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WEIGHTED NORM INEQUALITIES FOR
CALDERON-ZYGMUND OPERATORS WITHOUT
DOUBLING CONDITIONS

XAVIER TOLSA

Abstract

Let p be a Borel measure on R% which may be non doubling.
The only condition that p must satisfy is p(B(z,r)) < Cr™ for
all z € R4, r > 0 and for some fixed n with 0 < n < d. In this
paper we introduce a maximal operator N, which coincides with
the maximal Hardy-Littlewood operator if u(B(z,r)) ~ r™ for
z € supp(u), and we show that all n-dimensional Calderén-Zyg-
mund operators are bounded on LP(wdp) if and only if N is
bounded on LP(wdpy), for a fixed p € (1,00). Also, we prove
that this happens if and only if some conditions of Sawyer type
hold. We obtain analogous results about the weak (p, p) estimates.
This type of weights do not satisfy a reverse Hélder inequality, in
general, but some kind of self improving property still holds. On
the other hand, if f € RBMO(u) and € > 0 is small enough, then
e=f belongs to this class of weights.

1. Introduction
Let p be some Borel measure on RY satisfying
(1.1) w(B(z,r)) < Cor™  for all z € R 7 > 0,

where n is some fixed constant (which may be non integer) with 0 <
n < d. In this paper we obtain a characterization of all the weights w
such that, for every n-dimensional Calderén-Zygmund operator (CZO) T
which is bounded on L?(u), the following weighted inequality holds:

(1.2) /|Tf|pwd,u§0/|f|pwdlu for all f € LP(w),
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where C' is independent of f, 1 < p < oo, and LP(w) := LP(wdy). It
is shown that these weights w are those such that a suitable maximal
operator N (defined below) is bounded on LP(w). We also prove an
analogous result for the weak (p,p) estimates.

Moreover, we show that the L? weights for CZO’s (and for N) satisfy
a self improving property. Loosely speaking, weak weighted inequalities
for w and for the dual weight w—/(*—1) imply strong weighted inequali-
ties for w and its dual weight. Let us remark that we do not assume that
the underlying measure  is doubling. Recall that p is said to be doubling
if there exists some constant C' such that u(B(z,2r)) < C pu(B(z,r)) for
all z € supp(p) and r > 0.

In the particular case where p coincides with the Lebesgue measure
on R, it is known that the weighted inequality (1.2) holds for all d-di-
mensional CZO’s if and only if w is an A, weight. This result was
obtained by Coifman and Fefferman [CF], and it generalizes a previ-
ous result by Hunt, Muckenhoupt and Wheeden [HMW] about the
Hilbert transform. Let us recall that Muckenhoupt proved [Mu] that the
A, weights are precisely those weights w for which the Hardy-Littlewood
operator is bounded on LP(w) (always assuming p to be the Lebesgue
measure on R?). So the LP weights for CZO’s and the LP weights for
the maximal Hardy-Littlewood operator coincide in this case.

Suppose now that the measure p satisfies

(1.3) w(B(z,r)) =™ for all x € supp(u), r > 0,

where A ~ B means that there is some constant C' > 0 such that C~1A <
B < CA, with C depending only on n and d (and also on Cjy sometimes),
in general. In this case the results (and their proofs) are analogous to the
ones for the Lebesgue measure. Namely, (1.2) holds for all n-dimensional
CZO’s if and only if w € A, which is equivalent to say that the maximal
Hardy-Littlewood operator is bounded on LP(w).

Many other results about weights for CZO’s can be found in the lit-
erature. In most of them it is assumed that p is either the Lebesgue
measure on R? or the underlying measure of a space of homogeneous
type, satisfying (1.3). See for example [Pé] and the recent result on the
two weight problem for the Hilbert transform in [Vo].

It is much more difficult to find results where (1.3) does not hold.
Saksman [Sak] has obtained some results concerning the weights for
the Hilbert transform H on arbitrary bounded subsets of R (with
being the Lebesgue measure restricted to these subsets). These results
relate the boundedness of H on LP(w) with some operator properties
of H, and quite often his arguments are of complex analytic nature.
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Orobitg and Pérez [OP] have studied the A, classes of weights with
respect to arbitrary measures on R? which may be non doubling. In
particular, they have shown that if w is an A, weight, then the centered
maximal Hardy-Littlewood operator is bounded on LP(w), and that if
moreover p satisfies (1.1), then all n-dimensional CZO’s are also bounded
on LP(w). Other more recent result which involve the operator

1

Mif (@) ven (kD)
where the supremum is taken over all balls B containing x, have been
obtained in [Ko].

Our approach uses real variable techniques and it is based on the ideas
and methods developed in [To2], [To3| and [To4] to extend Calderén-
Zygmund theory to the the setting of non doubling measures. Indeed,
recently it has been shown that the doubling assumption is not essen-
tial for many results of Calderén-Zygmund theory. See [NTV1], [Tol],
[NTV2],  MMNO)] and [GM], for instance, in addition to the refer-
ences cited above.

