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WEIGHTED NORM INEQUALITIES FOR

CALDERÓN-ZYGMUND OPERATORS WITHOUT

DOUBLING CONDITIONS

Xavier Tolsa

Abstract
Let µ be a Borel measure on R

d which may be non doubling.
The only condition that µ must satisfy is µ(B(x, r)) ≤ Crn for
all x ∈ R

d, r > 0 and for some fixed n with 0 < n ≤ d. In this
paper we introduce a maximal operator N , which coincides with
the maximal Hardy-Littlewood operator if µ(B(x, r)) ≈ rn for
x ∈ supp(µ), and we show that all n-dimensional Calderón-Zyg-
mund operators are bounded on Lp(w dµ) if and only if N is
bounded on Lp(w dµ), for a fixed p ∈ (1,∞). Also, we prove
that this happens if and only if some conditions of Sawyer type
hold. We obtain analogous results about the weak (p, p) estimates.
This type of weights do not satisfy a reverse Hölder inequality, in
general, but some kind of self improving property still holds. On
the other hand, if f ∈ RBMO(µ) and ε > 0 is small enough, then
eεf belongs to this class of weights.

1. Introduction

Let µ be some Borel measure on Rd satisfying

(1.1) µ(B(x, r)) ≤ C0r
n for all x ∈ Rd, r > 0,

where n is some fixed constant (which may be non integer) with 0 <
n ≤ d. In this paper we obtain a characterization of all the weights w
such that, for every n-dimensional Calderón-Zygmund operator (CZO) T
which is bounded on L2(µ), the following weighted inequality holds:

(1.2)

∫
|Tf |pw dµ ≤ C

∫
|f |pw dµ for all f ∈ Lp(w),
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where C is independent of f , 1 < p < ∞, and Lp(w) := Lp(w dµ). It
is shown that these weights w are those such that a suitable maximal
operator N (defined below) is bounded on Lp(w). We also prove an
analogous result for the weak (p, p) estimates.

Moreover, we show that the Lp weights for CZO’s (and for N) satisfy
a self improving property. Loosely speaking, weak weighted inequalities
for w and for the dual weight w−1/(p−1) imply strong weighted inequali-
ties for w and its dual weight. Let us remark that we do not assume that
the underlying measure µ is doubling. Recall that µ is said to be doubling
if there exists some constant C such that µ(B(x, 2r)) ≤ C µ(B(x, r)) for
all x ∈ supp(µ) and r > 0.

In the particular case where µ coincides with the Lebesgue measure
on Rd, it is known that the weighted inequality (1.2) holds for all d-di-
mensional CZO’s if and only if w is an Ap weight. This result was
obtained by Coifman and Fefferman [CF], and it generalizes a previ-
ous result by Hunt, Muckenhoupt and Wheeden [HMW] about the
Hilbert transform. Let us recall that Muckenhoupt proved [Mu] that the
Ap weights are precisely those weights w for which the Hardy-Littlewood
operator is bounded on Lp(w) (always assuming µ to be the Lebesgue
measure on Rd). So the Lp weights for CZO’s and the Lp weights for
the maximal Hardy-Littlewood operator coincide in this case.

Suppose now that the measure µ satisfies

(1.3) µ(B(x, r)) ≈ rn for all x ∈ supp(µ), r > 0,

whereA ≈ B means that there is some constant C > 0 such that C−1A ≤
B ≤ CA, with C depending only on n and d (and also on C0 sometimes),
in general. In this case the results (and their proofs) are analogous to the
ones for the Lebesgue measure. Namely, (1.2) holds for all n-dimensional
CZO’s if and only if w ∈ Ap, which is equivalent to say that the maximal
Hardy-Littlewood operator is bounded on Lp(w).

Many other results about weights for CZO’s can be found in the lit-
erature. In most of them it is assumed that µ is either the Lebesgue
measure on Rd or the underlying measure of a space of homogeneous
type, satisfying (1.3). See for example [Pé] and the recent result on the
two weight problem for the Hilbert transform in [Vo].

It is much more difficult to find results where (1.3) does not hold.
Saksman [Sak] has obtained some results concerning the weights for
the Hilbert transform H on arbitrary bounded subsets of R (with µ
being the Lebesgue measure restricted to these subsets). These results
relate the boundedness of H on Lp(w) with some operator properties
of H , and quite often his arguments are of complex analytic nature.
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Orobitg and Pérez [OP] have studied the Ap classes of weights with
respect to arbitrary measures on Rd, which may be non doubling. In
particular, they have shown that if w is an Ap weight, then the centered
maximal Hardy-Littlewood operator is bounded on Lp(w), and that if
moreover µ satisfies (1.1), then all n-dimensional CZO’s are also bounded
on Lp(w). Other more recent result which involve the operator

Mkf(x) = sup
x∈B

1

µ(kB)

∫

B

|f(y)| dµ(y) for x ∈ supp(µ) and k > 1,

where the supremum is taken over all balls B containing x, have been
obtained in [Ko].

Our approach uses real variable techniques and it is based on the ideas
and methods developed in [To2], [To3] and [To4] to extend Calderón-
Zygmund theory to the the setting of non doubling measures. Indeed,
recently it has been shown that the doubling assumption is not essen-
tial for many results of Calderón-Zygmund theory. See [NTV1], [To1],
[NTV2], [MMNO] and [GM], for instance, in addition to the refer-
ences cited above.

In order to state our results more precisely, we need to introduce some
definitions. A kernel k(·, ·) : Rd × Rd → R is called a (n-dimensional)
Calderón-Zygmund (CZ) kernel if

(1) |k(x, y)| ≤
C1

|x− y|n
if x 6= y,

(2) there exists some fixed constant 0 < γ ≤ 1 such that

|k(x, y) − k(x′, y)| + |k(y, x) − k(y, x′)| ≤ C2
|x− x′|γ

|x− y|n+γ

if |x− x′| ≤ |x− y|/2.

Throughout all the paper we will assume that µ is a Radon measure
on Rd satisfying (1.1). We say that T is a (n-dimensional) CZO associ-
ated to the kernel k(x, y) if for any compactly supported function f ∈
L2(µ)

(1.4) Tf(x) =

∫
k(x, y) f(y) dµ(y) if x 6∈ supp(µ),

and T is bounded on L2(µ) (see the paragraph below regarding this
question). If we want to make explicit the constant γ which appears in
the second property of the CZ kernel, we will write T ∈ CZO(γ).

The integral in (1.4) may be non convergent for x ∈ supp(µ), even
for “very nice” functions, such as C∞ functions with compact support.
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For this reason it is convenient to introduce the truncated operators Tε,
ε > 0:

Tεf(x) =

∫

|x−y|>ε

k(x, y) f(y) dµ(y).

Then we say that T is bounded on L2(µ) if the operators Tε are bounded
on L2(µ) uniformly on ε > 0.

Now we will define the maximal operator N . For 0 < r < R and a
fixed x ∈ supp(µ), we consider the function

ϕx,r,R(y) =






1/rn if 0 ≤ |x− y| ≤ r,

1/|x− y|n if r ≤ |x− y| ≤ R,

0 if |x− y| > R.

Then we set

(1.5) Nf(x) = sup
0<r<R

1

1 + ‖ϕx,r,R‖L1(µ)

∫
|ϕx,r,R f | dµ,

for f ∈ L1
loc(µ) and x ∈ supp(µ).

Throughout all the paper w stands for a positive weight in L1
loc(µ).

Sometimes the measure w dµ is denoted simply by w. The notation for
the dual weight is σ := w−1/(p−1), with 1 < p <∞.

The first result that we will prove deals with the weak (p, p) estimates.

Theorem 1.1. Let p, γ be constants with 1 ≤ p < ∞ and 0 < γ ≤ 1.
Let w be a positive weight. The following statements are equivalent:

(a) All operators T ∈ CZO(γ) are of weak type (p, p) with respect
to w dµ.

(b) The maximal operator N is of weak type (p, p) with respect to w dµ.

Next we state the corresponding result for the strong (p, p) estimates.

Theorem 1.2. Let p, γ be constants with 1 < p < ∞ and 0 < γ ≤ 1.
Let w be a positive weight. The following statements are equivalent:

(a) All operators T ∈ CZO(γ) are bounded on Lp(w).
(b) The maximal operator N is bounded on Lp(w).

Let us denote by Zp the class of weights w such that N is bounded
on Lp(w), and by Zweak

p its weak version, that is, the class of weights w
such that N is bounded from Lp(w) into Lp,∞(w). Notice that since N is
bounded on L∞(w), by interpolation we have Zp ⊂ Zq if 1 < p ≤ q <∞.
On the other hand, the inclusion Zp ⊂ Zweak

p is trivial, and by duality
(of CZO’s) and Theorem 1.2 it follows that w ∈ Zp if and only if σ ∈ Zp′ ,
where p′ stands for the conjugate exponent of p, i.e. p′ = p/(p− 1).
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We will prove the following self improving property for this type
weights:

Theorem 1.3. Let w be a positive weight and 1 < p <∞. If w ∈ Zweak
p

and σ = w−1/(p−1) ∈ Zweak
p′ , then w ∈ Zp and σ ∈ Zp′ .

More detailed results are stated in Lemmas 4.1 and 4.2 in Section 4. In
particular, necessary and sufficient conditions of “Sawyer type” are given
for the boundedness of N on Lp(w) and also for the weak (p, p) case.
Moreover, it is shown that if w ∈ Zp (w ∈ Zweak

p ), then the maximal
CZO

T∗f(x) = sup
ε>0

|Tεf(x)|

is bounded on Lp(w) [of weak type (p, p) with respect to w].
Let us see an easy consequence of our results. Given λ ≥ 1, let Mλ be

following version of the maximal Hardy-Littlewood operator:

(1.6) Mλf(x)=sup
r>0

1

µ(B(x, λr))

∫

B(x,r)

|f | dµ, f ∈L1
loc(µ), x∈supp(µ).

It is easily seen that for any λ ≥ 1,

(1.7) Nf(x) ≤ C(λ)Mλf(x), f ∈ L1
loc(µ), x ∈ supp(µ).

Thus all weights w such that Mλ is bounded on Lp(w) belong to Zp,
and then all CZO’s are bounded on Lp(w). In particular, Ap ⊂ Zp

if 1 < p <∞.
Observe that the maximal operator N is a centered maximal opera-

tor, which is not equivalent to any “reasonable” non centered maximal
operator, as far as we know. This fact and the absence of any doubling
condition on µ are responsible for most of the difficulties that arise in
our arguments. For instance, it turns out that the weights of the class Zp

don’t satisfy a reverse Hölder inequality, in general. Indeed there are ex-
amples which show that it may happen that w ∈ Zp but w1+ε 6∈ L1

loc(µ)
for any ε > 0 (see Examples 2.3 and 2.4). Also, we will show that the
weights in Zp satisfy a property much weaker than the A∞ condition of
the classical Ap weights (see Definition 5.1 and Lemma 5.3), which is
more difficult to deal with.

Let us notice that it has been shown in [OP] that, even with µ non
doubling, if w ∈ Ap, then w satisfies a reverse Hölder inequality. As a
consequence, Ap 6= Zp in general.

The plan of the paper is the following. In Section 2 we show some
examples which illustrate our results. In Section 3 we recall the basic
properties of the lattice of cubes introduced in [To3] and [To4], together
with its associated approximation of the identity. This construction will
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be an essential tool for our arguments. In the same section we will study
some of the properties of the maximal operator N . In Section 4 we
state Lemmas 4.1 and 4.2, from which Theorems 1.1, 1.2 and 1.3 follow
directly. Lemma 4.1 deals with the weak (p, p) estimates, and it is proved
in Sections 5–7, while the strong (p, p) case is treated in Lemma 4.2 and
is proved in Sections 8–10. In Section 11 we explain how to prove the
theorems above in their full generality, without a technical assumption
that is used in Sections 5–10 for simplicity. Finally, in Section 12 we
show which is the relationship between Zp and RBMO(µ) (this is the
space of type BMO introduced in [To2]), and we make some remarks.
In particular in this section we prove the following result:

Theorem 1.4. Let 1 < p <∞. If f ∈ RBMO(µ) and ε = ε(‖f‖∗, p) > 0
is small enough, then eεf ∈ Zp.

For the precise definition of RBMO(µ), see Section 12.

2. Some examples

Example 2.1. If µ(B(x, r)) ≈ rn for all x ∈ supp(µ), then Nf(x) ≈
Mf(x), where M is the usual centered Hardy-Littlewood operator (de-
fined in (1.6) with λ = 1). In this case, the class Zp coincides with the
class Ap.

Example 2.2. In R2, consider the square Q0 = [0, 1]2 and the mea-
sure dµ = χQ0 dm, where dm stands for the planar Lebesgue measure,
and take n = 1. That is, we are interested in studying the weights for
1-dimensional CZO’s such as the Cauchy transform. Notice that µ is a
doubling measure which does not satisfy the assumption in Example 2.1.
For this measure, we have the uniform estimate

∫
1

|y−x| dµ(y) ≤ C.

Then, from Theorem 1.2, we deduce that the class Zp coincides with
the class of Lp weights for the fractional integral

I0f(x) =

∫
1

|y − x|
f(y) dµ(y),

since Nf(x) ≈ I0|f |(x). This is the result that should be expected
because, with our choice of µ, I0 is a CZO, and for all other T ∈ CZO(γ),
we have |Tf(x)| ≤ C1 I0|f |(x).

Example 2.3. This is an example studied by Saksman in his paper
about weights for the Hilbert transform [Sak]. We are in R and n = 1.

Let ℓk = 1/k! and consider the intervals Ik =
(

1
k − ℓk

4 ,
1
k + ℓk

4

)
for k ≥ 1.

Let µ be the Lebesgue measure restricted to the set S :=
⋃∞

k=1 Ik.



Weights for Calderón-Zygmund Operators 403

Let w be a weight such that w ≥ 1 and w|Ik
is constant for each k ≥ 1.

In [Sak], it is proved that, for any p ∈ (1,∞), the Hilbert transform is
bounded on Lp(w) if and only if w ∈ L1(µ). Almost the same calcula-
tions show that the operators Sk (defined after Lemma 3.7 below) are
uniformly bounded on Lp(w) if and only if w ∈ L1(µ).

So, if a weight w0 is defined by w0|Ik
= (n − 2)!, then w0 ∈ Zp for

all p ∈ (1,∞), by Lemma 4.2 below. However, it is easily seen that
w1+ε

0 6∈ L1(µ) for any ε > 0. Therefore, w0 does not satisfy a reverse
Hölder inequality.

Example 2.4. In this example we will show that there are measures µ
and weights w ∈ Zp such that the (centered) maximal Hardy-Littlewood
operator M is not bounded on Lp(w). Also we will see that it may
happen w ∈ Zp but w 6∈ Zp−ε for any ε > 0.

We take d = n = 1. Suppose that I1 and I2 are disjoint intervals
on R. The measure µ is the Lebesgue measure restricted to I1 ∪ I2.
Suppose that µ(I1) = µ(I2) = L, and let D = dist(I1, I2), with D ≥ 2L.
For f = χI1 , the inequality ‖Mf‖Lp(w) ≤ C3‖f‖Lp(w) implies

(2.1) w(I2) ≤ C4 w(I1),

with C4 depending on C3 but not on D or L. By symmetry, (2.1) also
holds interchanging I1 and I2.

Also, if w ∈ Zp, from ‖Nf‖Lp(w) ≤ C5‖f‖Lp(w) we get L
Dw(I2)

1/p ≤

Cw(I1)
1/p. That is,

(2.2)

(
L

D

)p

w(I2) ≤ C6 w(I1).

The constant C6 depends only on C5. By symmetry, we deduce

(2.3) C−1
6

(
L

D

)p

w(I2) ≤ w(I1) ≤ C6

(
L

D

)−p

w(I2).

If w is constant on each interval I1, I2, then N is bounded on Lp(w) and
it is easily seen that ‖N‖Lp(w)→Lp(w) ≤ C(C6).

Now we introduce a new measure µ on R. For each integer m ≥
1 we consider the intervals Im

1 = 1000m + [−m − 1,−m] and Im
2 =

1000m + [m,m + 1], so that Dm := dist(Im
1 , I

m
2 ) = 2m and L = 1.

The measure µ is the Lebesgue measure restricted to
⋃∞

m=1(I
m
1 ∪ Im

2 ).
The weight w is constant on each interval wIm

j
, with w|Im

1
≡ 1 and

w|Im
2

≡ (Dm/L)p = (2m)p.
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The maximal operator M is not bounded on Lp(w) because, other-
wise, we should have w(Im

2 ) ≤ C w(Im
1 ) uniformly on m, as in (2.1). On

the other hand, (2.3) is satisfied (with the corresponding subindices and
superindices m) uniformly on m. Taking also into account that Im

1 ∪ Im
2

is very far from Ir
1 ∪ Ir

2 if m 6= r, it is easily checked that N is bounded
on Lp(w). Moreover,N is not bounded on Lp−ε(w) for any ε > 0 because
the inequality (

L

D

)p−ε

w(I2) ≤ C w(I1)

fails for m big enough.

3. Preliminaries

3.1. The lattice of cubes. For definiteness, by a cube we mean a
closed cube with sides parallel to the coordinate axes. We will assume
that the constant C0 in (1.1) has been chosen big enough so that for all
cubes Q ⊂ Rd we have µ(Q) ≤ C0 ℓ(Q)n, where ℓ(Q) stands for the side
length of Q.

