequence of monic irreducible separable polynomials in O[x] satis-
fying certain recursive conditions. For the moment let us just mention
that

• deg φ1 | · · · | degφr | degφr+1 = degF, degφ1 < · · · < deg φr,

• v(φ1(θ))

deg φ1
< · · · < v(φr+1(θ))

degφr+1
.

It turns out that the polynomial φr+1(x) is an Okutsu approximation

to F (x); this means that it is sufficiently close to F (x) for certain pur-
poses (see Section 3). Thus, Montes algorithm is a kind of polynomial
factorization algorithm. Actually, a rather peculiar one, in two senses:

(1) It is based on a series of generalizations of Hensel lemma, so that
successive factorizations of f(x) are detected, but never carried
out. Only certain auxiliary polynomials over finite extensions of
the residue class field are factorized.
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(2) Besides computing an approximation to each irreducible factor F ,
the output of the algorithm provides as well a lot of arithmetic
information about the finite extension L/K determined by F .

The type t is structured in r+1 levels, and r is called the order of t.
At each level i, t stores several combinatorial and arithmetic invariants

ei, fi, hi, λi, Vi, etc.

linked to Newton polygons of higher order of f(x). These invariants
contain essential information about F (x) and the extension L/K. For
instance,

v(φi(θ)) =
Vi + |λi|
e1 · · · ei−1

,

(1) e(L/K) = e1 · · · er, f(L/K) = f0f1 · · · fr,

exp(F ) =

r
∑

i=1

(eifi · · · erfr − 1)
hi

e1 · · · ei
,

where exp(F ) is the exponent of F ; that is, the least non-negative integer
such that πexp(F )OL ⊂ O[θ].

The type t determines as well an easy computation of the integral
closure of O inside L. In fact, let n = degF = [L : K]; for each
integer 0 ≤ m < n, we express m in a unique way as:

m = j0 + j1 degφ1 + · · ·+ jr degφr, 0 ≤ ji < (deg φi+1/ degφi),

where φ0(x) := x. We consider the following polynomial of degree m:

gm(x) := φ0(x)
j0φ1(x)

j1 · · ·φr(x)jr .

As shown above, the data of t allow us to compute

νm := ⌊j1v(φ1(θ)) + · · ·+ jrv(φr(θ))⌋.

Then, the following family is an O-basis of OL:

1,
g1(θ)

πν1
, . . . ,

gn−1(θ)

πνn−1
.

Thus, we may say that Montes algorithm provides the computation of
all the integral closures ofO in the different extensions determined by the
irreducible factors of the input polynomial f(x), almost as a by-product.
We need only to include in the algorithm an efficient computation of the
polynomials gm(x).
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1.2. Applications to global fields. Let us illustrate the applications
to number fields. For function fields of curves the results are completely
analogous, but no implementation has been made yet.

Let K = Q[x]/(f(x)) be now the number field defined by a monic
irreducible polynomial f(x) with integer coefficients and degree n. Let
θ ∈ Q be a root of f(x) and ZK the ring of integers of K.

For any prime number p, the prime ideals ofK dividing p are in one-to-
one correspondence with the monic irreducible factors of f(x) over Zp[x].
In fact, for any such a prime ideal p we consider a topological embedding

ιp : K →֒ Kp →֒ Qp,

where Kp is the completion of K with respect to the p-adic topology.
Then, the corresponding irreducible factor of f(x) is the minimal polyno-
mial of ιp(θ) over Qp. We denote this monic irreducible factor by Fp(x).

Hence, by applying Montes algorithm to f(x) over Zp, one obtains
what we call an Okutsu-Montes representation (OM representation) of
all prime ideals of K dividing p :

p = [p;φ1, . . . , φr ;φp], φp := φr+1,

where tp = [φ1, . . . , φr, φr+1] is the type attached to Fp(x) by the algo-
rithm.

The polynomials φi have all integer coefficients. It turns out that
the invariants contained in the type tp are the essential data that are
necessary for a computational treatment of the prime ideal. For instance,
the following tasks in the group of fractional ideals can be based on the
data (and operators) of the OM representations of the prime ideals:

(1) Compute the p-adic valuation, vp : K
∗ −→ Z.

(2) Compute the prime ideal factorization of a fractional ideal.

(3) Compute a two-element representation of a fractional ideal.

(4) Add, multiply and invert fractional ideals.

(5) Compute the reduction map, ZK −→ ZK/p, and a section of this
map (a lifting map).

(6) Solve Chinese remainder problems.

(7) Compute a p-integral basis of K.

We have implemented a ‘+Ideals’ package in Magma that contains
routines for all these tasks [GMN10], [GMN10b].

Recall that a p-integral basis is a Q-basis of K, made of integral
elements α1, . . . , αn ∈ ZK , that satisfy any of the following equivalent
conditions:
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(a) α1 ⊗ 1, . . . , αn ⊗ 1 are a Zp-basis of ZK ⊗Z Zp.

(b) α1 ⊗ 1, . . . , αn ⊗ 1 are an Fp-basis of ZK ⊗Z Fp.

(c) p does not divide the index (ZK : 〈α1, . . . , αn〉Z).
Since ZK ⊗Z Fp has dimension n as an Fp-vector space, in practice

it suffices to check that α1, . . . , αn determine Fp-linearly independent
elements in this Fp-algebra.

It is well-known how to compute a p-integral basis of K from the local
Zp-bases of all local rings ZKp

, for p | p. One needs only to compute
multipliers βp ∈ ZK satisfying:

vp(βp) = 0, vq(βp) ≥ (exp(Fp) + 1)e(q/p), ∀, q | p, q 6= p.

These multipliers are easily computed from the data of the OM represen
tations [GMN10, Section 4.2]. If {Bp}p|p are the local bases, then
⋃

p|p βpBp is a p-integral basis of K (cf. Section 4.1).

Finally, an integral basis of K (a Z-basis of ZK) is computed as fol-
lows:

(1) Factorize the discriminant disc(f) of the polynomial f(x).

(2) For each prime p | disc(f), compute a p-integral basis of K in
Hermite Normal Form.

(3) Glue these data into a global basis by a simple application of the
Chinese Remainder Theorem.

1.3. Some remarks.

1. The standard packages that manipulate number fields need to com-
pute an integral basis as a preliminary step. This makes them totally
useless for many number fields of large degree, or number fields defined
by an equation with large coefficients, because of the impossibility to
factorize the discriminant.

The routines based on the OM representations of the prime ideals do
not require the factorization of disc(f) and they work very efficiently for
“big” number fields [GMN10b]. We do not claim too much originality
on this fact. Many researchers who need to work with number fields of
large degree develop their own routines to deal with concrete problems,
avoiding the computation of the maximal order. But we do claim on
efficiency: our routines run extremely fast in practice.

Of course, the bottleneck is again integer factorization: we can deal
only with fractional ideals whose norm may be factorized.

2. The routines based on the OM representations have a completely
different nature than the classical ones. It often occurs, when dealing
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with some problem, that once a direct connexion with the data contained
in the OM representations is found, the outcoming routine is much faster
than the routine that would be inspired in the classical ones.

3. We do not know how to test if an ideal is principal. To this end it
would be necessary to combine the OM representations with some kind
of LLL reduction routine (preferably not based on the lattice ZK).