Given α, β > 1, we say that the cube Q ⊂ Rd is (α, β)-doubling if
µ(αQ) ≤ βµ(Q). If α and β are not specified and we say that some cube
is doubling, we are assuming α = 2 and β equal to some constant big
enough (β > 2d, for example) which may depend from the context.

Remark 3.1. Due to the fact that µ satisfies the growth condition (1.1),
there are a lot “big” doubling cubes. To be precise, given any point x ∈
supp(µ) and c > 0, there exists some (α, β)-doubling cube Q centered
at x with l(Q) ≥ c. This follows easily from (1.1) and the fact that we
are assuming that β > αn.

On the other hand, if β > αd, then for µ-a.e. x ∈ Rd there exists a
sequence of (α, β)-doubling cubes {Qk}k centered at x with ℓ(Qk) → 0
as k → ∞. So there are a lot of “small” doubling cubes too.

Given cubes Q, R, with Q ⊂ R, we denote by zQ the center of Q, and
by QR the smallest cube concentric with Q containing Q and R. We set

δ(Q,R) =

∫

QR\Q

1

|x− zQ|n
dµ(x).

We may treat points x ∈ Rd and the whole space Rd as if they were
cubes (with ℓ(x) = 0, ℓ(Rd) = ∞). So for x ∈ Rd and some cube Q,
the notations δ(x,Q), δ(Q,Rd) make sense. Of course, it may happen
δ(x,Q) = ∞ and δ(Q,Rd) = ∞.

In the following lemma, proved in [To3], we recall some useful prop-
erties of δ(·, ·).
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Lemma 3.2. Let P,Q,R ⊂ Rd be cubes with P ⊂ Q ⊂ R. The following
properties hold:

(a) If ℓ(Q) ≈ ℓ(R), then δ(Q,R) ≤ C. In particular, δ(Q, ρQ) ≤
C0 2n ρn for ρ > 1.

(b) If Q ⊂ R are concentric and there are no doubling cubes of the
form 2kQ, k ≥ 0, with Q ⊂ 2kQ ⊂ R, then δ(Q,R) ≤ C7.

(c) δ(Q,R) ≤ C

(
1 + log

ℓ(R)

ℓ(Q)

)
.

(d)
∣∣δ(P,R) − [δ(P,Q) + δ(Q,R)]

∣∣ ≤ ε0. That is, with a different
notation, δ(P,R) = δ(P,Q) + δ(Q,R) ± ε0.

The constants C and ε0 that appear in (b), (c) and (d) depend
on C0, n, d. The constant C in (a) depends, further, on the constants
that are implicit in the relation ≈. Let us insist on the fact that a no-
tation such as a = b ± ε does not mean any precise equality but the
estimate |a− b| ≤ ε.

Now we will describe the lattice of cubes introduced in [To4]. In the
following lemma, Qx,k stands for a cube centered at x, and we allow
Qx,k = x and Qx,k = Rd. If Qx,k 6= x,Rd, we say that Qx,k is a transit
cube.

Lemma 3.3. Let A be an arbitrary positive constant big enough. There
exists a family of cubes Qx,k, for all x ∈ supp(µ), k ∈ Z, centered at x,
and such that:

(a) Qx,k ⊂ Qx,j if k ≥ j.

(b) limk→+∞ ℓ(Qx,k) = 0 and limk→−∞ ℓ(Qx,k) = ∞.

(c) δ(Qx,k, Qx,j)=(j−k)A±ε if j>k and Qx,k, Qx,j are transit cubes.

(d) δ(Qx,k, Qx,j) ≤ (j − k)A+ ε if j > k.

(e) If 2Qx,k∩2Qy,k 6= ∅, then 2Qx,k⊂Qy,k−1 and ℓ(Qx,k)≤ℓ(Qy,k−1)/
100.

(f) There exists some η > 0 such that if m ≥ 1 and 2Qx,k+m∩2Qy,k 6=
∅, then ℓ(Qx,k+m) ≤ 2−ηAmℓ(Qy,k).

The constants ε, η in (c), (d) and (f) depend on C0, n, d, but not
on A.

See [To4, Section 3] for the proof. The constant ε above must be
understood as an error term, because we will take A≫ ε. Let us notice
also that, if necessary, the cubes Qx,k can be chosen so that they are
doubling (see [To4]). However we don’t need this assumption.
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Remark 3.4. If x ∈ supp(µ) is such that
∫

B(x,1)
|y−x|−n dµ(y) <∞, then

it follows from the properties of the lattice that there exists some Kx ∈ Z

such that Qx,k = x for k > Kx and Qx,k 6= x for k ≤ Kx. In this case
we say that Qx,k is a stopping cube (or stopping point).

If
∫

Rd\B(x,1)
|y − x|−n dµ(y) < ∞ (which does not depend on x ∈

supp(µ)), then there exists some constant K̄x such that Qx,k = Rd

for k < K̄x and Qx,k 6= Rd for k ≥ K̄x. We say that Rd is an (or
the) initial cube. From the property (e) in the lemma above, it follows
easily that |K̄x−K̄y| ≤ 1 for x, y ∈ supp(µ). However, as shown in [To4],
the construction of the lattice can be done so that K̄x = K̄y =: K̄0 for
all x, y, and so that δ(Qx,K̄0+m,R

d) = mA±ε for m ≥ 1. For simplicity,
we will assume that our lattice fulfils these properties.

If
∫

B(x,1) |y − x|−n dµ(y) =
∫

Rd\B(x,1) |y − x|−n dµ(y) = ∞, then all

the cubes Qx,k, k ∈ Z, satisfy 0 < ℓ(Qx,k) <∞. That is, they are transit
cubes.

We denote Dk = {Qx,k : x ∈ supp(µ)} for k ∈ Z, and D =
⋃

k∈Z
Dk.

Consider a cube Q ⊂ Rd whose center may not be in supp(µ). Let
Qx,k be one of the smallest cubes in D containing Q in the following
sense. Set

ℓ = inf{ℓ(Qx,j) : Qx,j ∈ D, Q ⊂ Qx,j}.

Take Qx,k containing Q such that ℓ(Qx,k) ≤ 100
99 ℓ. Then we write Q ∈

ADk (by the property (e) in Lemma 3.3, k depends only on Q). In
a sense, Q is approximately in Dk. Given k, j with −∞ ≤ k ≤ j ≤

+∞, we also denote ADk,j =
⋃j

h=k ADh. If Q is such that there are
cubes Qx,k, Qy,k−1 with Qx,k ⊂ Q ⊂ Qy,k−1, then it follows easily that
Q ∈ ADk,k−1.

3.2. The kernels sk(x, y). For each x ∈ supp(µ), sk(x, ·) is a non neg-
ative radial non increasing function with center x, supported on 2Qx,k−1,
and such that

(a) sk(x, y) ≤
1

A|x − y|n
for all y ∈ Rd.

(b) sk(x, y) ≈
1

Aℓ(Qx,k)n
for all y ∈ Qx,k.

(c) sk(x, y) =
1

A|x − y|n
for all y ∈ Qx,k−1 \Qx,k.

(d) ∇ysk(x, y) ≤ C A−1 min

(
1

ℓ(Qx,k)n+1
,

1

|x− y|n+1

)
for all y ∈ Rd.
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Lemma 3.5. If y ∈ supp(µ), then supp(sk(·, y)) ⊂ Qy,k−2. If Q ∈ ADk

and z ∈ Q ∩ supp(µ), then supp(sk+m(z, ·)) ⊂ 11
10Q for all m ≥ 3, and

supp(sk+m(·, z)) ⊂ 11
10Q for all m ≥ 4.

Proof: For the assertion supp(sk(·, y)) ⊂ Qy,k−2, see [To3] or [To4].
Let Q ∈ ADk and z ∈ Q ∩ suppµ. We have Q 6⊂ Qz,k+1, because

otherwise Q 6∈ ADk. Thus ℓ(Qz,k+1) ≤ 2ℓ(Q). Then,

supp(sk+m(z, ·)) ⊂ 2Qz,k+m−1 ⊂
11

10
Q,

because ℓ(2Qz,k+m−1) ≤
2

100ℓ(Qz,k+1) ≤
4

100ℓ(Q). Finally, the inclusion

supp(sk+m(·, z)) ⊂ 11
10Q follows in a similar way.

In [To4, Section 3] the following estimates are proved.

Lemma 3.6. If A is big enough, then for all k ∈ Z and z ∈ supp(µ) we
have

(3.1)

∫
sk(z, y) dµ(y) ≤

10

9
and

∫
sk(x, z) dµ(x) ≤

10

9
.

If moreover Qz,k is a transit cube, then

(3.2)

∫
sk(z, y) dµ(y) ≥

9

10
and

∫
sk(x, z) dµ(x) ≥

9

10
.

In the following lemma we state another technical result that we will
need.

Lemma 3.7. For all k ∈ Z and x, y ∈ supp(µ), we have

(3.3) sk(x, y) ≤ C
(
sk−1(y, x) + sk(y, x) + sk+1(y, x)

)
.

The proof follows easily from our construction. See also [To3, Lem-
ma 7.8].

We will denote by Sk the integral operator associated with the ker-
nel sk(x, y) and the measure µ. Observe that (3.1) implies that the
operators Sk are bounded uniformly on Lp(µ), for all p ∈ [1,∞]. Also,
from (3.3) we get

(3.4) Skf(x) ≤ C
(
S∗

k−1f(x) + S∗
kf(x) + S∗

k+1f(x)
)
,

for f ∈ L1
loc(µ), f ≥ 0, and x ∈ Rd.
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Notice that the only property in the definition of Calderón-Zygmund
kernel which sk(x, y) may not satisfy is the gradient condition on the
first variable. It is not difficult to check that if the functions ℓ(Qx,k)
were Lipschitz (with respect to x) uniformly on k, then we would be
able to define s̃k(x, y) so that

(3.5) |∇xsk(x, y)(y)| ≤
C

A|x − y|n+1
,

in addition to the properties above. The following lemma solves this
question.

Lemma 3.8. The lattice D can be constructed so that the func-
tions ℓ(Qx,k) are Lipschitz (with respect to x ∈ supp(µ)) uniformly on k
and the properties (a)–(f) in Lemma 3.3 still hold. In this case, the
operators Sk, k ∈ Z, are CZO’s with constants uniform on k.

Proof: Suppose that the cubes Qx,k ∈ D have already been chosen and
the properties stated in Lemma 3.3 hold. Let us see how we can choose

cubes Q̃x,k, substitutes of Qx,k, such that ψk(x) := ℓ(Q̃x,k) are Lipschitz
functions on supp(µ). For a fixed k, we set

(3.6) ψk(x) := sup
z∈supp(µ)

(ℓ(Qz,k) − |x− z|).

It is easily seen that this is a non negative Lipschitz function, with

constant independent of k. Then, we denote by Q̃x,k the cube centered
at x with side length ψk(x).

We have to show that Q̃x,k is a good choice as a cube of the scale k.

Indeed, by (3.6) it is clear that ℓ(Q̃x,k) ≥ ℓ(Qx,k). Thus Qx,k ⊂ Q̃x,k.
Take now z0 ∈ supp(µ) such that

ℓ(Qz0,k) − |x− z0| ≥
99

100
ℓ(Q̃x,k).

We derive |x− z0| ≤ ℓ(Qz0,k), and also ℓ(Q̃x,k) ≤ 100 ℓ(Qz0,k)/99. Thus

x ∈ 2Qz0,k and Q̃x,k ⊂ 4Qz0,k. The inclusions Qx,k ⊂ Q̃x,k ⊂ 4Qz0,k

imply δ(Q̃x,k, Qx,k) ≤ C8 ≪ δ(Q̃x,k, Qx,k−1), with C8 depending only
on n, d, C0. One can verify that the properties in Lemma 3.3 still hold,
assuming that the constant C8 is absorbed by the “error” ε in (c) and
(d) in Lemma 3.3.

3.3. The maximal operator N . In the following lemma we show
which is the relationship between N and the operators Sk.
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Lemma 3.9. For all f ∈ L1
loc(µ), x ∈ Rd, we have

Nf(x) ≈ sup
k∈Z

Sk|f |(x),

with constants depending on A, C0, n, d but independent of f and x.

Proof: For fixed x ∈ supp(µ) and k ∈ Z, we have sk(x, y) ≤ C ϕx,r,R(y),
with r = Cℓ(Qx,k) and R = Cℓ(Qx,k−1). Assume 0 < r,R < ∞. Since
‖ϕx,r,R‖L1(µ) ≤ C we get

Sk|f |(x) ≤
C

1 + ‖ϕx,r,R‖L1(µ)

∫
|ϕx,r,Rf | dµ ≤ C Nf(x).

If r = 0 or R = ∞, we also have Sk|f |(x) ≤ C Nf(x) by an approxima-
tion argument, and so supk Sk|f |(x) ≤ C Nf(x).

Let us see the converse inequality. Given 0 < r < R <∞, let k be the
least integer such that Qx,k ⊂ B(x, r). Now let m be the least positive
integer such that B(x,R) ⊂ Qx,k−m. Then we have

ϕx,r,R(y) ≤ C (sk(x, y) + sk−1(x, y) + · · · + sk−m(x, y)).

Also, it is easily checked that 1 + ‖ϕx,r,R‖L1(µ) ≥ C−1m. Therefore,

1

1 + ‖ϕx,r,R‖L1(µ)

∫
|ϕx,r,Rf | dµ≤

C

m

m∑

h=0

Sh|f |(x)≤C sup
i
Si|f |(x).

In the rest of the paper we will assume that N is defined not
by (1.5), but as

Nf(x) := sup
k∈Z

Sk|f |(x).

With this new definition we have:

Lemma 3.10. Let λ > 0 and f ∈ L1
loc(µ). For each k ∈ Z, the set {x ∈

Rd : Sk|f |(x) > λ} is open. As a consequence, {x ∈ Rd : Nf(x) > λ} is
open too.

The proof is an easy exercise which is left for the reader.
Given a fixed x ∈ supp(µ), we can think of Skf(x) as an average of

the meansmB(x,r)f :=
∫

B(x,r) f dµ/µ(B(x, r)) over some range of radii r.

Arguing in this way, (1.7) follows. We will exploit the same idea in the
following lemma.

Lemma 3.11. For all α > 1, we can choose constants A, β, C9 big
enough so that the following property holds: Let x ∈ supp(µ), k ∈ Z and
f ∈ L1

loc(µ), and assume that Qx,k is a transit cube. Then there exists
some ball B(x, r) with Qx,k ⊂ B(x, α−1r), B(x, r) ⊂ Qx,k−1 such that
B(x, α−1r) is (α, β)-doubling and mB(x,r)|f | ≤ C9 Sk|f |(x).
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It is easy to check that there are balls B(x, r1) and B(x, r2) with
Qx,k ⊂ B(x, α−1r1), B(x, r2) ⊂ Qx,k such thatB(x, α−1r1) is (α, β)-dou-
bling and mB(x,r2)|f | ≤ C Sk|f |(x). However, it is more difficult to see
that we may take B(x, r1) = B(x, r2), as the lemma asserts.

On the other hand, the lemma is false if we substitute the condition
“mB(x,r)|f | ≤ C9 Sk|f |(x)” by “mB(x,r)|f | ≥ C−1

9 Sk|f |(x)”.

Proof: We denote λ :=Sk|f |(x), R0 =d1/2ℓ(Qx,k), and R1 =ℓ(Qx,k−1)/2.
Recall that, for fixed x, k, we have defined sk(x, y) = ψ(|y − x|), where
ψ : R → R is non negative, smooth, radial, and non increasing. Then,

λ =

∫
|f(y)|sk(x, y) dµ(y) =

∫ ∞

0

|ψ′(r)|

(∫

B(x,r)

|f | dµ

)
dr.

We denote h(r) = |ψ′(r)|µ(B(x, α−1r)) and

mα(r) =
1

µ(B(x, α−1r))

∫

B(x,r)

|f | dµ.

Thus, λ =
∫∞

0 h(r)mα(r) dr.

Let us see that
∫ R1

αR0
h(r) dr is big. Recall that ψ′(r) = 1/(Arn+1) for

r ∈ [R0, R1]. Then, for s∈ [R0, α
−1R1], we have |ψ′(αs)| = |ψ′(s)|/αn+1.

Therefore,

∫ R1

αR0

h(r) dr = α−n

∫ α−1R1

R0

|ψ′(s)|µ(B(x, s)) ds

= α−n

(∫

R0≤|x−y|≤α−1R1

sk(x, y) dµ(y)

+ψ(R0)µ(B(x,R0))−ψ(α−1R1)µ(B(x, α−1R1))

)

≥ α−n

(∫

R0≤|x−y|≤α−1R1

sk(x, y) dµ(y) − C0A
−1

)
.

Since
∫
|x−y|≤R0

sk(x, y) dµ(y) ≤ C A−1 and also∫
|x−y|≥α−1R1

sk(x, y) dµ(y) ≤ C A−1, for A big enough we obtain

∫ R1

αR0

h(r) dr ≥
1

2αn
=: M,
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using (3.2). If we denote the measure h(r) dr by h, we get

h{r ≥ 0 : mα(r) > 2λ/M} ≤
M

2λ

∫ ∞

0

mα(r)h(r) dr =
M

2
.

Thus,

h{r ∈ [αR0, R1] : mα(r) ≤ 2λ/M} ≥M −
M

2
=
M

2
.

Now we will deal with the doubling property. If B(x, α−1r) is not
(α, β)-doubling, we write r ∈ ND. We have

h([αR0, R1] ∩ND) =

∫

r∈[αR0,R1]∩ND

|ψ′(r)|µ(B(x, α−1r)) dr

≤ β−1

∫ R1

αR0

|ψ′(r)|µ(B(x, r)) dr

≤ β−1

∫
sk(x, y) dµ(y) ≤

10

9
β−1.

Therefore,

h
(
{r ∈ [αR0, R1] : mα(r) ≤ 2λ/M} \ND

)
≥
M

2
−

10

9
β−1.

So if we take β big enough, there exists some r ∈ [αR0, R1] such that
B(x, α−1r) is (α, β)-doubling and mB(x,r)|f | ≤ mα(r) ≤ 2λ/M .

As a direct corollary of Lemma 3.11 we get:

Lemma 3.12. Assume that A, β, C10 are positive and big enough. Let
x ∈ supp(µ), k ∈ Z and f ∈ L1

loc(µ). If Qx,k is a transit cube, then there
exists some (2, β)-doubling cube Q ∈ ADk,k−1 centered at x such that
m2Q|f | ≤ C10 Sk|f |(x).

In the rest of the paper we will assume that the constant A used
to construct the lattice D and the kernels sk(x, y) has been chosen big
enough so that the conclusion of the preceding lemma holds.

4. The main lemmas

Theorems 1.1, 1.2 and 1.3 follow from the following two lemmas:
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Lemma 4.1. Let p, γ be constants with 1 ≤ p < ∞ and 0 < γ ≤ 1.
Let w > 0 be a weight and σ = w−1/(p−1) (for p 6= 1). The following
statements are equivalent:

(a) All operators T ∈ CZO(γ) are of weak type (p, p) with respect
to w dµ.

(b) For all T ∈ CZO(γ), T∗ is of weak type (p, p) with respect to w dµ.

(c) The maximal operator N is of weak type (p, p) with respect to w dµ.

(d) The operators Sk are of weak type (p, p) with respect to w dµ uni-
formly on k ∈ Z.

(e) (Only in the case p 6= 1.) For all k ∈ Z and all cubes Q,

(4.1)

∫
|Sk(wχQ)|p

′

σ dµ ≤ C w(Q),

with C independent of k and Q.

Lemma 4.2. Let p, γ be constants with 1 < p < ∞ and 0 < γ ≤ 1.
Let w > 0 be a weight and σ = w−1/(p−1). The following statements are
equivalent:

(a) All operators T ∈ CZO(γ) are bounded on Lp(w).

(b) For all T ∈ CZO(γ), T∗ is bounded on Lp(w).

(c) The maximal operator N is bounded on Lp(w).

(d) The operators Sk are bounded on Lp(w) uniformly on k ∈ Z.

(e) For all k ∈ Z and all cubes Q,
∫

|Sk(σ χQ)|pw dµ ≤ C σ(Q)

and ∫
|Sk(wχQ)|p

′

σ dµ ≤ C w(Q),

with C independent of k and Q.

Notice that the Sawyer type conditions (e) in Lemma 4.1 and Lem-
ma 4.2 involve the operators Sk instead of the maximal operator N . In
the present formulation these conditions are much weaker and of more
geometric nature than the analogous conditions involving N .

The scheme for proving both lemmas is the same. In both cases we
will start by (c) ⇒ (b). Later we will see (b) ⇒ (a) ⇒ (d) ⇒ (e). These
will be the easy implications. Notice, for instance, that (b) ⇒ (a) is
trivial. Finally we will show (e) ⇒ (c) (except in the weak (1, 1) case).
This will be the most difficult part of the proof (in both lemmas). In
the weak (1, 1) case, we will see directly the implication (d) ⇒ (c).
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For simplicity, to prove Lemmas 4.1 and 4.2, we will assume that all
the cubes Qx,k ∈ D are transit cubes. In Section 11 we will give
some hints for the proof in the general case. We have operated in this
way because the presence of stopping cubes in the lattice D introduces
some technical difficulties which make the proofs more lengthy, but the
ideas and arguments involved are basically the same than in the special
case in which all the cubes in D are transit cubes.

First we will prove Lemma 4.1.

5. The implication (c) ⇒ (b) of Lemma 4.1

Definition 5.1. We say that w satisfies the Z∞ property if there exists
some constant τ >0 such that for any cube Q ∈ ADk and any setA ⊂ Rd,
if

(5.1) Sk+3χA(x) ≥ 1/4 for all x ∈ Q,

then w(A ∩ 2Q) ≥ τ w(Q).

Lemma 5.2. If
∫

|S∗
k(wχQ)|p

′

σ dµ ≤ C w(Q)

for all cubes Q and all k ∈ Z, then w satisfies the property Z∞.

Proof: Take Q ∈ ADk and A ⊂ Rd satisfying (5.1). By the assumption
above, the fact that supp(sk+3(x, ·)) ⊂ 2Q for x ∈ Q, and Hölder’s
inequality, we get

w(Q) ≤ 4

∫

Q

(Sk+3χA)w dµ

= 4

∫
(Sk+3χA∩2Q)w dµ

= 4

∫

A∩2Q

S∗
k+3(wχQ) dµ

≤ 4

(∫
S∗

k+3(wχQ)p′

σ dµ

)1/p′

w(A ∩ 2Q)1/p

≤ C w(Q)1/p′

w(A ∩ 2Q)1/p,

and so w(Q) ≤ C w(A ∩ 2Q).
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Notice that if N is bounded on Lr(w) for some r ∈ (1,∞) or of weak
type (r, r), then the operators Sk are bounded on Lp(w) uniformly on k
for any p with r < p < ∞. By duality, the operators S∗

k are bounded

on Lp′

(σ) uniformly on k too. Then, by Lemma 5.2, w satisfies Z∞.
Occasionally we will apply the Z∞ condition by means of the following

lemma.

Lemma 5.3. Suppose that w satisfies the Z∞ property. Let A ⊂ Rd

and Q ∈ ADh. Let {Pi}i be a family of cubes with finite overlap such
that A ∩ 3

2Q ⊂
⋃

i Pi, with Pi ∈ AD+∞,h+4 for all i. There exists some
constant δ > 0 such that if µ(A ∩ Pi) ≤ δ µ(Pi) for each i, then

(5.2) w(2Q \A) ≥ τ w(Q),

for some constant τ > 0 (depending on Z∞). If, moreover, w(2Q) ≤
C11 w(Q), then

(5.3) w(A ∩ 2Q) ≤ (1 − C−1
11 τ)w(2Q).

This lemma, specially the inequality (5.3), shows that the Z∞ prop-
erty can be considered as a weak version of the usual A∞ property satis-
fied by the Ap weights. Notice that unlike A∞, the Z∞ condition is not
symmetric on µ and w.

Let us remark that we have not been able to prove that the con-
stant 1−C−1

11 τ in (5.3) can be substituted by some constant Cδ tending
to 0 as δ → 0. Many difficulties in the arguments below stem from this
fact.

Proof: For a fixed x0 ∈ Q, we denote Q0 := Qx0,h+3. Observe that

supp(sh+3(x0, ·)χA) ⊂ A ∩ 2Qx0,h+2 ⊂ A ∩
3

2
Q ⊂

⋃

i

Pi.

We have

Sh+3χA(x0) ≤ C

n0∑

j=1

µ(2jQ0 ∩A)

ℓ(2jQ0)n
,

where n0 is the least integer such that 2Qx0,h+2 ⊂ 2n0Q0. If Pi∩2jQ0 6=
∅, then ℓ(Pi) ≤ ℓ(2jQ0)/10. Therefore,

µ(2jQ0∩A)≤
∑

i:Pi∩2jQ0 6=∅

µ(Pi∩A)≤
∑

i:Pi∩2jQ0 6=∅

δ µ(Pi)≤C δ µ(2j+1Q0).

Therefore,

Sh+3χA(x0) ≤ C δ

n0∑

j=1

µ(2j+1Q0)

ℓ(2jQ0)n
≤ C δ.
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If δ is small enough, we have Sh+3χRd\A(x0) ≥ 1/4 for all x0 ∈ Q,
by (3.2). Thus (5.2) holds.

Finally, (5.3) follows easily from (5.2).

The implication (c) ⇒ (b) of Lemma 4.1 is a direct consequence of
the good λ inequality in next lemma.

Lemma 5.4. Let T ∈ CZO(γ) and w which satisfies the Z∞ condition.
There exists some η > 0 such that for all λ, ε > 0

(5.4) w{x : T∗f(x)>(1+ε)λ, Nf(x)≤δλ} ≤ (1−η)w{x : T∗f(x) > λ}

if δ = δ(η, ε) > 0 is small enough.

The constant δ depends also on the weak (1, 1) norm of T∗ (with
respect to µ) and on n, d, besides of η, ε, but not on λ.

Proof: Given λ > 0, we set Ωλ = {x : T∗f(x) > λ} and

Aλ = {x : T∗f(x) > (1 + ε)λ, Nf(x) ≤ δλ}.

So we have to see that there exists some η > 0 such that, for all ε > 0
and λ > 0, w(Aλ) ≤ (1 − η)w(Ωλ) if we choose δ = δ(η, ε) > 0 small
enough.

Since Ωλ is open, we can consider a Whitney decomposition of it.
That is, we set Ωλ =

⋃
i Qi, so that the cubes Qi have disjoint interiors,

dist(Qi,R
d\Ωλ) ≈ ℓ(Qi) for each i, and the cubes 4Qi have finite overlap.

Take a cube Qi such that there exists some x0 ∈ 2Qi with Nf(x0) ≤
δλ. By standard arguments, one can check that for any x ∈ 2Qi,

T∗(fχRd\3Qi
)(x) ≤ λ+ CM c

Rf(x),

where M c
R is the centered radial maximal Hardy-Littlewood operator:

M c
Rf(x) = sup

r>0

1

rn

∫

B(x,r)

|f | dµ.

Since M c
Rf ≤ C Nf , we get T∗fχRd\3Qi

(x) ≤ (1+C δ)λ if x ∈ Aλ∩2Qi.
For δ small enough, this implies T∗(fχ3Qi

)(x) ≥ ε
2 λ for all x ∈ Aλ∩2Qi.

So we have

(5.5) Aλ ∩ 2Qi ⊂ {x ∈ 2Qi : T∗(fχ3Qi
)(x) > ελ/2, Nf(x) ≤ δλ}.

Let k ∈ Z be such that Qi ∈ ADk. Let us check that

(5.6) Sk+3χAλ
(y) ≤ C δε−1 for all y ∈ Qi.
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For a fixed y ∈ Qi, let j0 be the least non negative integer such that
there exists some y0 ∈ 2j0Qy,k+3 ∩ Aλ. Let us denote Cj = 2jQy,k+3 \
2j−1Qy,k+3 for j > j0, and Cj0 = 2j0Qy,k+3. Then we have

Sk+3χAλ
(y) =

∫

Aλ∩2Qi

sk+3(y, z) dµ(z) ≤ C

n0∑

j=j0

µ(Aλ ∩ Cj)

ℓ(2jQy,k+3)n
,

where n0 is the least integer such that 2Qy,k+2 ⊂ 2n0Qy,k+3. Let
Vj be the ℓ(2jQy,k+3)-neighborhood of Cj . It is easily checked that
T∗(fχ3Qi\Vj

)(z) ≤ C Nf(z) for all z ∈ Cj . Therefore, if δ is small
enough, for z ∈ Aλ ∩ Cj we must have T∗(fχVj

)(z) ≥ ελ/4. Then, by
the weak (1, 1) boundedness of T∗ with respect to µ, we get

µ(Aλ ∩ Cj) ≤ µ{z : T∗(fχVj
)(z) ≥ ελ/4} ≤

C

ελ

∫

Vj

|f | dµ.

Using the finite overlap of the neighborhoods Vj ,

Sk+3χAλ
(y) ≤

C

ελ

n0∑

j=j0

1

ℓ(2jQy,k+3)n

∫

Vj

|f | dµ ≤
C

ελ
Nf(y0) ≤

Cδ

ε
,

which proves (5.6).
By (3.2), we get Sk+3χRd\Aλ

(y) ≥ 9/10−Cδε−1 > 1/4 for all y ∈ Qi,
if δ is small enough. By the Z∞ condition, w(2Qi \ Aλ) ≥ τw(Qi).
Therefore, by the finite overlap of the cubes 2Qi,

(5.7) w(Ωλ) ≤ τ−1
∑

i

w(2Qi \Aλ) ≤ C α−1w(Ωλ \Aλ).

Thus, w(Aλ) ≤ (1 − C τ−1)w(Ωλ). Now we only have to take η :=
1 − C τ−1 (which does not depend on δ, ε or λ), and (5.4) follows.

6. The implications (b) ⇒ (a) ⇒ (d) ⇒ (e) of
Lemma 4.1

The implication (b) ⇒ (a) is trivial. Let us see the remaining ones.

Proof of (a) ⇒ (d) in Lemma 4.1: We have defined the kernels sk(x, y)
so that they are CZ kernels uniformly on k ∈ Z. By the statement (a)
in Lemma 4.1 we know that they are of weak type (p, p) with respect
to w dµ. We only have to check that this holds uniformly on k.
Indeed, if this is not the case, for each m ≥ 1 we take Skm

such
that ‖Skm

‖Lp(w), Lp,∞(w) ≥ m3. Then we define T =
∑∞

m=1
1

m2Skm
.

Since
∑

m
1

m2 < ∞, T is a CZO (using also uniform estimates for
the operators Sk). On the other hand, we have ‖T ‖Lp(w), Lp,∞(w) ≥
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1
m2 ‖Skm

‖Lp(w), Lp,∞(w) ≥ m for each m, because Sk are integral oper-
ators with non negative kernel. Thus ‖T ‖Lp(w), Lp,∞(w) = ∞, which
contradicts the statement (a) in Lemma 4.1.

Proof of (d) ⇒ (e) in Lemma 4.1 for 1 < p <∞: Since the operators Sk

are of weak type (p, p) with respect to w dµ, from (3.4) it follows that
their duals are also of weak type (p, p) with respect to w dµ, uniformly
on k. Then, the statement (e) is a consequence of duality in Lorentz
spaces. We only have to argue as in [Saw1, p. 341], for example:

(∫
|Sk(wχQ)|p

′

σ dµ

)1/p′

= sup
‖f‖Lp(σ)≤1

∫
Sk(wχQ) f σ dµ

= sup
‖f‖Lp(σ)≤1

∫

Q

S∗
k(f σ)w dµ

= sup
‖f‖Lp(σ)≤1

∫ ∞

0

w{x∈Q : S∗
k(f σ)(x)>λ} dλ

≤

∫ ∞

0

min
(
C λ−p, w(Q)

)
dλ=C w(Q)1/p′

.

7. The implication (e) ⇒ (c) of Lemma 4.1

We need to introduce some notation and terminology. Let Ω be an
open set. Suppose that we have a Whitney decomposition Ω =

⋃
iQi into

dyadic cubes Qi with disjoint interiors, with 10Qi ⊂ Ω, dist(Qi, ∂Ω) ≈
ℓ(Qi), and such that the cubes 4Qi have finite overlap. We say that two
cubes Q and R are neighbors if Q∩R 6= ∅ (recall that we are assuming
that the cubes are closed). For a fixed i, we denote by U1(Qi) the union
of all the neighbors of 3Qi (including Qi itself). For m > 1, inductively
we let Um(Qi) be the union of all the cubes which are neighbors of some
cube in Um−1(Qi). That is, one should think that Um(Qi) is formed
by 3Qi and m “layers” of neighbors.

We denote by MR the non centered radial maximal Hardy-Littlewood
operator:

MRf(x) = sup
B:x∈B

1

r(B)n

∫

B

|f | dµ,

where B stands for any ball containing x and r(B) is its radius.
In order to prove the implication (e) ⇒ (c) we will need a very sharp

maximum principle. In the following lemma we deal with this question.
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Lemma 7.1. Let ε > 0 be some arbitrary fixed constant. There exist
β > 0 and m ≥ 1, m ∈ Z, both big enough, such that the operator T =
N + βMR satisfies the following maximum principle for all λ > 0 and
all f ∈ L1

loc(µ): Let Ωλ = {x : Tf(x) > λ}, and consider a Whitney
decomposition Ωλ =

⋃
i Qi as above. Then, for any x ∈ Qi,

(7.1) T (f χRd\Um(Qi))(x) ≤ (1 + ε)λ.

The point in this lemma is that the constant ε > 0 can be as small as
we need, which will be very useful. We only have to define the operator T
choosing β big enough, and also to take the integer m sufficiently big
in Um(Qi). Notice also that Nf(x) ≤ Tf(x) ≤ (1+C β)Nf(x), because
MRf(x) ≤ C Nf(x).

Proof: Let x ∈ Qi be some fixed point. First we will show that, for some
z ∈ ∂Ω,

(7.2) MR(f χRd\Um(Qi))(x) ≤ (1 + ε/2)MRf(z),

if we choose m big enough. Let B be some ball containing x such that

(1 + ε/2)1/2 1

r(B)n

∫

B

|f χRd\Um(Qi)| dµ ≥MR(f χRd\Um(Qi))(x).