Question. Is there a theoretical reason that makes it hopeless to design
such a test without factorizing the discriminant?

4. Suppose the discriminant of the defining equation f(x) may be fac-
torized. Then, how do our routines behave with respect to the classical
ones? Let us discuss this comparison at two levels.

(1) The OM routines compute an integral basis much faster than the
ordinary routines of Magma or Pari. We saw that the computation
of the local bases is almost a by-product of Montes algorithm.

(2) Once the maximal order ofK has been computed, the OM routines
still run (slightly) faster than the ordinary ones of Magma or Pari,
for number fields whose degree is not too small (say n ≥ 16). One
reason for this is that the OM techniques avoid the use of linear al-
gebra. The standard methods compute Z-basis of the prime ideals,
expressed in coordinates with respect to the integral basis. We get
in this way n × n matrices, and the linear algebra procedures to
manipulate them (like the computation of Hermite Normal Forms)
dominate the complexity for n large.

5. Suppose the discriminant of the defining equation f(x) may be factor-
ized. We mentioned already that we also need the HNF routine to patch
the different p-integral bases of K, for the primes p dividing disc(f), into
a global integral basis. This HNF routine is the bottleneck for the whole
process, if n is large.

2. The algorithm of Ore, MacLane and Montes

The content of this section is mainly extracted from [HN08].
Let K be a local field, O its ring of integers, m the maximal ideal,

π ∈ m a generator of m, and F = O/m the residue class field, which is

supposed to be perfect. Let v : K
∗ −→ Q be the canonical extension

to K of the discrete valuation of K, normalized by v(K∗) = Z. Let
Ksep ⊂ K be the separable closure of K in K.
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We extend v to a discrete valuation v1 of the field K(x), by letting it
act on K[x] as follows:

v1

(

∑

0≤s
asx

s
)

:= min{v(as) | 0 ≤ s}.

Also, we denote F0 := F, and we consider the 0-th residual operator :

R0 : O[x] −→ F0[y], g(x) 7→ R0(g)(y) := g(y)/πv1(g).

Note that for monic polynomials, R0 is the ordinary reduction map.
Our aim is to describe the monic irreducible factors of a given monic

separable polynomial f(x) ∈ O[x]. The starting point of the algorithm
is Hensel lemma. From a factorization of R0(f)(y) into a product of
monic irreducible polynomials in F0[y]:

R0(f)(y) = ϕ1(y)
ℓ1 · · ·ϕk(y)ℓk ,

we detect (but not compute) a factorization of f(x) in O[x],

f(x) = F1(x) · · ·Fk(x),

into a product of monic (not necessarily irreducible) polynomials satis-
fying R0(Fi)(y) = ϕi(y)

ℓi .
We start then to construct a tree T of types. Actually, T is the disjoint

union of k connected trees, one for each irreducible factor of R0(f). The
initial node of each connected tree is a type of order zero, which we are
going to describe now.

Let us fix one of the irreducible factors of R0(f), that we denote from
now on by ψ0(y) ∈ F0[y]. The subindex 0 emphasizes that we are working
at order zero. We choose (non-canonically) a monic lift φ1(x) ∈ O[x]
of ψ0 and we denote

t := [φ1].

This object is the type of order zero that corresponds to the initial node
of the tree.

Let Ft(x) ∈ O[x] be the (unknown) monic factor of f(x) attached by

Hensel lemma to ψ0; recall that R0(Ft) = ψℓ00 , for certain integer ℓ0 > 0.
Our initial node, labelled by ψ0, is supposed to sprout several branches

corresponding to types of order one, obtained by adding a different poly-
nomial φ2 for each branch, in a process to be explained in Section 2.4
in more detail. Clearly, if ℓ0 = 1 then Ft is already irreducible and the
initial node is already a leave of the tree T (an end node that has no
further branching).
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A type of order zero supports certain invariants of the irreducible
factors of Ft(x):

ψ0(y) ∈ F0[y],

f0 := degψ0,

F1 := F0[y]/(ψ0(y)),

z0 := class of y in F1.

(2)

Note that ψ0(z0) = 0 and F1 = F0[z0]. This seemingly innocuous
object t has hidden powers. It determines a Newton polygon operator of
the first order:

N1 := Nφ1,v1 : O[x] −→ 2R
2

,

where 2R
2

is the set of subsets of the plane R2. Also, for every negative
rational number λ ∈ Q−, the type t determines a residual polynomial

operator of the first order:

Rλ,1 := Rφ1,v1,λ : O[x] −→ F1[y].

Let us describe all these operators in some detail.

2.1. The Newton polygon operator. Let m1 := deg φ1 = f0. Any
polynomial g(x) ∈ O[x] has a canonical φ1-expansion:

g(x) =
∑

0≤s

as(x)φ1(x)
s, deg as < m1.

Then, N1(g) is the lower convex hull of the set of all points (s, v1(as))
in R2. We are only interested in the principal part of this polygon,
N−

1 (g) ⊂ N1(g), made of all sides with negative slope. The length ℓ(N)
of a polygon N is, by definition, the abscissa of the right end point of N .

We denote:

ordt(g) := ordψ0
R0(g) = ℓ(N−

1 (g)).

By construction, the type t of order zero extracted from the factoriza-
tion of f(x) modulo m, had ordt(f) = ℓ0 > 0. Since our polynomial f(x)
is monic, the last point of N1(f) has ordinate zero. The typical shape
of N1(f) is as shown below.
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The polygon N := N−
1 (f) has a residual coefficient cs at each integer

abscissa, ordφ1
f ≤ s ≤ ordt(f), defined as follows:

cs :=

{

0, if (s, v1(as)) lies above N,

R0(as)(z0) ∈ F∗
1, if (s, v1(as)) lies on N.

In the latter case, cs 6= 0 because deg as < m1 = f0, so that R0(as)(y)
cannot be divided by the minimal polynomial ψ0(y) of z0 over F0.

2.2. The residual polynomial operators. We keep the notationN =
N−

1 (f). Denote by Slopes(N) the set of slopes of N . Given any λ ∈ Q−,
we consider:

Sλ(N) :={(x, y)∈N | y+x|λ| is minimal}=
{

a vertex, if λ 6∈Slopes(N),

a side, if λ∈Slopes(N).

The following picture illustrates both possibilities. In this picture Lλ
is the line of slope λ having first contact with N from below.
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Sλ(N) = S

In any case, Sλ(N) is a segment of R2 with end points having inte-
ger coordinates. Any such segment has a degree. If λ = −hλ/eλ with
hλ, eλ positive coprime integers, the degree of Sλ(N) is defined as:

d := d(Sλ(N)) := ℓ(Sλ(N))/eλ,
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where ℓ := ℓ(Sλ(N)) is the length of the projection of Sλ(N) to the
horizontal axis.

•
◦

•

HHHHHHHH

HHHHHHHH

s s+ eλ s+ ℓ = s+ d eλ

Sλ(N)
hλ

eλ

Note that Sλ(N) splits into d minimal subsegments whose end points
have integer coordinates.

We define the residual polynomial of the first order of f(x), with
respect to λ, as:

Rλ,1(f)(y) := Rφ1,v1,λ(f)(y) := cs + cs+eλy + · · ·+ cs+deλy
d ∈ F1[y],

where s is the abscissa of the left end point of Sλ(N). Since cs cs+deλ 6= 0,
the degree of Rλ,1(f) is always equal to d, and the polynomial Rλ,1(f)(y)
is never divisible by y.

For any polynomial g(x) ∈ O[x] the definition of Rλ,1(g) is completely

analogous but taking N = N−
1 (g).

2.3. Fundamental results of Ore.

Theorem of the product [HN08, Theorem 1.13]. For any pair of

polynomials g(x), h(x) ∈ O[x] and any λ ∈ Q−,

N−
1 (gh) = N−

1 (g) +N−
1 (h), Rλ,1(gh) = Rλ,1(g)Rλ,1(h).

The sum of two polygons is the polygon obtained by taking as (left)
starting point the vector sum of the two (left) starting points, and then
joining to this starting point the sides of both polygons by increasingly
ordered slopes. For instance, the next picture shows the sum of two
one-sided polygons of respective slope −2 and −1/2.
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Notation. Given a field F and two polynomials ϕ(y), ψ(y) ∈ F [y], we
write ϕ(y) ∼ ψ(y) to indicate that there exists a constant c ∈ F∗ such
that ϕ(y) = cψ(y).

Theorem of the polygon [HN08, Theorem 1.15]. Let f(x), ψ0, φ1,
Ft(x), N be as above. Then,

(1) The polynomial Ft(x) factorizes in O[x] as:

Ft(x) =
∏

λ∈Slopes(N)
Fλ(x), degFλ = ℓ(Sλ(N))m1,

for some monic polynomials Fλ(x) ∈ O[x], whose Newton poly-

gon N1(Fλ) is one-sided with slope λ, and Rλ,1(Fλ) ∼ Rλ,1(f) in

F1[y].

(2) For any root θ ∈ Ksep of Fλ, we have v(φ1(θ)) = |λ|.

Theorem of the residual polynomial [HN08, Theorem 1.19]. With

the same notation, let λ ∈ Slopes(N) and let

Rλ,1(f)(y) ∼
∏

ψ

ψ(y)ℓψ ,

be the factorization of Rλ,1(f) into a product of powers of pairwise dif-

ferent monic irreducible polynomials ψ ∈ F1[y]. Denote fψ := degψ.
Then, Fλ(x) factorizes in O[x] as:

Fλ(x) =
∏

ψ
Fλ,ψ(x), degFλ,ψ = ℓψeλfψm1,

for some monic polynomials Fλ,ψ(x) ∈ O[x] such that Rλ,1(Fλ,ψ)(y) ∼
ψ(y)ℓψ in F1[y].

This theorem is a kind of Hensel lemma in order one.

2.4. Initial branching of types. The theorems of Ore detect a (never
computed) factorization of Ft(x) in O[x]:

Ft(x) =
∏

λ,ψ

Fλ,ψ(x).

The different (unknown) factors Fλ,ψ are parameterized by certain
types of order one. We can think that the root node ψ0 of our tree,
sprouts several branches with end nodes labelled by the different triples
(φ1(x), λ, ψ(y)).



Okutsu-Montes Representations 273

•

•

•

•������

������

HHHHHH

HHHHHH

ψ0

(φ1, λ, ψ)  tλ,ψ = [φ1, φλ,ψ]

Each node determines a type of order one, tλ,ψ = [φ1, φλ,ψ ], just by
constructing a monic separable polynomial φλ,ψ(x) ∈ O[x] satisfying:

deg φλ,ψ = eλfψm1, Rλ,1(φλ,ψ) ∼ ψ.

At the end of the paragraph we show how to construct φλ,ψ . The pos-
itive integer eλfψm1 is the minimal degree of a polynomial satisfying
Rλ,1(φλ,ψ) ∼ ψ; hence, by the Theorem of the product, any such poly-
nomial φλ,ψ is necessarily irreducible in O[x].

If ℓψ = 1, the same argument shows that Fλ,ψ is irreducible; in this
case, the node tλ,ψ becomes a leave of the tree of types, and φλ,ψ is an
approximation to Fλ,ψ.

If ℓψ > 1 we need to analyze the node tλ,ψ to detect further factor-
izations of Fλ,ψ , or show that it is irreducible. To this end, it will be
necessary to extend the fundamental results of Ore to order two. Once
we focus our attention on a fixed type tλ,ψ, we rename:

λ1 := λ, ψ1 := ψ, φ2 := φλ,ψ , R1 := Rλ1,1.

The type of order one, t := tλ,ψ = [φ1, φ2], keeps the data at level zero
described in (2), and supports several data and operators at level one:

φ1(x) ∈ O[x],

m1 := deg φ1,

N1 : O[x] −→ 2R
2

,

λ1 = −h1/e1, h1, e1 positive coprime integers,

R1 : O[x] −→ F1[y],

ψ1(y) ∈ F1[y],

f1 := degψ1,

F2 := F1[y]/(ψ1(y)),

z1 := class of y in F2.

Note that F0 ⊂ F1 ⊂ F2, and F2 = F1[z1] = F0[z0, z1].
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By the Theorem of the product, all irreducible factors F of the new
polynomial Ft := Fλ,ψ , satisfy:

R0(F )(y) = ψ0(y)
ℓ0(F ) in F0[y],

N1(F ) is one-sided with slope λ1,

R1(F )(y) ∼ ψ1(y)
ℓ1(F ) in F1[y],

for some positive integers ℓ0(F ), ℓ1(F ). These properties motivate the
use of the term type. A type is an object that collects some arithmetic
features of irreducible polynomials. The polynomials that have these
properties are of a certain “type”. The last polynomial of a type is
some sort of minimal object having these features; it is also called a
representative of the type. Let us show how these representatives are
constructed.

Construction of the polynomials φλ,ψ. Let us denote for a while:

e := eλ, h := hλ, f := fψ = degψ.

Suppose that ψ(y) = ǫ0 + ǫ1y + · · · + ǫf−1y
f−1 + yf ∈ F1[y]. The

polynomial φλ,ψ(x) we are looking for can be taken of the form:

πhfa0(x)+π
h(f−1)ae(x)φ1(x)

e+· · ·+πh(f−k)aek(x)φ1(x)ek+· · ·+φ1(x)ef ,
with R0(aek)(z0) = ǫk, for all 0 ≤ k < f .

The condition on aek(x) is easy to fulfill: if ǫk = 0 we take aek(x) = 0,
whereas for

ǫk = u0 + u1z0 + · · ·+ uf0−1z
f0−1
0 ∈ F∗

1,

with ui ∈ F0, we simply take arbitrary liftings of the ui to O (which we
denote by the same symbol ui ∈ O), and take

aek(x) = u0 + u1x+ · · ·+ uf0−1x
f0−1 ∈ O[x].

The Newton polygon of φλ,ψ is:

•

•

•
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N1(φλ,ψ)

0 ek ef

hf

h(f − k)
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Remark. The definition of type, as presented here, is slightly different
from the original definition given in [HN08], where the types carry ex-
actly the same data and operators but no representative is chosen. Thus,
a type in this survey is what in the language of [HN08] would be “a
type plus the choice of a representative”.