Notice that if MR(f χRd\Um(Qi))(x) 6= 0, then B \ Um(Qi) 6= ∅. Since
3Qi ⊂ Um(Qi), we get

(7.3) diam(B) ≥ ℓ(Qi).

Recall also that Um(Qi) is formed by m “layers” of Whitney cubes, and
so we have

(7.4) diam(B) ≥ m inf
j:Qj⊂Um(Qi)

Qj∩B 6=∅

ℓ(Qj).

We distinguish two cases:

(a) Assume 100 ℓ(Qi) ≤ [(1 + ε/2)1/2n − 1] r(B) =: Cε r(B). That is,
ℓ(Qi) is small compared to r(B). We choose z ∈ ∂Ω such that
dist(x,Rd \ Ω) = |x − z| ≤ 100ℓ(Qi). Then there exists some
ball B′ containing z and B with radius r(B′) ≤ r(B) + |x − z| ≤
(1 + ε/2)1/2n r(B). Therefore,

(7.5) MRf(z) ≥
1

r(B′)n

∫

B′

|f | dµ ≥
1

(1 + ε/2)1/2 r(B)n

∫

B

|f | dµ,

and (7.2) holds.
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(b) Suppose that 100 ℓ(Qi) ≥ Cε r(B). Then there exists some
Whitney cube P in Um(Qi) such that P ∩ B 6= ∅ and ℓ(P ) ≤
300C−1

ε ℓ(Qi)/m. Otherwise, by (7.4), 2 r(B) ≥ 300C−1
ε ℓ(Qi),

which contradicts our assumption.
Since P ∩ B 6= ∅, we can find z ∈ ∂Ω such that dist(z,B) ≤

100 ℓ(P ). Thus,

dist(z,B) ≤ 30000C−1
ε ℓ(Qi)/m ≤ Cε ℓ(Qi)/2,

ifm is chosen big enough. By (7.3), we obtain dist(z,B) ≤ Cε r(B).
Then there exists some ball B′ containing z and B with radius

r(B′) ≤ (1 + Cε) r(B) = (1 + ε/2)1/2n r(B).

Arguing as in (7.5), we obtain (7.2).

Now we have to deal with the term Nf(x). Notice that if z ∈
∂Ω is the point chosen in (a) or (b) above, then in both cases we have
|x − z| ≤ C ℓ(Qi), where C may depend on m. Thus we may choose
some constant η > 0 big enough so that η ℓ(Qi) ≫ dist(x, ∂Ω), |x − z|.
We set Bη := B(x, η ℓ(Qi)), and we have

N(f χRd\Um(Qi))(x) ≤ N(f χBη\Um(Qi))(x) +N(f χRd\Bη
)(x).

Since |x− z| ≪ η ℓ(Qi), for each k we get

|Sk(f χRd\Bη
)(x) − Sk(f χRd\Bη

)(z)| ≤ C12MRf(z),

whereC12 may depend on η. ThusN(f χRd\Bη
)(x)≤Nf(z)+C12MRf(z).

We also have N(f χBη\Um(Qi))(x) ≤ C13MRf(z), with C13 depending
on η. Therefore,

N(f χRd\Um(Qi))(x) ≤ Nf(z) + Cη MRf(z).

If we take β such that Cη ≤ βε/2, by (7.2), we obtain

T (f χRd\Um(Qi))(x) ≤ Nf(z) + Cη MRf(z) + β (1 + ε/2)MRf(z)

≤ Nf(z) + β (1 + ε)MRf(z)

≤ (1 + ε)Tf(z) ≤ (1 + ε)λ.

Proof of (e) ⇒ (c) in Lemma 4.1 for 1 < p <∞: We will show that for
some β ≥ 0, the operator T := N + βMR is bounded on Lp(w). The
precise value of β will be fixed below. Without loss of generality, we
take f ∈ L1(µ) non negative with compact support. Given any λ > 0,
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we denote Ωλ = {x : Tf(x) > λ}. We will show that there exists some
constant η, with 0 < η < 1, such that for all ε, λ > 0

(7.6) w(Ω(1+ε)λ) ≤ η w(Ωλ) +
Cε

λp

∫
|f |pw dµ,

where Cε is some constant depending on ε but not on λ. It is straight-
forward to check that (7.6) implies that T is of weak type (p, p) with
respect to w dµ for ε small enough.

As in Lemma 7.1, we consider the Whitney decomposition Ωλ =⋃
iQi, where Qi are dyadic cubes with disjoint interiors (the Whit-

ney cubes). Suppose that m and β are chosen in Lemma 7.1 so that
the maximum principle (7.1) holds with ε/2 instead of ε. Take some
cube Qi ⊂ Ωλ. To simplify notation, we will write Ui instead of Um(Qi).
Then, for x ∈ Qi ∩ Ω(1+ε)λ, we have T (f χRd\Ui

)(x) ≤ (1 + ε/2)λ, and
so

(7.7) T (f χUi
)(x) ≥ ε λ/2.

Let h ∈ Z be such that Qi ∈ ADh. If for all k with h− n1 ≤ k ≤ h+ 5
we have Sk(fχUi

)(x) ≤ δ λ, where n1, δ are positive constants which
we will fix below, then we write x ∈ Bλ (i.e. x is a “bad point”) and,
otherwise, x ∈ Gλ.

Notice that Gλ ∪ Bλ = Ω(1+ε)λ ⊂ Ωλ. We will see that Bλ is quite
small. Indeed, we will prove that

(7.8) w(Bλ) ≤ η1w(Ωλ),

for some positive constant η1 < 1 independent of ε and λ.
Assume that (7.8) holds for the moment, and let us estimate w(Gλ).

For Qi ∈ ADh, we have

w(Qi∩Gλ)≤
1

δλ

∫

Qi

h+5∑

k=h−n1

Sk(f χUi
)w dµ

=
1

δλ

h+5∑

k=h−n1

∫
f χUi

Sk(wχQi
) dµ

≤
1

δλ

h+5∑

k=h−n1

(∫
Sk(wχQi

)p′

σ dµ

)1/p′(∫

Ui

|f |pw dµ

)1/p

≤
C(n1 + 6)

λ
w(Qi)

1/p′

(∫

Ui

|f |pw dµ

)1/p

.

(7.9)
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Using the inequality a1/p′

b1/p ≤ θa+ θ−p′/pb, for a, b, θ > 0, we get

w(Qi ∩Gλ) ≤ θ w(Qi) +
Cθ−p′/p

λp

∫

Ui

|f |pw dµ.

It is not difficult to check that the family of sets {Ui}i has bounded
overlap (depending on m). Then, summing over all the indices i, we
obtain

w(Gλ) ≤ Cθ w(Ωλ) +
C(θ,m)

λp

∫
|f |pw dµ.

By (7.8), if we choose θ = (1 − η1)/2C, we get

w(Ω(1+ε)λ) ≤
1 + η1

2
w(Ωλ) +

C

λp

∫
|f |pw dµ,

which is (7.6) with η = (1 + η1)/2.
Now we have to show that (7.8) holds. We intend to use the Z∞ prop-

erty. Let us see that

(7.10) Sh+3χRd\Bλ
(y) ≥

1

4

for all y ∈ Qi. By (7.7), if z ∈ Qi, then N(f χUi
)(z) ≥ C14λ, where

C14 is some positive constant depending on ε, β. Then we have

(7.11) Sk(f χUi
)(z) ≥ C14λ

for some k ≥ h−n1. If moreover z ∈ Bλ ∩Qi, then this inequality holds
for some k ≥ h+ 6, assuming that we take δ < C14.

Suppose that Bλ ∩ supp(sh+3(y, ·)) 6= ∅. Let j0 ≥ 0 be the least
integer such there exists some x0 ∈ 2j0Qy,h+3, and let n0 be the least
integer such that Qy,h+2 ⊂ 2n0Qy,h+3. Then we have

Sh+3χBλ
(y) =

∫

z∈Bλ

sh+3(y, z) dµ(z)

≤ C

n0∑

j=j0

µ(Bλ ∩ (2j+1Qy,h+3 \ 2jQy,h+3))

ℓ(2jQy,h+3)n
.

It is not difficult to check that if z ∈ Bλ ∩ (2j+1Qy,h+3 \ 2jQy,h+3)
and k ≥ h + 6, then supp(sk(z, ·)) ⊂ 2j+2Qy,h+3 \ 2j−1Qy,h+3 =: Vj .
Therefore, N(fχVj

)(z) ≥ C14λ. Then, by the weak (1, 1) boundedness
of N , we have

µ(Bλ ∩ (2j+1Qy,h+3 \ 2jQy,h+3)) ≤ µ{z : N(f χVj
)(z) ≥ C14λ}

≤
C

λ

∫

Vj

|f | dµ.
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Thus, by the finite overlap of the sets Vj , and since x0 ∈ Bλ,

Sh+3χBλ
(y) ≤

C

λ

n0∑

j=j0

1

ℓ(2jQy,h+3)n

∫

Vj

|f | dµ

≤
C

λ
(Sh+2f(x0) + Sh+3f(x0) + Sh+4f(x0)) ≤ C15δ.

Notice that C15 depends on ε, but not on δ. If δ is small enough, we
obtain Sh+3χBλ

(y) ≤ 1/4. Now, we have Sh+3χRd\Bλ
(y) ≥ 9/10 −

Sh+3χBλ
(y) ≥ 1/4, and (7.10) holds.

By the Z∞ property, we get w(2Qi \ Bλ) ≥ τ w(Qi), and because of
the finite overlap of the cubes 2Qi,

w(Ωλ) ≤ τ−1
∑

i

w(2Qi \Bλ) ≤ C16τ
−1w(Ωλ \Bλ),

which implies (7.8).

A slight modification of the arguments above yields the proof of
the implication (d) ⇒ (c) in the weak (1, 1) case. Instead of
using (4.1) to estimate w(Qi ∩Gλ) in (7.9), one can apply directly that
the operators Sk are bounded from L1(w) into L1,∞(w). We leave the
details for the reader.

8. Preliminary lemmas for the proof of Lemma 4.2

Sections 8–10 are devoted to the proof of Lemma 4.2. As in our
lemma about the weak (p, p) case, the implication (c) ⇒ (b) is a direct
consequence of the good λ inequality of Lemma 5.4. The proofs of the
implications (b) ⇒ (a) ⇒ (d) ⇒ (e) are similar to the ones of Lemma 4.1.
We will not go through the details. So we have to concentrate on the
implication (e) ⇒ (c), which is more difficult than the corresponding
implication of the weak (p, p) case, as we will see.

In this section we will obtain some technical results which will be
needed later for the proof of (e) ⇒ (c).

Lemma 8.1. Let ρ ≥ 1 be some fixed constant. Let Q ⊂ Rd be some
cube and suppose that x ∈ Q ∩ supp(µ), x′ ∈ ρQ ∩ supp(µ), and y ∈

Rd \ 2Q. Then, sk(x, y) ≤ C17

∑k+5
j=k−5 sj(x

′, y), for any k ∈ Z, with

C17 depending on ρ and assuming A big enough (depending on ρ too).
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Proof: We denote sk(x′, y) =
∑k+5

j=k−5 sj(x
′, y). Observe that, by the

definition of sj(x
′, y), we have

(8.1) sk(x′, y) ≈ min

(
1

Aℓ(Qx′,k+5)n
,

1

A|x′ − y|n

)
if y ∈ Qx′,k−5.

Let h ∈ Z be such that Q ∈ ADh. If k ≥ h+ 3, then supp(sk(x, ·)) ⊂
2Q by Lemma 3.5, and then sk(x, y) = 0.

Assume now k ≤ h − 3. Since Q ∈ ADh, we have Q ⊂ Qx,h−1.
If A is big enough (depending on ρ), we deduce x′ ∈ Qx,h−2 ⊂ Qx,k

by (g) in Lemma 3.3. Then we get 2Qx,k−1 ⊂ Qx′,k−4, and so y ∈
Qx′,k−4 if sk(x, y) 6= 0. We also deduce ℓ(Qx′,k+5) ≪ ℓ(Qx,k). By (8.1),
if sk(x, y) 6= 0, we obtain

sk(x′, y) ≥ C−1 min

(
1

Aℓ(Qx,k)n
,

1

A|x′ − y|n

)

≥ C−1 min

(
1

Aℓ(Qx,k)n
,

1

A|x− y|n

)
≥ sk(x, y).

Suppose finally that |h− k| ≤ 2. As above, we have x′ ∈ Qx,h−2, and
since h− 2 ≥ k − 4, x′ ∈ Qx,k−4. Then we get 2Qx,k−1 ⊂ Qx′,k−5, and
so y ∈ Qx′,k−5 if sk(x, y) 6= 0. On the other hand, Q 6⊂ Qx′,h+1, because
Q ∈ ADh. Thus

ℓ(Qx′,h+1) ≤ Cℓ(Q) ≤ C|x− y|,

with C depending on ρ. Then, if sk(x, y) 6= 0, by (8.1) we get

sk(x′, y) ≥ C−1 1

A|x − y|n
≥ C−1sk(x, y).

Given α, β > 1, we say that some cube Q ⊂ Rd is µ-σ-(α, β)-doubling
if µ(αQ) ≤ β µ(Q) and σ(αQ) ≤ β σ(Q). We say that Q is µ-σ-doubling
if α = 2 and β is some fixed constant big enough (which perhaps is not
specified explicitly). Next lemma deals with the existence of this kind of
cubes.

Lemma 8.2. Suppose that the operators Sk are bounded on Lr(σ) uni-
formly on k for some r with 1 < r < ∞ and that the constant A is
big enough. Then there exists some constant β > 0 such that for any
x ∈ supp(µ) and all cubes Q, R centered at x with δ(Q,R) ≥ A/2, there
exists some µ-σ-(100, β)-doubling cube P centered at x, with Q ⊂ P ⊂ R.

Proof: The constant β will be chosen below. For the moment, let us say
that β ≥ 100d+1. Let N0 be the least integer such that R ⊂ 100N0Q.
For each j ≥ 0, we denote Rj = 100−jR. We have δ(RN0 , R) ≥ A/2 −



424 X. Tolsa

100C0 > A/4. We will show that some cube Rj , with j = 0, . . .N0, is
doubling with respect to µ and σ.

Suppose that all the cubes Rj , j = 0, . . . N0, are either non (100, β)-
µ-doubling, or non (100, βr)-σ-doubling (for simplicity, we will show the
existence of a cube P which is (100, βr)-σ-doubling, instead of (100, β)-σ-
doubling). For each j = 0, . . . , N0, let aj be the number of non (100, β)-
µ-doubling cubes of the form 100−kR, k = 0, . . . , j and let bj the number
of non (100, βr)-σ-doubling cubes of the form 100−kR, k = 0, . . . , j.
From our assumption we deduce

(8.2) aj + bj ≥ j + 1.

We have µ(Rj) ≤ β−ajµ(R). Thus,

(8.3)
µ(Rj)

ℓ(Rj)n
≤

β−ajµ(R)

100−jnℓ(R)n
≤ C0

100jn

βaj
.

Let Rs0 be the largest non (100, βr)-σ-doubling cube of the
form 100−kR, k = 0, . . . , N0. Then, for j ≥ s0 we have

σ(Rj) ≤ β−rbjσ(100Rs0) ≤
1

2
β−rbjσ(100Rs0 \Rs0),

if β is big enough.
Let h ∈ Z be such that Q ∈ ADh. We denote S =

∑3
i=−3 Sh+i.

From the properties of the kernels sk(x, y), it is easily seen that, for
x ∈ 100Rs0 \ Rs0 and j = s0, s0 + 1, . . . , N0, we have S(χRj

)(x) ≥

C−1µ(Rj)/ℓ(R)n. Then, using the boundedness of S on Lr(w), we obtain

C σ(Rj) ≥

∫

100Rs0\Rs0

|S(χRj
)|r σ dµ ≥ C−1σ(100Rs0 \Rs0)

µ(Rj)
r

ℓ(R)nr

≥ C−1 βbjr

100jnr
σ(Rj)

µ(Rj)
r

ℓ(Rj)nr
,

if j ≥ s0. Thus,

(8.4)
µ(Rj)

ℓ(Rj)n
≤ C

100jn

βbj
if j ≥ s0.

By (8.2), max(aj , bj) ≥ (j + 1)/2. Then, from (8.3) and (8.4), we get

µ(Rj)

ℓ(Rj)n
≤ C

100jn

β(j+1)/2
.

Therefore,

δ(RN0 , R) ≤

∞∑

j=0

C

(
100n

β1/2

)j+1

≤
C

β1/2
,
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if β1/2 > 2 · 100n. Thus δ(RN0 , R) ≤ A/4 if β is big enough, which is a
contradiction.

Let us remark that if in the lemma above we also assume that the
operators Sk are bounded uniformly on k on Ls(w) for some s with 1 <
s < ∞, then it is possible to show the existence of cubes which are
µ-doubling, σ-doubling and w-doubling simultaneously, by an easy mod-
ification of the proof.

Notice also that if
∫
|Sk(σχQ)|pw dµ ≤ C σ(Q) for k ∈ Z and all

the cubes Q ⊂ Rd, then N is of weak type (p′, p′) with respect to σ
and bounded on Lr(σ) for p′ < r ≤ ∞. Thus the assumptions of the
preceding lemma are satisfied.

Lemma 8.3. Suppose that the operators Sk are bounded on Lr(σ) uni-
formly on k for some r with 1 < r < ∞ and that the constant A is big
enough. Then there exists some constant η with 0 < η < 1 such that, for
all x ∈ Rd and k ∈ Z, σ(Qx,k) ≤ ησ(Qx,k−1).