2.5. Types of order r.

Definition. A type of order zero is a list [φ1] that consists of a single
monic polynomial φ1(x) ∈ O[x], which is irreducible modulo m.

As we saw in the preceding sections, such an object determines op-
erators N1, Rλ,1 (for λ a negative rational number) that satisfy three
fundamental results, collected in Section 2.3.

Definition. Let r ≥ 1 be an integer, and t = [φ1, . . . , φr+1] a family of
monic irreducible separable polynomials in O[x]. We say that t is a type

of order r if it satisfies the following properties:

(1) [φ1, . . . , φr] is a type of order r − 1.

(2) Nr(φr+1) is one-sided with negative slope (say) λ.

(3) Rλ,r(φr+1)(y) ∈ Fr[y] is an irreducible polynomial.

(4) deg φr | deg φr+1.

If t satisfies these conditions, we add two fundamental invariants at
level r:

λr := slope of Nr(φr+1),

ψr(y) ∈ Fr[y] monic such that Rλr ,r(φr+1) ∼ ψr.

Altogether, the type supports the following invariants and operators at
level r:

φr(x) ∈ O[x],

mr := deg φr,

Nr : O[x] −→ 2R
2

,

λr = −hr/er, hr, er positive coprime integers,

Rr := Rλr ,r : O[x] −→ Fr[y],

ψr(y) ∈ Fr[y],

fr := degψr,

Fr+1 := Fr[y]/(ψr(y)),

zr := class of y in Fr+1,

so that ψr(zr) = 0 and Fr+1 = Fr[zr] = F0[z0, . . . , zr].
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In order to have a coherent definition, it is necessary to show that
if t satisfies these properties, then t determines a Newton polygon oper-
ator of order r + 1,

Nr+1 : O[x] −→ 2R
2

,

and residual polynomial operators of order r + 1, for each λ ∈ Q−:

Rλ,r+1 : O[x] −→ Fr+1[y],

satisfying analogous results to the three fundamental theorems of Ore.
The first (and essential) step is to construct a discrete valuation vr+1

of K(x). Let us describe how it acts on polynomials. Given g(x) ∈
K[x] \ {0}, we compute N := N−

r (g) and we take any point (x, y) ∈ N
such that y + x|λr | is minimal. Then, we define:

vr+1(g) := er(y + x|λr |).
The following picture illustrates the situation. The line Lλr is the line

of slope λr having first contact with N from below.

•
•
@@@@ PPPP

A
A
A

A
A
A

HHHHHHHHHHH

x

y

N−

r (g)

Lλr

vr+1(g)/er

Note that vr+1 depends only on vr, φr and λr. In MacLane’s ter-
minology, φr is a key polynomial over vr and vr+1/er is the augmented

valuation attached to the pair (φr, vr(φr) + |λ|) [McL36, Section 4].
Once we have the discrete valuation vr+1, we can define a Newton

polygon operator of order r+1 as before. If g(x) =
∑

0≤s as(x)φr+1(x)
s

is the φr+1- expansion of a polynomial g(x), thenNr+1(g) :=Nφr+1,vr+1
(g)

is defined as the lower convex hull of the set of points (s, us), where
us := vr+1(asφ

s
r+1).

Note that the ordinates of the points incorporate vr+1(φ
s
r+1), which

is a positive integer. This is necessary to keep the property:

ℓ(N−
r+1(g)) = ordψr (Rr(g)).

In order one (for r = 0), we had v1(φ1) = 0, because φ1 is monic; thus,
the definition of N1 is coherent with the general definition of the Newton
polygons Nr for all r ≥ 1.
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The residual operators of order r + 1 are defined in a completely
analogous way, except for the fact that the residual coefficients of N :=
N−
r+1(g) need to be twisted by certain powers of zr. More precisely, for

each integer abscissa s in the projection of N over the horizontal axis,
we define

cs :=

{

0, if (s, us) lies above N,

ztsr Rr(as)(zr) ∈ F∗
r+1, if (s, us) lies on N.

The exponent ts is defined to be:

ts :=
(

sr(as)− h−1
r us

)

/er,

where h−1
r is any integer satisfying: h−1

r hr ≡ 1 (mod er), and sr(as) is
the abscissa of the left end point of the segment Sλr(Nr(as)).

HHHHHHHHH

•
•

HHH HHH
XXXX

@@@@

sr(as)

Lλr

Nr(as)

0

With some effort, one is able to prove results completely analogous to
the three fundamental results of Ore; that is, Theorems of the product, of
the polygon and of the residual polynomial in order r [HN08, Sections 2
and 3].

Definition. Let t be a type of order r. For any g(x) ∈ O[x] we define

ordt(g) := ordψr Rr(g) = ℓ(N−
r+1(g)).

Also, we say that t is g-complete if ordt(g) = 1.

By the Theorem of the product, this operator ordt behaves well with
respect to products:

ordt(gh) = ordt(g) + ordt(h),

for any pair of polynomials g(x), h(x) ∈ O[x].

2.6. Back to the factorization algorithm. Along the factorization
algorithm with input polynomial f(x) ∈ O[x], we construct types such
that ordt(f) is positive. This means that there is some irreducible fac-
tor F (x) of f(x) in O[x], for which ordt(F ) > 0, and this implies that
F has the features captured by the type t:
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• Ni(F ) is one-sided with slope λi, ∀ 1 ≤ i ≤ r,

• Ri(F ) ∼ ψ
ℓi(F )
i , ∀ 0 ≤ i ≤ r.

We denote by Ft(x) ∈ O[x] the (unknown) product of all monic irre-
ducible factors F of f such that ordt(F ) > 0; this notation is coherent
with the previous way to consider Ft as an (unknown) factor of f(x)
detected by Hensel lemma or the results of Ore.

If t is f -complete, then Ft is already irreducible, and the node cor-
responding to t is a leave of the tree of types. If t is not f -complete, that
is, ordt(f) > 1, it is clear that the extension of Ore’s results to order r
determines a completely analogous branching of the node of the tree T
that corresponds to t.

As we did in Section 2.4, a node at level r is labelled by the triple
(φr, λr, ψr) of fundamental invariants at level r. The type determined
by this node is obtained by gathering all levels of all nodes that belong
to the unique path joining our node to the root node of the tree.

The polynomial φλ,ψ that is a representative of the type is constructed
by applying in a recursive way the procedure described at the end of Sec-
tion 2.4. However, at order r > 1 one has to care about the powers of zr
that twist the residual coefficients of the polygons [HN08, Section 2.3].

2.7. Special features of the Theorem of the polygon in order r.

Proposition. Suppose ordt(f) > 0 and let θ ∈ Ksep be a root of Ft.

Then, for any polynomial g(x) ∈ O[x],

(3) vr+1(g) ≤ e1 · · · er v(g(θ)),

and equality holds if and only if ordt(g) = 0.

Hence, vr+1/e1 · · · er may be considered an approximation of the va-
luation v on the finite extension K(θ)/K. The formula for the value
of v(φr+1(θ)) given by the Theorem of the polygon gives an interpre-
tation of the slopes of N−

r+1(f) as a measure of the inequality of (3),
for the polynomial φr+1. More precisely, for any root θ ∈ Ksep of the
factor Fλ of Ft determined by some λ ∈ Slopes(N−

r+1(f)), the Theorem
of the polygon states that:

v(φr+1(θ)) =
vr+1(φr+1) + |λ|

e1 · · · er
,

or equivalently:

e1 · · · er v(φr+1(θ))− vr+1(φr+1) = |λ|.
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2.8. Computation of the residue class fields of the extensions
determined by the irreducible factors. If the type t of order r is
f -complete, then the field Fr+1 is a computational representation of the
residue class field of the (unknown) irreducible factor F singled out by t.
If θ ∈ Ksep is a root of F , L = K(θ) and FL is the residue class field,
there is an explicit isomorphism:

γ : Fr+1 = F0[z0, . . . , zr] −→ FL, zi 7→ γi(θ),

where γi(x) ∈ K(x) are certain rational functions that can be expressed
as a product of a power of π and powers of the φ polynomials of t with
integer (positive or negative) exponents [HN08, Section 2.4 and (36)]:

γ(x) = πn0

r
∏

i=1

φi(x)
ni , ni ∈ Z.

The computation of these rationals functions would be inefficient, so
that along the flow of the algorithm only the integer exponents ni are
computed and stored, which is sufficient for all the applications where
the residue class field FL is involved.

2.9. Higher order indices. Why does this process terminate? Why
all types become complete after a finite number of steps? Answer: be-
cause each node “swallows” a positive (and big!) integer portion of the
absolute index of f(x) [HN08, Section 4].

Let F (x) ∈ O[x] be a monic irreducible separable polynomial, L =
K(θ), where θ ∈ Ksep is a root of F , and OL the ring of integers. The
index ind(F ) is defined as:

ind(F ) := lengthO(OL/O[θ]).

Recall the well-known relationship: v(disc(F ))=2 ind(F )+v(disc(L/K)).
Let f(x) ∈ O[x] be a monic separable polynomial, and f = F1 · · ·Fg

its factorization into a product of monic irreducible polynomials in O[x].
Let Of := O[x]/(f(x)). The index of f is by definition:

ind(f) := lengthO ((Of )
∼/Of ) =

g
∑

j=1

ind(Fj) +
∑

1≤j<k≤g

v(Res(Fj , Fk)),

where the superscript ( )∼ indicates “integral closure”.
Now, for each t ∈ T , we define:

indt(f) := f0f1 · · · fr ind(N−
r+1(f)),

where r is the order of t and, for any polygon N , ind(N) is the number
of points of integer coordinates that lie below or on N and the horizontal



280 E. Nart

line passing through the (left) starting point of N , beyond the vertical
axis and above the horizontal line having first contact withN from below.
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Theorem. Let T be the tree of types considered at any stage of Montes

algorithm. Then,
∑

t∈T

indt(f) ≤ ind(f).

If all leaves of T are f -complete, then equality holds.

Corollary.

(1) The factorization algorithm ends after a finite number of steps.

(2) It computes ind(f) as a by-product.

It is not absolutely true that indt(f) is always positive. However, if
for some node t we have ind(N−

r (f)) = 0, then this polygon is one-sided
and the projection of this side either to the horizontal or to the vertical
axis has length one; hence, t is either complete, or it becomes complete
after a unibranch step.

2.10. Optimization of Montes algorithm.

Definition. The type t = [φ1, . . . , φr+1] of order r is called optimal if
either r = 0 or deg φ1 < · · · < deg φr. It is called strongly optimal if
either r = 0 or deg φ1 < · · · < degφr < deg φr+1.

Montes algorithm is optimized in such a way that all nodes of the tree
of types, except for the leaves, are strongly optimal. Hence, by the very
definition, all nodes of the tree, including the leaves, are optimal.

Let us sketch the ideas of the optimization process. Suppose a node
of the tree, t = [φ1, . . . , φr] of order r − 1, is strongly optimal and non-
complete. Then, in principle, several branches sprout from t, labelled
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by triples (φr , λ, ψ), where λ is one of the slopes of N−
r (f) and ψ is one

of the irreducible factors of Rλ,r(f). For each one of these branches let
us write,

λ = −hλ/eλ, fψ := degψ, mλ,ψ := eλfψmr,

where eλ, hλ are positive coprime integers. Denote by φλ,ψ the (r +
1)-th φ-polynomial of degree mλ,ψ constructed by the general method,
as explained in Section 2.6. The type

tλ,ψ := [φ1, . . . , φr, φλ,ψ]

would correspond to a new node of order r if no optimization were ap-
plied. Now there are three different possibilities for each branch:

(a) The type tλ,ψ is complete. In this case, tλ,ψ is a leave of the tree.

(b) The type tλ,ψ is not complete, and eλfψ > 1. Then, tλ,ψ is strongly
optimal and it corresponds to a new node of order r of the tree.

(c) The type tλ,ψ is not complete, and eλfψ = 1. In this case, tλ,ψ is
not strongly optimal.
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(φr−1, λr−1, ψr−1)

(φr , λ′′, ψ′′) 

(φr , λ′, ψ′)  

(φr , λ, ψ) eλfψ = 1

tλ′′,ψ′′ complete

tλ′,ψ′ strong. optimal, eλ′fψ′>1

Suppose tλ,ψ falls in case (c). Then, the polynomial φλ,ψ is a bet-
ter representative of the original type t than φr; thus, we consider the
order r − 1 type, t′ = [φ1, . . . , φr−1, φλ,ψ ], and we submit it to fur-
ther branching, but taking into account only slopes strictly less than λ
(instead of strictly less than 0) in the Newton polygon Nt′,r(f). The
branches that arose from t′ are supposed to sprout as well from the initial
node labeled with (φr−1, λr−1, ψr−1). Each one of these new branches
falls in case (a), (b) or (c) and we follow the same procedure accordingly.
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tλ′′,ψ′′ complete

tλ′,ψ′ strong. optimal

tµ,ϕ=[φ1, . . . , φr−1, φλ,ψ, φµ,ϕ]

tµ′,ϕ′=[φ1, . . . , φr−1, φλ,ψ, φµ′,ϕ′ ]
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We call this replacement of the order r type tλ,ψ by the order r − 1
type t′, a refinement step [GMN08, Section 3]. Since all computations
(vr, Nr, Rr, . . . ) are of a recursive nature, to proceed in order r − 1
instead of order r causes a considerable improvement of the complexity.

Note that the leaves of the tree, as nodes of complete branches, are
not necessarily strongly optimal (in case (a) eλfψ can be indistinctly
equal to or greater than one). There will appear non-strongly optimal
leaves, for instance, if there are irreducible factors of f(x) that are one an
Okutsu approximation to the other. In any case, the optimized algorithm
always outputs f -complete and optimal types. Curiosly enough, this
optimization motivated by pure practical reasons, provides the output
of Montes algorithm with unexpected canonical properties.

The concept of Okutsu appoximation and the canonical properties of
the output data of Montes algorithm will be discussed in Section 3.

2.11. An example. Let us show how the algorithm works with an
example. Take f(x) = x12 + 4x6 + 16x3 + 64 ∈ Z2[x].

Since f(x) ≡ x12 (mod 2), the tree of types will be connected and we
can take ψ0(y) = y, t0 = [x], as the root node. The Newton polygon
of first order of f(x) has two sides, with slopes −2/3 and −1/3, and
indt0(f) = ind(N1(f)) = 23.
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The residual polynomials of the first order are:

R−2/3,1(f)(y) = y2 + y + 1, R−1/3,1(f)(y) = (y + 1)2.