Proof: We denote S =
∑2

i=−2 Sh+i. Then, we have S(χQx,k−1\Qx,k
)(y) ≥

C18 > 0, for all y ∈ Qx,k. Therefore,

σ(Qx,k) ≤ C−r
18

∫
|S(χQx,k−1\Qx,k

)|r σ dµ ≤ C19 σ(Qx,k−1 \Qx,k).

Thus, σ(Qx,k−1) ≥ (1 + C−1
19 )σ(Qx,k).

We will use the following version of Wiener’s Covering Lemma.

Lemma 8.4. Let A ⊂ Rd be a bounded set and {Qi}i∈I some family of
cubes such that A ⊂

⋃
i∈I Qi, with Qi∩A 6= ∅ for each i ∈ I. Then there

exists some finite or countable subfamily {Qj}j∈J , J ⊂ I, such that

(1) A ⊂
⋃

j∈J 20Qj.

(2) 2Qj ∩ 2Qk = ∅ if j, k ∈ J .
(3) If j ∈ J , k 6∈ J , and 2Qj ∩ 2Qk 6= ∅, then ℓ(Qk) ≤ 10ℓ(Qj).

The main novelty with respect to the usual Wiener’s Lemma is the
assertion (3). Although the lemma follows by standard arguments, for
the sake of completeness we will show the detailed proof.

Proof: We will construct inductively the set J = {j1, j2, . . . }. Let ℓ1 =
supi∈I ℓ(Qi). If ℓ1 = ∞, the lemma is straightforward. Otherwise, we
take Qj1 such that ℓ(Qj1) > d1/2. Assume that Qj1 , . . . , Qjm−1 have
been chosen. We set

ℓm = sup
{
ℓ(Qi) : 4Qi 6⊂

⋃m−1
s=1 20Qjs

}
,

and we choose Qjm
such that ℓ(Qm) > ℓm/2 and 4Qjm

6⊂
⋃m−1

s=1 20Qjs
.
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By construction, A ⊂
⋃∞

m=1 20Qjm
, and also ℓ(Qjm

) ≥ ℓ(Qjs
)/2

for s > m. We have 2Qjm
∩ 2Qjs

= ∅ for each s = 1, . . . ,m − 1,
because otherwise 2Qjm

⊂ 10Qjs
, and then 4Qjm

⊂ 20Qjs
.

Finally we show that the third property holds. Suppose that k 6∈ J
and 2Qjm

∩2Qk 6= ∅. If ℓ(Qk) > 10ℓ(Qjm
), it is easily seen that 4Qjm

⊂

4Qk. Because of the definition of Qjm
, we must have 4Qk ⊂

⋃m−1
s=1 20Qjs

(otherwise ℓm ≥ ℓ(Qk) > 10ℓ(Qjm
), which is not possible). However the

last inclusions imply 4Qjm
⊂
⋃m−1

s=1 20Qjs
, which is a contradiction.

9. Boundedness of N over functions of type σχQ

on Lp(w)

The main result of this section is the following lemma.

Lemma 9.1. If ∫
|Sk(σ χQ)|pw dµ ≤ C σ(Q)

for all cubes Q ⊂ Rd uniformly on k ∈ Z, then
∫

|N(σ χQ)|pw dµ ≤ C σ(11
10Q)

for all cubes Q ⊂ Rd.

In a sense, Lemma 9.1 acts as a substitute of the usual reverse Hölder
inequality for the classical Ap weights. Its proof will follow by a self
improvement argument in the same spirit as the proof of the reverse
Hölder inequality for the Ap weights.

Given h ∈ Z and f ∈ L1
loc(µ), we denote

Nhf(x) = sup
k≥h

Sk|f |(x).

The next technical result concentrates the main steps of the proof of
Lemma 9.1.

Lemma 9.2. Let S = supQ σ(11
10Q)−1

∫
|N(σχQ)|p w dµ, where the

supremum is taken over all cubes Q ⊂ Rd. Assume that
∫

|Sk(σ χQ)|pw dµ ≤ C σ(Q)

for all cubes Q ⊂ Rd uniformly on k ∈ Z. Then, for all ε > 0, there exists
some constant Cε such that for any µ-σ-(2, β)-doubling cube Q ∈ ADh,

(9.1)

∫

Q

|Nh(σ χQ)|pw dµ ≤ (Cε + ε S)σ(Q).
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Proof: The construction. Let Q0 be some fixed µ-σ-(2, β)-doubling cube,
with Q0 ∈ ADh. We also denote λ0 := mQ0σ. We will show that
(9.1) holds for Q0. To this end, by an inductive argument, for each k ≥ 1
we will construct a sequence of µ-σ-doubling cubes {Qk

i }i.
First we will show how the cubes {Q1

i } are obtained. Let

(9.2) Ω0 = {Nh+20σ(x) > Kλ0},

where K is some big positive constant which will be fixed below. By
Lemma 3.10, this set is open. We consider some Whitney decomposition
Ω0 =

⋃
iR

1
i , where R1

i are dyadic cubes with disjoint interiors.
Let us check that Q0 \ Ω0 6= ∅. If Q0 ⊂ Ω0, then for all x ∈ Q0 ∩

supp(µ) there exists some cube Qx centered at x, with Qx ∈ AD+∞,h+19

with mQx
σ > C K λ0 (where C > 0 is some fixed constant). Since Qx ∈

AD+∞,h+19, we have ℓ(Qx) ≤ ℓ(Q0)/10. By Besicovitch’s Covering
Theorem, there exists some covering Q0 ⊂

⋃
iQxi

with finite overlap.
Using that Q0 is σ-doubling, we obtain
∫

Q0

σ dµ ≥ C−1

∫

2Q0

σ dµ ≥ C−1
∑

i

∫

Qxi

σ dµ

≥ C−1K λ0

∑

i

µ(Qxi
) ≥ C−1K λ0 µ(Q0).

Therefore, mQ0σ ≥ C−1K λ0, which is a contradiction if K is big
enough.

Since Q0 \ Ω0 6= ∅, by the properties of the Whitney covering, we
have ℓ(R1

j ) ≤ C20ℓ(Q0) for any Whitney cube R1
j such that R1

j ∩Q0 6= ∅.
Moreover, subdividing the Whitney cubes if necessary, we may assume
that C20 ≤ 1/10.

Let g1
j ∈ Z be such thatR1

j ∈ ADg1
j
. Observe that ifR1

j∩Q0 6= ∅, then

R1
j ⊂ 3

2Q0, and so g1
j ≥ h− 2. For x ∈ R1

j ∩ supp(µ), we consider some

µ-σ-(100, β)-doubling cube Q1
x ∈ ADg1

j
+16, with β given by Lemma 8.2.

Now we take a Besicovitch’s covering of Q0∩Ω0 with this type of cubes:
Q0 ∩ Ω0 ⊂

⋃
i∈I1

Q1
i , and we define A1 :=

⋃
i∈I1

Q1
i . Notice that, for

each i, 10Q1
i ⊂ 3

2Q0, because all the Whitney cubes intersecting Q0

have side length ≤ ℓ(Q0)/10. In particular, we have A1 ⊂ 3
2Q0. For

each i ∈ I1, let h1
i ∈ Z be such that Q1

i ∈ ADh1
i
. If Q1

i is centered

at some point in R1
j , then h1

i = g1
j + 16 ≥ h + 14. This finishes the

step k = 1 of the construction.

Suppose now that the cubes {Qk
i }i∈Ik

(which are µ-σ-(100, β)-dou-
bling, with 10Qi

k ⊂ 3
2Q0, and have finite overlap) have already been
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constructed. Let us see how the cubes {Qk+1
i }i∈Ik+1

are obtained. For

each fixed cube Qk
i we repeat the arguments applied to Q0. We denote

λk
i = mQk

i
σ and let hk

i ∈ Z be such that Qk
i ∈ ADhk

i
. We consider the

open set Ωk
i = {Nhk

i +20σ(x) > Kλk
i }, and a decomposition of it into

Whitney dyadic cubes with disjoint interiors: Ωk
i =

⋃
j R

k+1
j . Arguing

as in the case of Q0, we deduce Qk
i \ Ωk

i 6= ∅, and if Rk
j ∩Qk

i 6= ∅, then

ℓ(Rk
j ) ≤ ℓ(Qk

i )/10. Given gk+1
j ∈ Z such that Rk+1

j ∈ ADgk+1
j

, for x ∈

Rk+1
j , we consider some µ-σ-(100, β)-doubling cube Qk+1

i,x ∈ ADgk+1
j +16.

It may happen that the union
⋃

i∈Ik
(Ωk

i ∩Q
k
i ) is not pairwise disjoint,

and so for a fixed x ∈
⋃

i∈Ik
(Ωk

i ∩ Qk
i ) there are several indices i such

that Qk+1
i,x is defined. In any case, for each x ∈

⋃
i(Ω

k
i ∩Qk

i ) we choose

Qk+1
x := Qk+1

i,x with i so that x ∈ Ωk
i ∩Qk

i (no matter which i). Now we

take a Besicovitch covering of
⋃

i(Ω
k
i ∩Q

k
i ) with cubes of the type Qk+1

x .

So we have
⋃

i∈Ik
(Ωk

i ∩ Qk
i ) ⊂

⋃
j∈Ik+1

Qk+1
j , and the cubes Qk+1

j have

bounded overlap. Moreover, for each j ∈ Ik+1 there exists some i such

that 10Qk+1
j ⊂ 3

2Q
k
i ⊂ 3

2Q0. We define Ak+1 :=
⋃

j∈Ik+1
Qk+1

j , and we

denote by hk+1
j the integer such that Qk+1

j ∈ ADhk+1
j

.

The first step to estimate
∫

Q0
|Nhσ|p w dµ. We want to show that

given any ε > 0, if K is big enough, then

(9.3)

∫

Q0

|Nh(σχQ0 )|
p w dµ ≤ (Cε + ε S)

∞∑

k=0

σ(Ak).

We will prove this estimate inductively. First we deal with the case k = 0.
We have

∫

Q0

|Nh(σχQ0 |
pw dµ ≤

∫

Q0

h+19∑

k=h

|Sk(σχQ0 )|
pw dµ

+

∫

Q0

|Nh+20σ|p w dµ

≤ C σ(Q0) +

∫

Q0

|Nh+20σ|p w dµ.

(9.4)

Given some small constant ε > 0, let B0 = {x ∈ Q0 : Sh+3σ(x) ≤
ελ0}. Let us see that σ(B0) is small. By Lemma 3.12, for all x ∈ B0

there exists some µ-doubling cube Px ∈ AD+∞,h+2 centered at x such
that m2Px

σ ≤ Cελ0. We consider a Besicovitch’s covering of B0 with



Weights for Calderón-Zygmund Operators 429

this type of cubes. That is, B0 ⊂
⋃

i Pxi
, with

∑
i χPxi

≤ C. We have
∑

i

σ(2Pxi
) ≤ Cελ0

∑

i

µ(2Pxi
) ≤ Cελ0

∑

i

µ(Pxi
)

≤ Cελ0 µ(2Q0) ≤ Cελ0 µ(Q0) = Cεσ(Q0).

In particular, we deduce σ(B0) ≤ Cεσ(Q0). Then we obtain
∫

B0

|Nh+20σ|p w dµ ≤
∑

i

∫

Pxi

|Nh+20σ|p w dµ

=
∑

i

∫

Pxi

|Nh+20(σχ 3
2 Pxi

)|p w dµ

≤ S
∑

i

σ(11
10

3
2Pxi

)

≤ S
∑

i

σ(2Pxi
) ≤ CεS σ(Q0).

(9.5)

Now we have to estimate
∫

Q0\B0
|Nh+20σ|p w dµ. Given x ∈ R1

j ⊂ Ω0,

let x′ ∈ ∂Ω0 be such that |x − x′| = dist(x,Rd \ Ω). From Lemma 8.1,
we derive the following maximum principle:

(9.6) Nh+25(σχRd\2R1
j
)(x) ≤ C21N

h+20σ(x′) ≤ C21Kλ0,

where C21 > 1 is some fixed constant depending on C0, n, d. Let us see
that if Nh+25σ(x) > 2C21Kλ0, then

(9.7) Nh+25σ(x)≤max
(
2 max

g1
j
−2≤t≤g1

j
+4
St(σχ2R1

j
)(x), Ng1

j +5(σχ2R1
j
)(x)
)
.

Indeed, we have

Nh+25σ(x) ≤ max
(

max
h+25≤t≤g1

j
+4
Stσ(x), Ng1

j +5σ(x)
)
,

(with equality if h + 25 ≤ g1
j + 5). If Nh+25σ(x) ≤ Ng1

j +5σ(x), then

(9.7) follows from the fact that Ng1
j +5σ(x) = Ng1

j +5(σχ2R1
j
)(x). If

Nh+25σ(x) = St0σ(x) for some t0 with h + 25 ≤ t0 ≤ g1
j + 4, then

St0σ(x) > 2C21Kλ0, and so

St0(σχ2R1
j
)(x) ≥ St0σ(x) −Nh+25(σχRd\2R1

j
)(x) ≥

1

2
St0σ(x),

by (9.6). Thus,

Nh+25σ(x) ≤ 2St0(σχ2R1
j
)(x) ≤ 2 max

h+25≤t≤g1
j
+4
St(σχ2R1

j
)(x).
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Moreover, it is easily checked that, for t ≤ g1
j − 2 (and x ∈ R1

j ), we have

St(σχ2R1
j
)(x) ≤ Sg1

j
−2(σχ2R1

j
)(x). Therefore, (9.7) holds in any case.

We denote D0 := {x ∈ Q0 : Nh+25σ(x) > 2C21Kλ0}. Notice that
D0 ⊂ Ω0 ∩Q0 ⊂ A1. We have

∫

Q0\B0

|Nh+20σ|p w dµ ≤

h+24∑

t=h+20

∫

Q0\B0

|Stσ|
p w dµ

+

∫

Q0\B0

|Nh+25σ|pw dµ

≤ C σ(Q0) +

∫

Q0\B0

|Nh+25σ|p w dµ,

where we have used that Stσ(x) = St(σχ2Q0 )(x) if t = 20, . . . , 24 and
x ∈ Q0. Now we write

∫

Q0\B0

|Nh+25σ|p w dµ =

∫

Q0\(B0∪D0)

+

∫

D0\B0

=: I + II.

First we will estimate I. For x ∈ Q0 \ (B0 ∪D0), we have

Nh+25σ(x) ≤ CKλ0 ≤ CKε−1 Sh+3σ(x).

Therefore,

I =

∫

Q0\(B0∪D0)

|Nh+25σ|p w dµ ≤ CKpε−p

∫

Q0

|Sh+3σ|
p w dµ

≤ CKpε−pσ(2Q0) ≤ CKpε−pσ(Q0),

where we have used that Sh+3σ(x) = Sh+3(σχ2Q0)(x).
It remains to estimate II. Given x ∈ R1

j ∩ (D0 \B0), by (9.7) we get

∫

R1
j
∩(D0\B0)

|Nh+25σ|p w dµ ≤ C

g1
j +39∑

t=g1
j
−2

∫
|St(σχ2R1

j
)|pw dµ

+

∫

R1
j
∩(D0\B0)

|Ng1
j +40σ|p w dµ

≤ C σ(2R1
j )+

∫

R1
j
∩(D0\B0)

|Ng1
j +40σ|pw dµ.

Given k ≥ 1, for x ∈ Ak, we denote Hk
x := max{hk

i : i ∈ Ik, x ∈ Qk
i }.

It is easily seen that if x ∈ R1
j ∩ A1, then H1

x + 20 ≤ g1
j + 40. Then,
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summing over all the cubes R1
j ⊂ Ω0 such that R1

j ∩Q0 6= ∅, due to the

finite overlap of the cubes 2R1
j , we obtain

(9.8)

∫

D0\B0

|Nh+25σ|p w dµ≤C σ(2Q0)+

∫

A1

|NH1
x+20σ(x)|p w(x) dµ(x).

So we have shown that

(9.9)

∫

Q0

|Nh(σχQ0)|
p w dµ≤(C22+C23εS)σ(Q0)+

∫

A1

|NH1
x+20σ|pw dµ,

with C22, but not C23, depending on K and ε.

The k-th step to estimate
∫

Q0
|Nhσ|p w dµ. Now we will show that

for any k ≥ 1,

(9.10)

∫

Ak

|NHk
x+20σ|p w dµ ≤ (C′

22 + C′
23εS)σ(Ak)

+

∫

Ak+1

|NHk+1
x +20σ|p w dµ,

with C′
22, but not C′

23, depending on K and ε. The arguments to prove
(9.10) are similar to the ones we have used to obtain (9.9), although a
little more involved because the cubes {Qk

i }i∈Ik
are non pairwise disjoint.

For each i ∈ Ik we define Bk
i = {x ∈ Qk

i : Shk
i
+3σ(x) ≤ ελk

i }. Arguing

as in (9.5), we deduce
∫

Bk
i

|Nhk
i +20σ|pw dµ ≤ CεS σ(Qk

i ).