The type t0 ramifies into two types of order one, with edges labelled by:
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•
•

•
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PPPPP
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y

(x,−2/3, y2 + y + 1)  t = [x, x6 + 4x3 + 16]

(x,−1/3, y + 1))  t
′ = [x, x3 + 2]

The type t is complete, and it singles out an (unknown) irreducible
factor F (x) ∈ Z2[x]; let L/Q2 be the finite extension determined by F .
We can apply (1) to get e(L/Q2) = 3, f(L/Q2) = 2. Also, we get an
Okutsu approximation x6 + 4x3 + 16, to F .

The type t′ is not complete: ordt′(f) = ordψ1
R1(f) = 2, so that some

more work in order two is required. Denote φ2(x) = x3 + 2. We know
that N−

2 (f) will have length 2; hence, in order to compute this polygon
we need only to compute the three last terms of the φ2-adic development
of f(x):

f(x) = φ2(x)
4 + · · ·+ 28φ2(x)

2 − 32φ2(x) + 64.

We have v2(φ2)= v2(2)=3, so that v2(64)=18, v2(−32φ2(x))=18, and
v2(28φ2(x)

2)= 12. The Newton polygon of second order has slope λ :=
−3 and residual polynomial of second order Rλ,2(f)(y) = y2 + 1 =
(y + 1)2, a power of ψ(y) := y + 1. Also, indt′(f) = 3.
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2
(f)
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18

12

We want now to construct a polynomial φλ,ψ of minimal degree sat-
isfying:

N2(φλ,ψ) one-sided with slope − 3, Rλ,2(φλ,ψ) ∼ ψ.

Since eλ = fψ = 1, this polynomial φλ,ψ will have again degree 3; we
can take φλ,ψ(x) = x3 + 6. For the sake of optimization, instead of
considering the (non-complete, non-strongly optimal) type [x, x3+2, x3+
6] of order 2, whose further enlargements will require to work in order 3,
we replace the type t′ by the type t′′ = [x, x3+6] of order 1. In this way,
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our next work will be done still in order 2. If we now take φ2(x) := x3+6,
the last three terms of the φ2-adic development of f(x) are:

f(x) = φ2(x)
4 + · · ·+ 220φ2(x)

2 − 896φ2(x) + 1408.

We have now v2(1408) = 21, v2(896φ2) = 24, v2(220φ
2
2) = 12, so that

N−
2 (f) is one-sided with slope −9/2:

•

•

C
C
C
C
C
C
C
C
CC

C
C
C
C
C
C
C
C
CC

N−

2
(f)

20

21

12

and indt′′(f) = ind(N−
2 (f)) = 4. The residual polynomial of second

order is already irreducible: R−9/2,2(f)(y) = y+1. Thus, t′′ is extended

to a unique type of order two: t′′′ = [x, x3 + 6, x6 + 12x3 + 68], which is
already complete. It singles out another irreducible factor G(x) ∈ Z2[x];
let M/Q2 be the corresponding extension. By (1) we get e(M/Q2) = 6,
f(M/Q2) = 1, and we have computed an Okutsu approximation x6 +
12x3 + 68, to G(x).

The final tree T of types is:

•
•

• •
�����
�����

PPPPP
PPPPP

y

(x,−2/3, y2 + y + 1) t = [x, x6 + 4x3 + 16]

(x3 + 6,−9/2, y + 1) t
′′′ = [x, x3 + 6, x6 + 12x3 + 68]

(x,−1/3, y + 1))

The total index is equal to: ind(f) = indt0(f)+indt′′(f) = 23+4 = 27.

3. Okutsu frames and optimal types

As in the last section, we fix a local field K with perfect residue
field. Let O be the ring of integers, m the maximal ideal, and π ∈ m

a uniformizer. Let v : K
∗ −→ Q, be the canonical extension of the
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discrete valuation of K to an algebraic closure, with the usual normal-
ization v(K∗) = Z. Let Ksep ⊂ K be the separable closure of K in K.
For any η ∈ K we denote deg η := [K(η) : K].

All results of this section are extracted from [GMN09], which is a
revision and extension of the original paper by Okutsu [Oku82].

3.1. Okutsu frames. Let us fix a monic irreducible separable polyno-
mial F (x) ∈ O[x], of degree n. Let θ ∈ Ksep be a root of F (x), L = K(θ),
and OL the ring of integers.

Denote µ0 := 0, m0 := 1, and consider sequences, respectively of
positive integers and non-negative rational numbers:

0 < m1 < m2 < · · · < mR < mR+1 := n,

0 < µ1 < µ2 < · · · < µR < µR+1 := ∞,

defined, for i ≥ 1, as follows:

mi := min
{

deg η
∣

∣

∣
η ∈ K satisfies v(θ − η) > µi−1

}

,

µi := max
{

v(θ − η) among all η ∈ K of degree mi

}

.

We can choose separable integral elements αi ∈ Ksep satisfying

degαi = mi, v(θ − αi) = µi, ∀ 1 ≤ i ≤ R.

Let Fi(x) ∈ O[x] be the minimal polynomial of αi over K, and denote
Ki = K(αi), for all 1 ≤ i ≤ R. The fields Ki are not necessarily
subfields of L, but we shall see soon that their maximal tamely ramified
subextensions over K are always contained in L.

Definition. The sequence [F1, . . . , FR] is called an Okutsu frame of F ,
and R is called the Okutsu depth of F .

Although the polynomials Fi are not uniquely determined, we must
consider an Okutsu frame as an essentially canonical object attached
to F .

Definition. An η ∈ Ksep such that deg η = n and v(θ − η) > µR is
called an Okutsu approximation to θ.

A monic irreducible separable polynomial G(x) ∈ O[x] is called an
Okutsu approximation to F if degG=n and v(G(θ)) > (n/mR)v(FR(θ)).

Remarks.

(1) The values v(Fi(θ)), 1 ≤ i ≤ R are independent of the choice of
the Okutsu frame [GMN09, Corollary 2.14].



286 E. Nart

(2) η ∈ Ksep is an Okutsu approximation to θ if and only if the mini-
mal polynomial of η over K is an Okutsu approximation to F (x)
[GMN09, Lemma 2.12].

(3) The notion of Okutsu approximation determines an equivalence
relation on OKsep , and on the set of monic irreducible separable
polynomials in O[x] [GMN09, Lemma 4.3].

Exercises. The following facts are an immediate consequence of the
definitions:

(1) depth(F ) = 0 if and only if F is irreducible modulo m.

(2) Suppose that v(F (0)) = 0 and let [F1, . . . , FR] be an Okutsu frame
of F . Let G(x) := πnmF (x/πm), for some positive integer m.
Then, [x, F1(x), . . . , FR(x)] is an Okutsu frame of G, and µi,G =
µi−1 +m, for all 1 ≤ i ≤ R+ 1.

(3) Let E(x) be an Eisenstein polynomial. Then [x] is an Okutsu frame
of E, and µ1 = 1/n.

(4) Two Eisenstein polynomials of the same degree, E, E′, are Okutsu
approximations to each other if and only if v(E(0)− E′(0)) > 1.

Suppose that depth(F ) = 0 and take G = πnF (x/π). Let E(x) be
an Eisenstein polynomial of degree n. The polynomial E determines a
totally ramified extension and the polynomial G determines an unrami-
fied extension. However, the exercises show that G and E have both [x]
as Okutsu frame. Hence, it has to be clear that an Okutsu frame is an
object attached to an irreducible polynomial and it is by no means an
invariant of the finite extension determined by this polynomial.

3.2. Okutsu invariants of finite extensions of K. In spite of what
has been said, an Okutsu frame accompanied by an Okutsu approxima-
tion do contain a lot of information about the extension L/K and its
subextensions.

All results of this section are extracted from [GMN09, Section 2.1].
We fix throughout the section an Okutsu frame [F1, . . . , FR] of F .

Lemma. Suppose that α, η ∈ Ksep satisfy:

v(θ − α) > µi−1, v(θ − η) > µi−1,

for some 1 ≤ i ≤ R+1. Then, for any polynomial g(x) ∈ K[x] of degree
less than mi, we have

v(g(η)− g(α)) > v(g(α)).

Moreover, if degα = mi, then e(K(α)/K) divides e(K(η)/K).
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Proposition. Suppose that α ∈ Ksep satisfies

degα = mi, v(θ − α) = µi,

for some 1 ≤ i ≤ R+ 1. Let N = K(α), M/K a finite Galois extension

containing L and N , and G = Gal(M/K). Consider the subgroups:

Hi := {σ ∈ G | v(θ− σ(θ)) > µi−1} ⊇ H ′
i := {σ ∈ G | v(θ− σ(θ)) ≥ µi},

and let MHi ⊂ MH′

i ⊂ M be the respective fixed fields. Finally, let

N tr be the maximal tamely ramified subextension of N/K. Then, N tr ⊂
MHi ⊂MH′

i ⊂ L ∩N .

K Ntr MHi MH′

i

L

N

M���
HHH

HHH
���

Corollaries. Let Ki = K(αi), for 1 ≤ i ≤ R.

(1) The numbers e(Ki/K), f(Ki/K), do not depend on the chosen

Okutsu frame.

(2) e(K1/K) | . . . | e(KR/K) | e(L/K), and f(K1/K) | . . . | f(KR/K) |
f(L/K). In particular, m1 | · · · | mR | n.

(3) The extension K1/K is unramified and we have a chain of tamely

ramified subfields of L:

K K1 Ktr
2 · · · Ktr

R Ltr L

K2 KR

(4) If G(x) ∈ O[x] is an Okutsu approximation to F , it admits a root

α ∈ Ksep such that the field KR+1 := K(α) satisfies:

Ktr
R+1 = Ltr, e(KR+1/K) = e(L/K), f(KR+1/K) = f(L/K).

(5) If L/K is tamely ramified, then

{v(θ − σ(θ)) | σ ∈ G} =

{

{µ1, . . . , µR,∞}, if m1 = 1,

{0, µ1, . . . , µR,∞}, if m1 > 1.

In particular, µR is Krasner’s radius of F (x):

µR = max {v(θ − θ′) | θ, θ′ ∈ Ksep roots of F (x), θ 6= θ′} .
Moreover, for each 0 ≤ i ≤ R, there are exactly (n/mi)−(n/mi+1)
different roots θ′ of F such that v(θ − θ′) = µi.
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One might speculate that the fields Ki in Corollary (3) may not be
subfields of L, but they eventually detect the presence of subfields of L
with given ramification index and residual degree. Jürgen Klüners pro-
vided us with an example showing that is not the case either.

Example (Klüners). Let F (x) = x4 + 4x2 − 4x + 4 ∈ Z2[x]. This
polynomial is separable, irreducible, and it determines a primitive ex-
tension L of Q2. Actually, the roots of F are the squares of the roots of
the strongly Eisenstein polynomial x4 + 2x + 2, whose Galois group is
well-known. Now, it is easy to check that [x, x2 − 2] is an Okutsu frame
of F , with Okutsu invariants µ1 = 1/2, µ2 = 5/8. Thus, the quadratic

field K2 = Q2(
√
2) does not correspond to any quadratic subfield of L.

Even more, the normal closure of L/Q2 has a unique quadratic subexten-
sion, which is unramified, so that K2 (which is totally ramified) cannot
be connected to any quadratic subfield of this normal closure either.

3.3. Okutsu frames and integral closures. The next theorem shows
a relevant property of the polynomials Fi(x) that constitute an Okutsu
frame of F (x).

Theorem. Take F0(x) = x. For any integer 0 ≤ m < n, express m in

a unique way as:

m = j0 + j1m1 + · · ·+ jRmR, 0 ≤ ji < (mi+1/mi),

and consider the following polynomial of degree m:

gm(x) := F0(x)
j0F1(x)

j1 · · ·FR(x)jR .
Then, for any polynomial g(x) ∈ O[x] of degree m we have,

v(gm(θ)) ≥ v(g(θ))− v1(g(x)).

Corollary ([Oku82, I, Theorem 1]). If νm := ⌊v(gm(θ))⌋, then

1,
g1(θ)

πν1
, . . . ,

gn−1(θ)

πνn−1

is an O-basis of OL.

3.4. Okutsu frames and optimal types.

Theorem. Let f(x) ∈ O[x] be a monic and separable polynomial, t =
[φ1, . . . , φr+1] an f -complete optimal type of order r ≥ 0, and F (x) ∈
O[x] the monic irreducible factor of f(x) singled out by t. Then,

(1) The Okutsu depth of F is

R =

{

r, if erfr > 1 or r = 0,

r − 1, if erfr = 1 and r > 0.
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In the first case, [φ1, . . . , φr] is an Okutsu frame of F , and φr+1 is

an Okutsu approximation to F . In the second case, [φ1, . . . , φr−1]
is an Okutsu frame of F , and φr, φr+1 are both Okutsu approxi-

mations to F .

(2) F (x) ≡ φr+1(x) (mod mν), where

ν =

⌈

h1
e1

+
h2
e1e2

+ · · ·+ hr
e1 · · · er

+
hr+1

e(L/K)

⌉

,

and −hr+1 is the slope of the one-sided Newton polygon N−
r+1(f).

Remarks.

(1) The optimized Montes algorithm outputs an essentially canonical
representation of the irreducible factors.

(2) The two last theorems justify the construction of local bases in
terms of the output of Montes algorithm, as presented at the end
of Section 1.1.

(3) The numerical invariants hi, ei, fi, λi, for 1 ≤ i ≤ R, and the
discrete valuations v1, . . . , vR+1 are invariants of F (x).

(4) In spite of the philosophy of Montes algorithm, that detects factor-
ization but never computes it, the last polynomials of the output
types are approximations to the irreducible factors, with a con-
trolled precision. Therefore, the algorithm provides a factorization
of the input polynomial indeed.

In a recent work with J. Guàrdia and S. Pauli [GNP10], we develop
a single-factor lifting algorithm that improves each one of these approx-
imations up to a prescribed precision. This algorithm has quadratic
convergence.

4. Computation of integral closures in global fields

For simplicity, we discuss only the computation of the maximal order
of a number field.