We denote Bk =
⋃

i∈Ik
Bk

i . Using the definition of Hk
x , we obtain

∫

Bk

|NHk
x+20σ(x)|p w(x) dµ(x)≤

∑

i

∫

Bk
i

|NHk
x+20σ(x)|p w(x) dµ(x)

≤

∫

Bk
i

|Nhk
i +20σ|p w dµ

≤ CεS
∑

i

σ(Qk
i ) ≤ CεSσ(Ak).

(9.11)

To estimate
∫

Ak\Bk
|NHk

x+20σ|p w dµ, we need to introduce some ad-

ditional notation. Assume Ik = {1, 2, 3, . . .}. We denote Ik,t := {i ∈ Ik :
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Qk
i ∈ ADt}. We set

Q̂k
i := Qk

i \




⋃

l∈Ik,t, t>hk
i

Qk
l ∪

⋃

l∈I
k,hk

i
, l<i

Qk
l


 .

It is easily checked that the sets Q̂k
i , i ∈ Ik, are pairwise disjoint, that⋃

i∈Ik
Q̂k

i =
⋃

i∈Ik
Qk

i = Ak, and moreover that if x ∈ Q̂k
i , then Hk

x = hk
i .

We have ∫

Ak\Bk

|NHk
x+20σ|p w dµ

=
∑

i∈Ik

∫

bQk
i
\Bk

|Nhk
i +20σ|p w dµ

≤
∑

i∈Ik

hk
i +24∑

t=hk
i
+20

∫

bQk
i
\Bk

|Stσ|
p w dµ

+
∑

i∈Ik

∫

bQk
i
\Bk

|Nhk
i +25σ|pw dµ

≤ C
∑

i∈Ik

σ(2Qk
i ) +

∫

Ak\Bk

|NHk
x+25σ|p w dµ

≤ Cσ(Ak) +

∫

Ak\Bk

|NHk
x+25σ|pw dµ.

(9.12)

Now we set Dk
i = {x ∈ Qk

i : Nhk
i +25σ > 2C21Kλ

k
i }, and Dk =⋃

i∈Ik
Dk

i . For x ∈ Qk
i \ (Dk

i ∪Bk), we have

NHk
x+25σ(x) ≤ Nhk

i +25σ(x) ≤ CKε−1 Shk
i
+3σ(x).

Therefore, operating as in the case k = 0, we get
∫

Qk
i
\Dk

i
∪Bk

|NHk
x+25σ(x)|p w(x) dµ(x) ≤ CKpε−pσ(Qk

i ).

Summing over i ∈ Ik, we obtain

(9.13)

∫

Ak\(Bk∪Dk)

|NHk
x+25σ(x)|p w(x) dµ(x) ≤ CKpε−pσ(Ak).

Finally we deal with
∫

Dk\Bk
|NHk

x+25σ(x)|p w(x) dµ(x). For a fixed k,

let {Rk+1
j }j∈Jk+1

be the collection of all the Whitney cubes (originated
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from all the sets Ωk
i , i ∈ Ik) such that if Rk+1

j comes from Ωk
i , then

Rk+1
j ∩Qk

i 6= ∅. Assume Jk+1 = {1, 2, 3, . . .}. We denote Jk+1,t := {j ∈

Jk+1 : Rk+1
j ∈ ADt}. We set

R̂k+1
j := 3

2R
k+1
j \




⋃

l∈Jk+1,t, t>gk+1
j

3
2R

k+1
l ∪

⋃

l∈J
k+1,g

k+1
j

, l<j

3
2R

k+1
l


 .

The sets R̂k+1
j , j ∈ Jk+1, are pairwise disjoint and

⋃

j∈Jk+1

R̂k+1
j =

⋃

j∈Jk+1

3

2
Rk+1

j ⊃ Ak+1.

Moreover, it easily seen that if x ∈ R̂k+1
j , then gk+1

j + 40 ≥ Hk+1
x + 20,

and so Ngk+1
j

+40σ(x) ≤ NHk+1
x +20σ(x). If R̂k+1

j is originated by Ωk
i ,

arguing as in the case k = 0, we deduce

NHk
x+25σ(x) ≤ Nhk

i +25σ(x)

≤ max
(
2 max

gk+1
j

−2≤t≤gk+1
j

+39
St(σχ2Rk+1

j
)(x), Ngk+1

j
+40(σχ2Rk+1

j
)(x)

)
.

Therefore,

∫

Dk\Bk

|NHk
x+25σ(x)|p w(x) dµ(x)

=
∑

j∈Jk+1

∫

bRk+1
j

∩(Dk\Bk)

≤
∑

j∈Jk+1

gk+1
j

+39∑

t=gk+1
j

−2

∫
|St(σχ2Rk+1

j
)|pw dµ

+
∑

j∈Jk+1

∫

bRk+1
j ∩(Dk\Bk)

|NHk+1
x +20σ(x)|p w(x) dµ(x)

≤ C
∑

j∈Jk+1

σ(2Rk+1
j )+

∫

Ak+1

|NHk+1
x +20σ(x)|p w(x) dµ(x).

(9.14)
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In the following estimates the notation Rk+1
j ∼ Qk

i means that Rk+1
j is

a Whitney cube of Ωk
i :

∑

j∈Jk+1

σ(2Rk+1
j )=

∑

i∈Ik

∑

j∈Jk+1:Rk+1
j

∼Qk
i

σ(2Rk+1
j )

≤C
∑

i∈Ik

σ(Ωk
i ∩ 2Qk

i )≤C
∑

i∈Ik

σ(Qk
i )≤C σ(Ak).

(9.15)

By (9.11), (9.12), (9.13), (9.14) and (9.15), (9.10) follows.
From (9.9) and (9.10), we get

∫

Q0

N(σχQ0)|
pw dµ ≤ (C + CεS)

∞∑

k=0

σ(Ak)

+ lim sup
k→∞

∫

Ak

|NHk
x+20σ(x)|p w(x) dµ(x).

(9.16)

This is the same as (9.3), except for the last term on right hand side.
However, we will see below that this term equals 0.

The estimate of
∑

k σ(Ak). We are going to prove that

(9.17)

∞∑

k=0

σ(Ak) ≤ C σ(Q0).

We denote Ãk =
⋃

i∈Ik
2Qk

i . It is easily seen that Ãk+1 ⊂ Ãk for all k

(this is the main advantage of Ãk over Ak). We will show that there
exists some positive constant τ0 < 1 such that

(9.18) σ(Ãk+2) ≤ τ0 σ(Ãk)

for all k. This implies (9.17), because Ã0, Ã1 ⊂ 2Q0 and Q0 is σ-dou-
bling.

For a fixed k ≥ 1, by the covering Lemma 8.4, there exists some
subfamily {2Qk

j }j∈I0
k
⊂ {2Qk

i }i∈Ik
such that

(1) Ãk ⊂
⋃

j∈I0
k

40Qk
j .

(2) 4Qk
j ∩ 4Qk

l = ∅ if j, l ∈ I0
k .

(3) If j ∈ I0
k , l 6∈ I0

k , and 4Qk
j ∩ 4Qk

l 6= ∅, then ℓ(Qk
l ) ≤ 10ℓ(Qk

j ).
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First, we will see that

(9.19) σ(2Qk
j ∩ Ãk+2) ≤ τ1 σ(2Qk

j ) if j ∈ I0
k ,

for some fixed constant 0 < τ1 < 1. By Lemma 5.3 it is enough to show
that, for each x ∈ 3

2Q
k
j ∩ supp(µ), there exists some cube P ∈ ADhk

j
+4

centered at x such that µ(Ãk+2∩P ) ≤ δ0 µ(P ), with δ0 sufficiently small.

Let 2Qk+1
s some cube which forms Ãk+1 such that 2Qk+1

s ∩ 2Qk
j 6= ∅.

By our construction, there exists some cube Qk
t such that 10Qk+1

s ⊂
3
2Q

k
t , so that Qk+1

s comes from Ωk
t . Because of the property (3) of the

covering, we have ℓ(Qk
t ) ≤ 10ℓ(Qk

j ). Therefore, 2Qk
t ∈ AD+∞,hk

j
−3,

which implies Qk+1
s ∈ AD+∞,hk

j
+7 and 2Qk+1

s ∈ AD+∞,hk
j
+6.

Let P ∈ ADhk
j
+4 be some µ-doubling cube whose center is in 3

2Q
k
j

(which implies P ⊂ 2Qk
j ). Let SP be the set of indices s such that

2Qk+1
s ∩ P 6= ∅. We have ℓ(Qk+1

s ) ≪ ℓ(P ) for s ∈ SP , because 2Qk+1
s ∈

AD+∞,hk
j
+6 (since 2Qk+1

s ∩ 2Qk
j 6= ∅). Thus, 2Qk+1

s ⊂ 2P . From our

construction, we deduce

µ(Ãk+2 ∩ P ) ≤ µ

(
⋃

s∈SP

(Ωk+1
s ∩ 2Qk+1

s )

)
≤
∑

s∈SP

µ(Ωk+1
s ∩ 2Qk+1

s ).

Since Nhk+1
s +20σ(x) = Nhk+1

s +20(σχ3Qk+1
s

)(x) for x ∈ Qk+1
s , by the weak

(1, 1) boundedness ofNhk+1
s +20, and by the σ-doubling property ofQk+1

s ,
we obtain

µ(Ωk+1
s ∩ 2Qk+1

s ) ≤
C σ(3Qk+1

s )

K λk+1
s

≤
C

K
µ(Qk+1

s ).

Thus, by the finite overlap of the cubes Qk+1
s and the fact that P is

µ-doubling,

µ(Ãk+2 ∩ P ) ≤
C

K

∑

s∈SP

µ(Qk+1
s ) ≤

C

K
µ(2P ) ≤

C

K
µ(P ) =: δ0µ(P ).

Since we may choose K as big as we want, δ0 can be taken arbitrarily
small, and (9.19) holds.



436 X. Tolsa

Let us see that (9.18) follows from (9.19). We denote Ãk,0 =
⋃

j∈I0
k
2Qk

j .

Since the cubes 2Qk
j , j ∈ I0

k , are disjoint, (9.19) implies σ(Ãk,0∩Ãk+2) ≤

τ1 σ(Ãk,0). By the property (1) of the covering and the fact that Qk
j is

(100, β)-σ-doubling, we have

σ(Ãk,0) =
∑

j∈I0
k

σ(2Qk
j ) ≥ C−1

24

∑

j∈I0
k

σ(40Qk
j ) ≥ C−1

24 σ(Ãk).

Then,

σ(Ãk \ Ãk+2) ≥ σ(Ãk,0 \ Ãk+2) ≥ (1 − τ1)σ(Ãk,0) ≥ (1 − τ1)C
−1
24 σ(Ãk).

Therefore,

σ(Ãk ∩ Ãk+2) ≤ (1 − (1 − τ1)C
−1
24 )σ(Ãk) =: τ0σ(Ãk).

The end of the proof. We only need to prove the lemma for S < +∞.
For each k ≥ 1 we have
∫

Ak

|NHk
x+20σ(x)|p w(x) dµ(x) ≤

∑

i∈Ik

∫

Qk
i

|Nhk
i +20σ(x)|p w(x) dµ(x)

≤ CS
∑

i

σ(Qk
i ) ≤ CS σ(Ak).

From (9.17) we deduce that σ(Ak) → 0 as k → ∞, and then the integral
on the left hand side above tends to 0 as k → ∞. Now the lemma follows
from (9.16) and (9.17).

Proof of Lemma 9.1: Let Q be some cube with Q ∈ ADh and x0 ∈
Q ∩ supp(µ). We write
∫

|N(σχQ)|p w dµ =

∫

21
20 Q

+

∫

Qx0,h−4\
21
20Q

+

∫

Rd\Qx0,h−4

=: I+ II+ III.

First we will estimate the integral I. For each x ∈ 21
20Q ∩ supp(µ), let

Px be some µ-σ-(4, β)-doubling cube with Px ∈ ADh+10. Notice that
for each y ∈ Px and k ≥ h+ 15, we have supp(sk(y, ·)) ⊂ 2Px. Thus by
Lemma 9.2, if we denote CS := Cε + εS, we get

∫

Px

|Nh+15σ|p w dµ =

∫

Px

|Nh+15(σχ2Px
)|p w dµ

≤ CSσ(2Px) ≤ C CS σ(Px).

By Besicovitch’s Covering Theorem, there exists some subfamily of cubes
{Pxi

}i ⊂ {Px}x which covers 21
20Q ∩ supp(µ) with finite overlap. Since
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ℓ(Pxi
) ≪ ℓ(Q), we have Pxi

⊂ 11
10Q. Then we obtain

∫

21
20Q

|Nh+15σ|p w dµ ≤
∑

i

∫

Pxi

|Nh+15σ|p w dµ

≤ C CS

∑

i

σ(Pxi
) ≤ C CS σ(11

10Q).

It is easily seen that, for all y ∈ 21
20Q, N(σχQ)(y) ≤ C Nh−2(σχQ)(y).

Therefore,

I ≤ C

∫

21
20Q

|Nh−2(σχQ)|p w dµ

≤ C

∫

21
20Q

∣∣∣∣∣

h+14∑

k=h−2

Sk(χQσ)

∣∣∣∣∣

p

w dµ+

∫

21
20Q

|Nh+15σ|p w dµ

≤ C(1 + CS)σ(11
10Q).

Now we turn our attention to the integral II. For y ∈ Qx0,h−4 \
21
20Q,

N(σχQ)(y) ≤
C σ(Q)

|y − x0|n
≤ C

h+3∑

k=h−6

Sk(σχQ)(y).

Thus,

II ≤

∫ ∣∣∣∣∣

h+3∑

k=h−6

Sk(σχQ)

∣∣∣∣∣

p

w dµ ≤ C σ(Q).

Finally we deal with III. For k ≤ h− 4 and y ∈ Qx0,k−1 \Qx0,k, we
have

N(σχQ)(y) ≤ C
σ(Q)

|y − x0|n
≤ C

σ(Q)

σ(Qx0,k+1)

k+2∑

j=k−3

Sj(σχQx0,k+1
)(y).

Thus,

∫

Qx0,k\Qx0,k−1

|N(σχQ)|p w dµ≤
Cσ(Q)p

σ(Qx0,k+1)p

∫ ∣∣∣∣∣∣

k+2∑

j=k−3

Sj(σχQx0,k+1
)

∣∣∣∣∣∣

p

w dµ

≤
Cσ(Q)p

σ(Qx0,k+1)p−1
.
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From Lemma 8.3, we deduce σ(Q) ≤ σ(Qx0,h−1) ≤ ηh−k−2σ(Qx0,k+1)
for some fixed constant η with 0 < η < 1. Therefore,

III =

h−4∑

k=−∞

∫

Qx0,k−1\Qx0,k

|N(σχQ)|p w dµ

≤ C σ(Q)

h−4∑

k=−∞

η(p−1)(h−k−2) ≤ C σ(Q).

So we have
∫

|N(σχQ)|p w dµ ≤ C(1 + CS)σ(11
10Q) = C25(1 + Cε + εS)σ(11

10Q).

Choosing ε ≤ 1/(2C25) and taking the supremum over all the cubes Q,
we get S ≤ C25(1 + Cε) + 1

2S. Thus S ≤ 2C25(1 + Cε) if S < +∞.
One way to avoid the assumption S < +∞ would be to work with

“truncated” operators of type Nh,lf := suph≤k≤l Sk|f | in Lemma 9.2,

instead of Nh; and also to consider a truncated version of S in (9.1), etc.
The technical details are left for the reader.

10. Boundedness of N on Lp(w)

The implication (e) ⇒ (c) of Lemma 4.2 follows from Lemma 9.1 and
the following result.

Lemma 10.1. If for any k ∈ Z and any cube Q,

(10.1)

∫
N(σ χQ)pw dµ ≤ C σ(11

10Q)

and

(10.2)

∫
Sk(wχQ)p′

σ dµ ≤ C w(Q),

with C independent of k and Q, then N is bounded on Lp(w).

The proof of this lemma is inspired by the techniques used by
Sawyer [Saw2] to obtain two weight norm inequalities for fractional
integrals. In our case, we have to overcome new difficulties which are
mainly due to the fact that the operator N is not linear and it is very
far from behaving as a self adjoint operator, because it is a centered
maximal operator.
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Proof: We will show that for some β ≥ 0 the operator T := N + βMR

is bounded on Lp(w). Without loss of generality, we take f ∈ L1(µ) non
negative with compact support. Given some constant α > 1 close to 1,
for each k ∈ Z, we denote

Ωk = {x : Tf(x) > αk}.

The precise value of α and β will be fixed below. As in Lemma 7.1, we
consider the Whitney decomposition Ωk =

⋃
i Q

k
i , where Qk

i are dyadic
cubes with disjoint interiors (the Whitney cubes).

Take some cube Qk
i ⊂ Ωk and x ∈ Qk

i ∩Ωk+2. Suppose that m and β
are chosen in Lemma 7.1 so that the maximum principle (7.1) holds
with ε = α− 1. Then, we have

(10.3) T (f χ
Rd\Um(Qk

i
))(x) ≤ (1 + ε)αk = αk+1,

and so

(10.4) T (f χUm(Qk
i
))(x) ≥ αk+2 − αk+1 =

α− 1

α
αk+2.

Let h ∈ Z be such that Qk
i ∈ ADh. If for all j with h−M ≤ j ≤ h+M

(where M is some positive big integer which will be chosen later) we
have

Sj(fχUm(Qk
i
))(x) ≤ δ αk,

where δ > 0 is another constant which we will choose below, then we
write x ∈ Bk (i.e. x is a “bad point”). Notice that Bk ⊂ Ωk+2 ⊂ Ωk.

We will see that the set of bad points is quite small. Indeed, we will
prove that

(10.5) w



⋃

j≥k

Bj


 ≤ η w(Ωk),

where 0 < η < 1 is some constant which depends on τ (from the
Z∞ property), n, d, but not on β, m, α, M . We defer the proof of (10.5),
which is one of the key points of our argument, until Lemma 10.2 below.

Let us denote Ak =
⋃

j≥k Bj . Now we have
∫
|Tf |pw dµ=

∫ ∞

0

p λp−1 w(Ωλ) dλ

≤
∑

k∈Z

p (αk+1 − αk)α(k+1)(p−1) w(Ωk)

=pαp−1(α−1)
∑

k∈Z

αkp
[
w(Ωk\Ak−2)+w(Ωk∩Ak−2)

]
.

(10.6)
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From (10.5) we get

(10.7) pαp−1(α− 1)
∑

k∈Z

αkpw(Ωk ∩Ak−2)

≤ η p αp−1(α− 1)
∑

k∈Z

αkp w(Ωk−2).

From calculations similar to the ones in (10.6), it follows

∫
|Tf |pw dµ ≥ p (α− 1)α−3p

∑

k∈Z

αkp w(Ωk−2).

If we take α such that η1/2α4p−1 = 1, then the right hand side of (10.7)
is bounded above by η1/2

∫
|Tf |pw dµ, and so

∫
|Tf |pw dµ ≤ (1 − η1/2)−1

∑

k∈Z

αkp w(Ωk \Ak−2).

Summing by parts we get

∫
|Tf |pw dµ ≤ C

∑

k∈Z

αkp w(Ωk+2 \Ak)

= C
∑

k∈Z

αkp
[
w(Ωk+2 \Ak) − w(Ωk+3 \Ak+1)

]
.

Observe that if we assume
∫
|Tf |pw dµ <∞, then

∑

k∈Z

αkp w(Ωk+2 \Ak) <∞ and
∑

k∈Z

αkpw(Ωk+3 \Ak+1) <∞,

which implies that our summation by parts is right. Since Ak+1 ⊂ Ak,
we have w(Ωk+3 \Ak+1) ≥ w(Ωk+3 \Ak). Thus,

(10.8)

∫
|Tf |pw dµ ≤ C

∑

k∈Z

αkp w((Ωk+2 \ Ωk+3) \Ak).

We denote Ek
i = Qk

i ∩ (Ωk+2 \ Ωk+3) \ Ak for all (k, i). To simplify
notation, we also set Uk

i = Um(Qk
i ). Given h ∈ Z such that Qk

i ∈ ADh,
we consider the operator

S(k,i) = Sh−M + Sh−M+1 + · · · + Sh+M .
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Since Ek
i ⊂ Rd \Ak, we obtain

w(Ek
i ) ≤ δ−1α−k

∫

Ek
i

S(k,i)(χUk
i
f)w dµ

= δ−1α−k

∫

Uk
i

f S∗
(k,i)(χEk

i
w) dµ

= δ−1α−k

(∫

Uk
i
\Ωk+3

+

∫

Uk
i
∩Ωk+3

)
= δ−1α−k(σk

i + τk
i ).

From (10.8) we get

∫
|Tf |pw dµ ≤ C

∑

k,i

αkp w(Ek
i )

= C



∑

(k,i)∈E

+
∑

(k,i)∈F

+
∑

(k,i)∈G


 · αkp w(Ek

i )

= C (I + II + III),

(10.9)

where

E =
{
(k, i) : w(Ek

i ) ≤ θ w(Qk
i )
}
,

F =
{
(k, i) : w(Ek

i ) > θ w(Qk
i ) and σk

i > τk
i

}
,

G =
{
(k, i) : w(Ek

i ) > θ w(Qk
i ) and σk

i ≤ τk
i

}
,

and where θ is some constant with 0 < θ < 1 which will be chosen below.
The term I is easy to estimate:

I =
∑

(k,i)∈E

αkp w(Ek
i ) ≤ θ

∑

k,i

αkp w(Qk
i )

≤ θ
∑

k

αkp w{Tf > αk} ≤ C θ

∫
|Tf |pw dµ.
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Let us consider the term II now. By Hölder’s inequality and (10.2),
we obtain

II=
∑

(k,i)∈F

αkp w(Ek
i ) ≤

∑

(k,i)∈F

w(Ek
i )

(
2σk

i

δw(Ek
i )

)p

≤Cθ−pδ−p
∑

k,i

w(Ek
i )

(
1

w(Qk
i )

∫

Uk
i
\Ωk+3

f S∗
(k,i)(wχEk

i
) dµ

)p

≤Cθ−pδ−p
∑

k,i

w(Ek
i )

w(Qk
i )p

(∫

Uk
i

S∗
(k,i)(wχEk

i
)p′

σ dµ

)p/p′(∫

Uk
i
\Ωk+3

fpw dµ

)

≤Cθ−pδ−p
∑

k,i

∫

Uk
i
\Ωk+3

fpw dµ.

It is easy to check that the family of sets {Uk
i }i has finite overlap for

each k, with some constant which depends on m. This fact implies

∑

k,i

χUk
i
\Ωk+3

≤ C
∑

k

χΩk\Ωk+3
≤ C.

Therefore, II ≤ C
∫
fpw dµ.

Finally we have to deal with the term III. Notice that Ek
i ⊂ Rd\Ωk+3

and, for y 6∈ Ωk+3, by Lemmas 8.1 and 3.7 we have

(10.10) sup
x∈2Qk+3

j

st(y, x) ≤ C inf
x∈2Qk+3

j

t+6∑

r=t−6

sr(y, x)

for all t ∈ Z. Let Hk
i = {j : Qk+3

j ∩Uk
i 6= ∅}. Then, for j ∈ Hk

i , we have

sup
x∈2Qk+3

j

S∗
(k,i)(wχEk

i
)(x) ≤ C inf

x∈2Qk+3
j

h+M+6∑

t=h−M−6

S∗
t (wχEk

i
)(x).
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We set S(k,i) =
∑h+M+6

t=h−M−6 St, and we obtain

τk
i =

∫

Uk
i
∩Ωk+3

f S(k,i)(wχEk
i
) dµ

≤ C
∑

j∈Hk
i

inf
x∈2Qk+3

j

S
∗

(k,i)(wχEk
i
)(x)

∫

Qk+3
j

f dµ

≤ C
∑

j∈Hk
i

(∫

2Qk+3
j

S
∗

(k,i)(wχEk
i
)σ dµ

)(
1

σ(2Qk+3
j )

∫

Qk+3
j

f dµ

)
.

We denote T k
i =

∫
Qk

i

f dµ/σ(2Qk
i ) and Lk

i = {s : Qk
s ∩ Uk

i 6= ∅}. Then

we have

τk
i ≤ C

∑

j∈Hk
i

(∫

2Qk+3
j

S
∗

(k,i)(wχEk
i
)σ dµ

)
T k+3

j

≤ C
∑

s∈Lk
i

∑

j:Qk+3
j

⊂Qk
s

(∫

2Qk+3
j

S
∗

(k,i)(wχEk
i
)σ dµ

)
T k+3

j .

(10.11)

We will show that

(10.12)
∑

(k,i)∈G
k≥N0

k=M0 mod 3

αkp w(Ek
i ) ≤ C

∫
fpw dµ,

for any N0 and M0. For the rest of the proof we follow the convention
that all indices (k, i) are restricted to k ≥ N0 and k = M0 mod 3.

Now we will introduce principal cubes as in [Saw2, p. 540] or [MW,
p. 804]. Let G0 be the set of indices (k, i) such that Qk

i is maximal.
Assuming Gn already defined, Gn+1 consists of those (k, i) for which
there is (t, u) ∈ Gn with Qk

i ⊂ Qt
u and

(a) T k
i > 2T t

u,

(b) T r
s ≤ 2T t

u if Qk
i ( Qr

s ⊂ Qt
u.

We denote Γ =
⋃∞

n=0Gn, and for each (k, i), we define P (Qk
i ) as the

smallest cube Qt
u containing Qk

i with (t, u) ∈ Γ. Then we have

(a) P (Qk
i ) = Qt

u implies T k
i ≤ 2T t

u.

(b) Qk
i ( Qt

u and (k, i), (t, u) ∈ Γ implies T k
i > 2T t

u.
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By (10.11) and the fact that #Lk
i ≤ C, we get

∑

(k,i)∈G

αkp w(Ek
i )

≤
∑

(k,i)∈G

w(Ek
i )

(
2τk

i

δw(Ek
i )

)p

≤ C
∑

k,i

w(Ek
i )

w(Qk
i )p

(τk
i )p

≤ C
∑

k,i

∑

s∈Lk
i

w(Ek
i )

w(Qk
i )p

[
∑

j:(k+3,j) 6∈Γ

Qk+3
j

⊂Qk
s

P (Qk+3
j

)=P (Qk
s )

(∫

2Qk+3
j

S
∗

(k,i)(wχEk
i
)σ dµ

)
T k+3

j

]p

+ C
∑

k,i

w(Ek
i )

w(Qk
i )p

[
∑

j∈Hk
i
:(k+3,j)∈Γ

(∫

2Qk+3
j

S
∗

(k,i)(wχEk
i
)σ dµ

)
T k+3

j

]p

= IV + V.

Let us estimate the term IV first. Notice that if (k + 3, j) 6∈ Γ, then

Qk+3
j 6= P (Qk+3

j ). As a consequence, ℓ(Qk+3
j ) ≤ ℓ(P (Qk+3

j ))/2, and

2Qk+3
j ⊂ 4

3P (Qk+3
j ). Taking into account this fact, the finite overlap of

the cubes Qk+3
j (for a fixed k), and (10.1), for any (t, u) ∈ Γ we get

∑

k,i

∑

s∈Lk
i
:P (Qk

s )=Qt
u

w(Ek
i )

w(Qk
i )p

[
∑

j:(k+3,j) 6∈Γ

Qk+3
j

⊂Qk
s

P (Qk+3
j

)=Qt
u

(∫

2Qk+3
j

S
∗

(k,i)(wχEk
i
)σ dµ

)
T k+3

j

]p

≤ C
∑

k,i

∑

s∈Lk
i
:P (Qk

s )=Qt
u

w(Ek
i )

(
1

w(Qk
i )

∫

4
3Qt

u

S
∗

(k,i)(wχQk
i
)σ dµ

)p

(2T t
u)p

≤ C(T t
u)p
∑

k,i

∑

s∈Lk
i
:P (Qk

s )=Qt
u

w(Ek
i )

(
1

w(Qk
i )

∫

Qk
i

S(k,i)(σ χ 4
3Qt

u
)w dµ

)p

≤ C(T t
u)p

∫
Md

w(N(σ χQt
u
))pw dµ

≤ C(T t
u)p

∫
N(σ χ 4

3 Qt
u
)p w dµ ≤ C(T t

u)p σ(2Qt
u),
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where we have denoted by Md
w the dyadic maximal operator with respect

to w. Thus,

(10.13) IV ≤ C
∑

(t,u)∈Γ

σ(2Qt
u)(T t

u)p.

Let us estimate the term V . By Hölder’s inequality and (10.2), for a
fixed (k, i),

w(Ek
i )

w(Qk
i )p

[
∑

j∈Hk
i
:(k+3,j)∈Γ

(∫

2Qk+3
j

S
∗

(k,i)(wχEk
i
)σ dµ

)
T k+3

j

]p

≤
w(Ek

i )

w(Qk
i )p

[
∑

j∈Hk
i

σ(2Qk+3
j )−p′/p

(∫

2Qk+3
j

S
∗

(k,i)(wχEk
i
)σ dµ

)p′]p/p′

×

[
∑

j∈Hk
i
:(k+3,j)∈Γ

σ(2Qk+3
j ) (T k+3

j )p

]

≤
w(Ek

i )

w(Qk
i )p

[
∑

j∈Hk
i

∫

2Qk+3
j

S
∗

(k,i)(wχEk
i
)p′

σ dµ

]p/p′

×

[
∑

j∈Hk
i
:(k+3,j)∈Γ

σ(2Qk+3
j ) (T k+3

j )p

]

≤ C
∑

j∈Hk
i
:(k+3,j)∈Γ

σ(2Qk+3
j )(T k+3

j )p.

Summing over (k, i), since any cube Qk+3
j occurs at most C times in the

resulting sum, we get

(10.14) V ≤ C
∑

(t,u)∈Γ

σ(2Qt
u)(T t

u)p.

Notice that for each (t, u) we can write

σ(2Qt
u)(T t

u)p = σ(Qt
u)(T t

u)p−1 1

σ(Qt
u)

∫

Qt
u

fσ−1 σ dµ

=: σ(Qt
u)(T t

u)p−1mσ,Qt
u
(fσ−1).
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We have obtained

IV + V ≤ C
∑

(t,u)∈Γ

σ(Qt
u)(T t

u)p−1mσ,Qt
u
(fσ−1)

= C

∫ ( ∑

(t,u)∈Γ

(T t
u)p−1mσ,Qt

u
(fσ−1)χQt

u
(x)

)
σ(x) dµ(x).

Notice that for any fixed x we have
∑

(t,u)∈Γ

(T t
u)p−1mσ,Qt

u
(fσ−1)χQt

u
(x) ≤C sup

(t,u)∈Γ:x∈Qt
u

(T t
u)p−1Md

σ(fσ−1)(x)

≤CMd
σ(fσ−1)(x)p.

Therefore,

IV + V ≤ C

∫
Md

σ(fσ−1)p σ dµ ≤ C

∫
(fσ−1)p σ dµ = C

∫
fpw dµ,

which yields (10.12). Thus, by (10.9),
∫

|Tf |pw dµ ≤ C(I + II + III) ≤ Cθ

∫
|Tf |pw dµ+ C

∫
fpw dµ.

We only have to choose θ small enough, and we are done.

To complete the proof of the implication (d) ⇒ (c) of Lemma 4.2, it
remains to prove the following result.

Lemma 10.2. With the notation and assumptions of Lemma 10.1,

(10.5) holds. That is, w

(⋃
j≥k Bj

)
≤ η w(Ωk), with 0 < η < 1.

Before proving the lemma, a remark:

Remark 10.3. Besicovitch’s Covering Theorem asserts that if A ⊂ Rd is
bounded and there exists some family of cubes Q = {Qx}x∈A, with
each Qx centered at x, then there exists some finite or countable family
of cubes {Qxi

}i ⊂ Q which covers A with finite overlap. That is, χA ≤∑
i χQxi

≤ C, with C depending only on d.

We are going to show that the covering {Qxi
}i can be chosen so that

the following property holds too:

(10.15) If z ∈ A ∩Qxi
for some i, then ℓ(Qz) ≤ 4ℓ(Qxi

).
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Indeed, for each x ∈ A, let Rx be some cube of the type Qy, y ∈ A,
with x ∈ 1

2Rx and such that

ℓ(Rx) ≥
99

100
sup

y:x∈ 1
2Qy

ℓ(Qy).

Now we will apply Besicovitch’s Covering Theorem to the family of
cubes {Rx}x∈A. Let us remark that the Theorem of Besicovitch also
holds for the family {Rx}x∈A because, although the cubes Rx are not
centered at x, we still have x ∈ 1

2Rx (see [Mo] or [Gu, pp. 6–7], for
example). So there exists some finite or countable family {Rxi

}i which
covers A with finite overlap. Notice that {Rxi

}i ⊂ Q, and if z ∈ Rxi
∩A,

then ℓ(Qz) ≤ 4ℓ(Rxi
). Otherwise, xi ∈

1
2Qz and ℓ(Qz) > 4ℓ(Rxi

), which
contradicts the definition of Rxi

.
It is worth comparing this version of Besicovitch Covering Theorem

with the version of Wiener’s Covering Lemma 8.4. Notice that the state-
ment (3) of Lemma 8.4 and (10.15) look quite similar.

Proof of Lemma 10.2: We use the same notation as in the proof of the
preceding lemma.

Let x ∈ Bj and take Qj
i containing x (recall Bj ⊂ Ωj+2 ⊂ Ωj), with

Qj
i ∈ ADh. By (10.4), we have N(f χUj

i
)(x) ≥ ε0 α

j for some ε0 > 0 de-

pending on α, β, m. It is easily seen that this implies that St(f χUj
i
)(x) ≥

ε0 α
j for t ≥ h−M , where M is some positive constant which depends

on ℓ(U j
i )/ℓ(Qj

i ). Also, by the definition of Bj , St(f χUj
i
)(x) ≤ δαj for

h−M ≤ t ≤ h+M . So, if we choose δ ≤ ε0 and M ≥ 10, then

(10.16) sup
t≥h+10

Stf(x) > ε0 α
j .

We denote Ak :=
⋃

j≥k Bj . For a fixed x ∈ Ak, let r be the least
integer such that r ≥ k and x ∈ Br. There exists some cube Qr

i con-
taining x, with Qr

i ∈ ADh for some h. Since Sh+5(f χUr
i
)(x) ≤ δαr, by

Lemma 3.11 there exists some doubling cube Px ∈ ADh+5,h+4 centered
at x such that

(10.17)
1

µ(2Px)

∫

2Px

f dµ ≤ Cδαr.