Let K = Q[x]/(f(x)) be the number field defined by a monic ir-
reducible polynomial f(x) with integer coefficients and degree n. Let
θ ∈ Q be a root of f(x) and ZK the ring of integers.

We already mentioned in Section 1.2 that an integral basis of K (i.e.
a Z-basis of ZK) can be computed by an standard application of the
Chinese remainder theorem, from a family of p-integral bases in Hermite
Normal Form, for all prime numbers p dividing disc(f).
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In this section we deal with the computation of a p-integral basis for
a given prime number: p. We saw in Section 1.2 that Montes algorithm
attaches to each prime ideal p of K lying over p an OM representation:

p = [p;φ1,p, . . . , φr,p;φp],

where φp is just the (r+1)-th polynomial of the f -complete and optimal
type attached to the p-adic irreducible factor of f(x) corresponding to p.
The common feature of the two methods we are about to present is the
computation of a p-integral basis in terms of the data encoded by these
OM representations.

4.1. Standard OM method. Let P be the set of prime ideals of K
dividing p. For each p ∈ P , we fix a topological embedding

ιp : K →֒ Kp →֒ Qp.

Let Fp(x) ∈ Zp[x] be the minimal polynomial of ιp(θ) over Qp, and
denote by np = e(p/p)f(p/p), its degree.

Recall that Montes algorithm can be slightly modified to compute a
Zp-basis of the local ring of integers ZKp

, for all p ∈ P . Let us denote
by:

Bp =

{

1,
g1,p(θ)

pν1,p
, . . . ,

gnp−1,p(θ)

pνnp−1,p

}

, p ∈ P ,

the family of np p-integral elements constructed as indicated in Sec-
tion 3.3:

gm(θ) := θj0φ1,p(θ)
j1 · · ·φR,p(θ)jR ,

so that ιp(Bp) is an integral basis of the local extension Kp/Qp, for
all p ∈ P . The Theorem of the polygon provides an explicit computation
of the exponents νm,p = ⌊j1v(φ1,p(θ)) + · · ·+ jRv(φR,p(θ))⌋, in terms of
the data of the OM representation of p (see Section 2.7).

We compute then multipliers βp ∈ ZK satisfying:

(4) vp(βp) = 0, vq(βp) ≥ (exp(Fp) + 1)e(q/p), ∀ q ∈ P , q 6= p.

Proposition ([Ore25]). The family
⋃

p∈P βpBp is a p-integral basis

of K.

Proof: Let us denote

αm,p := βp
gm,p(θ)

pνm,p
, ∀ 0 ≤ m < np.

Since vp(βp) = 0, the family of all ιp(αm,p), for 0 ≤ m < np, is still an
integral basis of the local extension Kp/Qp. Although gm,p(θ)/p

νm,p is
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not necessarily (globally) integral, the element αm,p belongs to ZK and,
even more, it satisfies

(5) vq(αm,p) ≥ e(q/p), ∀ q ∈ P , q 6= p.

In fact, this is an immediate consequence of (4), because νm,p≤νnp−1,p=
exp(Fp), for all m, p.

Let us check that {αm,p}m,p is an Fp-linearly independent family in
ZK ⊗Z Fp. Suppose that for certain integers am,p we have

∑

m,p

am,pαm,p ∈ pZK =
∏

p∈P

p
e(p/p).

Let us fix one of the primes p ∈ P . By (5),
∑

m

am,pαm,p∈p
e(p/p), so that

∑

m

am,p ιp(αm,p) ∈ (pZKp
)e(p/p)=pZKp

.

Since the ιp(αm,p) are a Zp-basis of ZKp
, all am,p are multiples of p.

The computation of the multipliers βp in terms of the data of the OM
representations of the prime ideals is explained in [GMN10, Sections 3.2
and 4.2]. This computation requires to improve the approximations φp
till vp(φp(θ)) has a sufficiently large value. As mentioned at the end
of the last section, this can be carried out with the single-factor lifting
algorithm [GNP10].

4.2. Method of the quotients. This section is extracted from
[GMN09a]. Let t = [φ1, . . . , φi] be a type of order i− 1 corresponding
to one of the nodes of the tree T along the flow of Montes algorithm.
Before computing N−

i (f), we know a priori the length of this polygon:

ℓ := ℓ(N−
i (f)) = ordψi−1

Ri−1(f).

Hence, we need only to compute the first ℓ+1 coefficients of the φi-adic
expansion of f(x):

f(x) = φi(x)Qi,1(x) + a0(x),

Qi,1(x) = φi(x)Qi,2(x) + a1(x),

. . . . . .

Qi,ℓ(x) = φi(x)Qi,ℓ+1(x) + aℓ(x).

The polynomialsQi,1(x), . . . , Qi,ℓ(x) are called the quotients of i-th order

of f(x) with respect to t. There are two relevant facts concerning these
polynomials:
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(1) They are obtained at cost zero along the computation of the coef-
ficients of the φi-development of f(x) that are necessary to build
up the principal polygon N−

i (f).

(2) The element Qi,j(θ)/p
⌊Hi,j⌋ is integral, for an easy computable

rational number Hi,j . More precisely,

Hi,j = (Yj − jvi(φi))/e1 · · · ei−1,

where Yj is the ordinate of the point of abscissa j lying on Ni(f).

Theorem. For each prime ideal p = [p;φ1, . . . , φr;φp] ∈ P, denote by bi,
1 ≤ i ≤ r, the abscissa of the right end point of the side of slope λi of
N−
i (f), and compute the family

Bp :=

{

βp, βp
g1(θ)

pν1
, . . . , βp

gnp−1(θ)

pνnp−1

}

, βp := Qr+1,1(θ),

where now, for each 0 ≤ m < np, written in a unique way as:

m = j0 + j1m1 + · · ·+ jrmr, 0 ≤ ji < (mi+1/mi),

we take gm(x), νm to be:

gm(x) := xj0Q1,b1−j1(x) · · ·Qr,br−jr (x),
νm := ⌊H1,b1−j1 + · · ·+H1,br−jr +Hr+1,1⌋.

Then,
⋃

p∈P Bp is a p-integral basis of K.

The advantage of this method with respect to the standard method
is twofold:

(1) We replace the computation of the powers φi(x)
ji by a single poly-

nomial Qi,j(x) that was obtained at zero cost.

(2) We replace the whole construction of the multiplier βp by the con-
sideration of the polynomialQr+1,1, which is obtained at the cost of
only one division with remainder: f(x) = φp(x)Qr+1,1(x) + a0(x).

The disadvantage is that the polynomials gm(x) considered in the
standard method have degree m, while those of the quotients method
have, by nature, large degree.

In practice, the method of the quotients has a better average perfor-
mance, and it is more regular, in the sense that in the examples where
the standard method is faster, the difference of the times of execution is
very small, while there are peak cases in which the quotients method is
extremely faster than the standard one.

In the +Ideals package we compute integral closures by using the
method of the quotients.
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9th International Symposium, ANTS-IX, Nancy, France,
July 19–23, 2010, Lecture Notes in Computer Science 6197,
Springer, 2010, pp. 174–185.
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[GMN09] J. Guàrdia, J. Montes, and E. Nart, Okutsu invariants

and Newton polygons, Acta Arith. 145(1) (2010), 83–108.
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