Now, by Besicovitch’s Covering Theorem, we can find some family of
cubes {Pxs

}s (with xs ∈ Ak) which covers Ak with finite overlap. More-
over, we assume that the covering has been chosen so that the prop-
erty (10.15) holds.
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Given any ρ with 0 < ρ < 1, we will show that if δ is small enough,
then

(10.18) µ(Ak ∩ Pxs
) ≤ ρ µ(Pxs

)

for all s.
Let Px0 some fixed cube from the family {Pxs

}s, and let r0 be the
least integer such that x0 ∈ Br0 . First we will see that

(10.19) µ

( ⋃

j≥r0

Bj ∩ Px0

)
≤
ρ

2
µ(Px0).

If z ∈ Bj ∩ Px0 for some j ≥ r0 and z ∈ Qj
i , then by (10.16) we have

(10.20) sup
j≥h+10

Sjf(z) > ε0 α
j ,

where h is so that Qj
i ∈ ADh. Let us denote by Qr0

i0
the Whitney

cube of Ωr0 containing x0, with Qr0

i0
∈ ADh0 . Since Ωj ⊂ Ωr0 , we

have ℓ(Qj
i ) ≤ C26ℓ(Q

r0

i0
), and so h ≥ h0 − 1. In fact, if C26, which

depends on d, is very big, then we should write h ≥ h0 − q, where q is
some positive integer big enough, depending on C26. The details of the
required modifications in this case are left to the reader. From (10.20),
we get

(10.21) sup
j≥h0+9

Sjf(z) > ε0 α
j ≥ ε0 α

r0 .

For j ≥ h0 + 9 and z ∈ Px0 , we have supp(sj(z, ·)) ⊂ 2Px0 , because
Px0 ∈ ADh0+5,h0+4. Thus (10.21) implies N(f χ2Px0

)(z) > ε0 α
r0 , and

then, from the weak (1, 1) boundedness of N , by (10.17), and because
Px0 is doubling, we obtain

µ

( ⋃

j≥r0

Bj ∩ Px0

)
≤ µ

{
z ∈ Px0 : N(f χ2Px0

)(z) > ε0 α
r0
}

≤
C

ε0 αr0

∫

2Px0

f dµ ≤ C ε−1
0 δ µ(Px0).

(10.22)

So (10.19) holds if δ is sufficiently small.

Now we have to estimate µ
(⋃

k≤j≤r0−1Bj ∩ Px0

)
. If z ∈ Bj ∩ Px0 ,

then ℓ(Pz) ≤ 4 ℓ(Px0), by (10.15). Recall also that Px0 ∈ ADh0+5,h0+4.
As a consequence, we deduce Pz ∈ AD+∞,h0+3. Moreover, we have
Px0 ⊂ {Tf > αr0}, and so Nf(z) > C27α

r0 , with C27 > 0. Since
by (10.3) we have

N(f χ
Rd\Uj

i
)(z) ≤ C28 α

j ,
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we obtain

N(f χUj
i
)(z) > C27α

r0 − C28α
j ≥

C27

2
αr0 ,

assuming j ≤ r0 − r1, where r1 is some positive integer which depends
on C27 and C28. Recall also that the fact that z ∈ Bj yields

(10.23) St(f χUj
i
)(z) ≤ δ αj for h1 − 10 ≤ t ≤ h1 + 10,

where h1 is given by Qj
i ∈ ADh1 . If we choose δ small enough, then

δ αj ≤ C27α
r0/2 and, for j ≤ r0 − r1, (10.23) implies

(10.24) St(f χUj
i
)(z) >

C27

2
αr0 for some t ≥ h1 + 10.

On the other hand, if r0 − r1 < j < r0, then by (10.16) we have

(10.25) Stf(z) > ε0 α
r0−r1 ≥ C29α

r0 for some t ≥ h1 + 10,

with C29 > 0.
In any case, from the fact that Pz ∈ ADh1+5,h1+4 we deduce h1 ≥

h0 − 2, and so supp(st(z, ·)) ⊂ 2Px0 for t ≥ h1 + 10. Thus, from (10.24)
and (10.25) we get

N(f χ2Px0
)(z) ≥ min(C27/2, C29)α

r0

for any j with k ≤ j < r0. If we take δ small enough, operating as
in (10.22), we obtain

µ

( ⋃

k≤j<r0

Bj ∩ Px0

)
≤ Cδµ(Px0) ≤

ρ

2
µ(Px0),

which together with (10.19) implies (10.18).
By (10.18) and Lemma 5.3, using the Z∞ condition for w, we get

w(2Qk
i \ Ak) ≥ τ w(Qk

i ) for each Whitney cube Qk
i ∈ Ωk. By the finite

overlap of the cubes 2Qk
i , we obtain

τ w(Ωk) ≤ τ
∑

i

w(Qk
i ) ≤

∑

i

w(2Qk
i \Ak) ≤ C30w(Ωk \Ak).

Therefore,

w(Ak) ≤ (1 − C−1
30 τ)w(Ωk) =: η w(Ωk).

11. The general case

In this section we consider the case where not all the cubes Qx,k ∈ D
are transit cubes.

If Rd is an initial cube but there are no stopping cubes, then the
arguments in Sections 5–10 with some minor modifications are still valid.
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If there exist stopping cubes, some problems arise because the func-
tions SkχRd are not bounded away from zero, in general. As a conse-
quence, the property Z∞ has to be modified. Indeed, notice that if we
set A := Rd and Q is some cube which contains stopping points, then
(5.1) may fail, and so the Z∞ condition is useless in this case.

The new formulation of the Z∞ property is the following. For k ∈ Z,
we denote ST k := {x ∈ supp(µ) : Qx,k is a stopping cube}. Notice by
the way that Sjf(x) = 0 for j ≥ k + 2 and x ∈ ST k.

Definition 11.1. We say that w satisfies the Z∞ property if there exists
some constant τ > 0 such that for any cubeQ ∈ ADk and any setA ⊂ Rd

with Q ∩ ST k+3 ⊂ A, if

(11.1) Sk+3χA(x) ≥ 1/4 for all x ∈ Q \ ST k+3,

then w(A ∩ 2Q) ≥ τ w(Q).

With this new definition, Lemma 5.2 still holds. The new proof is a
variation of the former one. On the other hand, Lemma 5.3 changes.
Let us state the new version:

Lemma 11.2. Suppose that w satisfies the Z∞ property. Let Q ∈ ADh

and A ⊂ Rd be such that A ∩Q ∩ ST h+4 = ∅. Let {Pi}i be a family of
cubes with finite overlap such that A∩ 3

2Q ⊂
⋃

i Pi, with Pi ∈ AD+∞,h+4

and ℓ(Pi) > 0 for all i. There exists some constant δ > 0 such that
if µ(A ∩ Pi) ≤ δ µ(Pi) for each i, then

(11.2) w(2Q \A) ≥ τ w(Q),

for some constant τ > 0 (depending on Z∞). If, moreover, w(2Q) ≤
C11w(Q), then

(11.3) w(A ∩ 2Q) ≤ (1 − C−1
11 τ)w(2Q).

The proof is analogous to the proof of Lemma 5.3, and it is left for
the reader.

The results stated in the other lemmas in Sections 5–10 remain true
in the new situation. However, the use of the Z∞ condition is basic
in the proofs of Lemma 5.4, the implication (e) ⇒ (c) of Lemma 4.1,
Lemma 9.2, Lemma 10.1, and Lemma 10.2. Below we will describe the
changes required in the arguments. In the rest of the lemmas and results,
the proofs and arguments either are identical or require only some minor
modifications (which are left for the reader again).
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Changes in the proof of Lemma 5.4. The proof is the same until (5.5),
which still holds. Given Qi ∈ ADk, it is easily seen that if y ∈ ST k+3 ∩
Qi, then T∗(fχ3Qi

)(y) ≤ C31Nf(y). By (5.5), if we choose δ < ε/2C31,
then Aλ ∩Qi ∩ ST k+3 = ∅.

On the other hand, now the estimate (5.6) is valid for y ∈ Qi\ST k+3.
Then we deduce Sk+3χ2Qi\Aλ

(y) > 1
4 for y ∈ Qi \ ST k+3, and by the

Z∞, condition we get w(2Qi \ Aλ) ≥ τw(Qi). Arguing as in (5.7), we
obtain w(Aλ) ≤ ρ, w(Ωλ).

Changes in the proof of the implication (e) ⇒ (c) of Lemma 4.1. The sets
Ωλ, Gλ andBλ are defined in the same way. The estimates for w(Qi∩Gλ)
are the same.

As shown in (7.11), if z ∈ Bλ∩Qi, with Qi∈ADh, then Sk(fχUi
)(z)≥

C16λ 6= 0 for some k ≥ h + 6. This implies z 6∈ ST h+4. Now the
arguments used to prove that w(Bλ) ≤ η1w(Ωλ) are still valid, because
Bλ ∩Qi ∩ ST h+4 = ∅.

Changes in the proof of Lemma 9.2.

The construction. The construction is basically the same. The only
difference is that now we must be careful because the cubes Q1

x (and Qk
x

for k > 1) may fail to exist due to the existence of stopping points. In
the first step of the construction (k = 1), we circumvent this problem
as follows. If x ∈ R1

j \ ST g1
j
+18, then we take a µ-σ-(100, β)-doubling

cube Q1
x ∈ ADg1

j
+16. If x ∈ R1

j ∩ ST g1
j
+18, we write x ∈ AS1. We

consider a Besicovitch covering of Q0∩Ω0 \AS1 with this type of cubes:
Q0 ∩ Ω0 \ AS1 ⊂

⋃
i∈I1

Q1
i , and we set A1 :=

⋃
i∈I1

Q1
i . We operate in

an analogous way at each step k of the construction.

The estimate of
∫

Q0
|Nhσ|pw dµ. Here there are little changes too. Equa-

tion (9.3) is proved inductively in the same way. Let us see the required
modifications in the first step. The definition of B0 is different now:
B0 := {x ∈ Q0 \ ST h+5 : Sh+3σ(x) ≤ ελ0}. With this new definition,
(9.5) holds. On the other hand, notice that

∫
Q0∩ST h+5

|Nh+20σ|pw dµ =

0, since Nh+20σ(x) = 0 if x ∈ ST h+5.
The definition of D0 does not change, and all the other estimates

remain valid. In particular, (9.8) holds now too, because NH1
x+20σ(x) =

0 if x ∈ AS1 (recall that the definition of A1 has changed).
The changes required at each step k are analogous.

The estimate of
∑

k σ(Ak). The former arguments remain valid in the
new situation.
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Changes in the proof of Lemma 10.1 and Lemma 10.2. The proof of
Lemma 10.1 does not change. In the arguments for Lemma 10.2, we
have to take into account that if x ∈ Bk and δ is small enough, then
x 6∈ ST h+M−1. Indeed, if x ∈ Qi, with Qi ∈ ADh, then we have
T (fχUk

i
)(x) ≥ α−1

α αk+2, and Sj(fχUk
i
)(x) ≤ δαk for h−M ≤ j ≤ h+M .

These inequalities imply Sj(fχUk
i
)(x) > ε0α

k 6= 0 for some j ≥M + 1 if

δ is small enough. In particular, x 6∈ ST h+M−1.
If we assume M ≥ 20, for instance, then all the cubes Px that appear

in the proof of Lemma 10.2 exist and are transit cubes, and the same
estimates hold.

12. Relationship with RBMO(µ) and final remarks

Let us recall one of the equivalent definitions of the space RBMO(µ)
introduced in [To2]. We say that f ∈ L1

loc(µ) belongs to RBMO(µ) if
there exists a collection of numbers {fQ}Q⊂Rd ⊂ R such that

∫

Q

|f(x) − fQ| dµ(x) ≤ Cf µ(2Q)

for each cube Q ⊂ Rd and

(12.1) |fQ − fR| ≤ Cf (1 + δ(Q,R))

for all the cubes Q,R with Q ⊂ R. The optimal constant Cf is the
RBMO(µ) norm of f , which we denote by ‖f‖∗.

Let 1 < p < ∞. In general, if w ∈ Zp, then logw 6∈ RBMO(µ).
This follows easily from Example 2.3. Indeed, in this case it can be
checked that δ(0, Ik) ≤ C uniformly on k. As a consequence, for all f ∈
RBMO(µ), the numbers fIk

are bounded uniformly on k. If moreover
f is constant on each interval Ik, then we deduce f ∈ L∞(µ). However,
the weight w0 of Example 2.3 is constant on each interval Ik and it is
not a bounded function, and the same happens with logw0.

On the other hand, if f ∈ RBMO(µ), then there exists some ε >
0 depending on ‖f‖∗, p such that eεf ∈ Zp. To prove this, first we
will show in the following proposition that a weight of the type eεf ,
with f ∈ RBMO(µ), satisfies a (rather strong) property in the spirit of
the classical Ap condition.
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Proposition 12.1. Let 1 < p < ∞. If f ∈ RBMO(µ) and ε =
ε(‖f‖∗, p) > 0 is small enough, then

(12.2)
1

µ(2Q)

∫

Q

eεf dµ ·

[
1

µ(2R)

∫

R

e−εfp′/p dµ

]p/p′

≤ C32e
C33δ(Q,R),

for all the cubes Q, R with Q ⊂ R or R ⊂ Q, where C32, C33 are positive
constants depending on n, d, C0.

Proof: The funcions f ∈ RBMO(µ) satisfy an inequality of John-Niren-
berg type (see [To2, Theorem 3.1]), which implies that for some con-
stants C34, C35 and any cube Q and λ > 0 we have

∫

Q

exp(C34|f(x) − fQ|/‖f‖∗) dµ(x) ≤ C35µ(2Q).

If we take ε ≤ C34 min(1, p/p′)/‖f‖∗) and we use (12.1), we deduce
(12.2).

Remark 12.2. For 1 < p < ∞, in Lemma 4.1, the statement (e) can be
replaced by the following weaker assumption:

(e’) For all k ∈ Z and all cubes Q,

(12.3)

∫

Q

|Sk(wχQ)|p
′

σ dµ ≤ C w(2Q),

with C independent of k and Q.

To see this, only some minor changes (which are left for the reader) in
the proof of Lemma 4.1 are required.

Since (e) and (e’) in Lemma 4.1 are equivalent, we deduce that the
statement (e) of Lemma 4.2 can be weakened in the analogous way: We
only need to compute both integrals over Q, and on the right hand side
Q can be replaced by 2Q.

Theorem 12.3. Let 1 < p <∞. If f ∈ RBMO(µ) and ε = ε(‖f‖∗, p) >
0 is small enough, then eεf ∈ Zp.

Proof: By the preceding remark, we only need to show that w := eεf

satisfies (12.3) and its corresponding dual estimate. Moreover, for sim-
plicity we will assume that there are no stopping cubes.

Let us see that (12.3) holds any given cube Q ∈ ADh. We may

assume k ≥ h− 3, since Sk(wχQ)(x) ≤ C
∑3

i=−3 Sh+i(wχQ)(x) for x ∈
Q ∩ supp(µ).
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For each x ∈ Q ∩ supp(µ), let Rx be a doubling cube centered at x,
with Rx ∈ ADk+10,k+9. Let

⋃
i Ri ⊃ Q ∩ supp(µ) be a Besicovitch

covering of Q ∩ supp(µ) with this type of cubes. Notice that Ri ⊂ 2Q
for all i. Let Qx ∈ ADk,k−2 be some cube centered at x. If x ∈ Ri, then
Ri ⊂ Qx because ℓ(Ri) ≪ ℓ(Qx). Since δ(Ri, Qx) ≤ C, by (12.2) we
have

1

µ(2Qx)

∫

Qx

w dµ ·

[
1

µ(Ri)

∫

Ri

σ dµ

]p/p′

≤ C.

Taking a suitable mean over cubes Qx centered at x (as in the proof of
Lemma 3.11), we obtain

Skw(x) ·
[
mRi

(σ)
]p/p′

≤ C,

for all x ∈ Q. Then we get
∫

Q

|Sk(wχQ)|p
′

σ dµ ≤
∑

i

∫

Ri

|Sk(w)|p
′

σ dµ

≤ C
∑

i

σ(Ri)

(mRi
σ)p

= C
∑

i

µ(Ri)

(mRi
σ)p−1

.

By Hölder’s inequality, 1 ≤ mRi
w · (mRi

σ)p−1. Thus,
∫

Q

|Sk(wχQ)|p
′

σ dµ ≤ C
∑

i

mRi
w · µ(Ri) = C

∑

i

w(Ri) ≤ C w(2Q).

The estimate dual to (12.3) is proved in an analogous way.

We will finish with some remarks and open questions:

Remark 12.4. (a) Using Lemma 9.2 and modifying a little the proof
of the implication (e) ⇒ (c) of Lemma 4.1 one can show that
w ∈ Zweak

p if and only if there exists some λ > 1 such that∫
N(wχQ)p σ dµ ≤ C w(λQ) for all cubes Q. We don’t know if

this holds with λ = 1 too.

(b) We don’t know if Zp = Zweak
p .

(c) In the case p = 1, a statement such as (e) in Lemma 4.1 is missing.
We don’t know if there is a reasonable substitute.
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[GM] J. Garćıa-Cuerva and J. M. Martell, Two-weight norm
inequalities for maximal operators and fractional integrals
on non-homogeneous spaces, Indiana Univ. Math. J. 50(3)
(2001), 1241–1280.

[Gu] M. de Guzmán, “Differentiation of integrals in Rn”, with
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