In order to state our results more precisely, we need to introduce some
definitions. A kernel k(-,-): RY x R? — R is called a (n-dimensional)
Calderén-Zygmund (CZ) kernel if

/B |f(y)ldu(y) for z € supp(p) and k > 1,

Cq

(1) [k(z,y)| < =y if z #y,
(2) there exists some fixed constant 0 < < 1 such that
/ / |‘T _xll’y
[k(z,y) — k@@, y)| + [k(y, z) — k(y, 2")| < sz

if |x — 2/ < |z —yl/2.
Throughout all the paper we will assume that p is a Radon measure
on R? satisfying (1.1). We say that T is a (n-dimensional) CZO associ-
ated to the kernel k(zx,y) if for any compactly supported function f €

L*(p)
(1.4) Tf(x) Z/k(:v,y)f(y) du(y) if x & supp(u),

and T is bounded on L2(u) (see the paragraph below regarding this
question). If we want to make explicit the constant v which appears in
the second property of the CZ kernel, we will write T' € CZO(7).

The integral in (1.4) may be non convergent for € supp(u), even
for “very nice” functions, such as C*° functions with compact support.
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For this reason it is convenient to introduce the truncated operators T,
e >0

A = [ K S duty)

Then we say that T is bounded on L?(y) if the operators T are bounded
on L?(p) uniformly on & > 0.

Now we will define the maximal operator N. For 0 < r < R and a
fixed « € supp(u), we consider the function

1/r fo<|z—y|l <
Parr(y) =4 1/[z—y[" ifr <|z—y| <R,
0 if |z —y| > R.
Then we set
1
1.5 Nf(z)= sup / $x.rR fldu,
(15) @)= 3% T ol ] Fored]

for f € Ll (1) and x € supp(u).

Throughout all the paper w stands for a positive weight in Ll (p).
Sometimes the measure w dy is denoted simply by w. The notation for
the dual weight is o := w1 with 1 < p < .

The first result that we will prove deals with the weak (p, p) estimates.

Theorem 1.1. Let p, v be constants with 1 < p < oo and 0 < v < 1.
Let w be a positive weight. The following statements are equivalent:

(a) All operators T € CZO(~) are of weak type (p,p) with respect
to wdp.
(b) The mazximal operator N is of weak type (p,p) with respect to w dy.

Next we state the corresponding result for the strong (p, p) estimates.

Theorem 1.2. Let p, v be constants with 1 < p < oo and 0 < v < 1.
Let w be a positive weight. The following statements are equivalent:

(a) All operators T € CZO(~y) are bounded on LP(w).
(b) The mazimal operator N is bounded on LP(w).

Let us denote by Z, the class of weights w such that N is bounded
on LP(w), and by Zz‘j’cak its weak version, that is, the class of weights w
such that N is bounded from L?(w) into LP*°(w). Notice that since N is
bounded on L*(w), by interpolation we have Z, C Z,if1 < p < ¢ < 0.
On the other hand, the inclusion Z, C deak is trivial, and by duality
(of CZO’s) and Theorem 1.2 it follows that w € Z, if and only if o € Z,,
where p’ stands for the conjugate exponent of p, i.e. p’ =p/(p—1).
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We will prove the following self improving property for this type
weights:

Theorem 1.3. Let w be a positive weight and 1 < p < co. Ifw € deak
and o = w1/ (P~ ¢ Z;V,eak, then w € Z, and 0 € Z,.

More detailed results are stated in Lemmas 4.1 and 4.2 in Section 4. In
particular, necessary and sufficient conditions of “Sawyer type” are given
for the boundedness of N on LP(w) and also for the weak (p,p) case.
Moreover, it is shown that if w € Z, (w € Z;jveak), then the maximal
CZO

T.f(x) = sup T f(x)]
e>0

is bounded on LP(w) [of weak type (p,p) with respect to w].
Let us see an easy consequence of our results. Given A > 1, let M be
following version of the maximal Hardy-Littlewood operator:

=Su ; 1 X u
(1.6) fo(x)—%ro) u(B(:v,Ar))/BW)mdu’ f€Ljy.(1), x€supp(p).

It is easily seen that for any A > 1,

(1.7 Nf(x) < C\)Maf(z), f € Lige(n), x € supp(p).

Thus all weights w such that M) is bounded on LP(w) belong to Z,,
and then all CZO’s are bounded on LP(w). In particular, A, C Z,
if 1 <p<oo.

Observe that the maximal operator N is a centered maximal opera-
tor, which is not equivalent to any “reasonable” non centered maximal
operator, as far as we know. This fact and the absence of any doubling
condition on p are responsible for most of the difficulties that arise in
our arguments. For instance, it turns out that the weights of the class Z,,
don’t satisfy a reverse Holder inequality, in general. Indeed there are ex-
amples which show that it may happen that w € Z, but w'*e & Ll (1)
for any € > 0 (see Examples 2.3 and 2.4). Also, we will show that the
weights in Z, satisfy a property much weaker than the A condition of
the classical A, weights (see Definition 5.1 and Lemma 5.3), which is
more difficult to deal with.

Let us notice that it has been shown in [OP] that, even with yx non
doubling, if w € A, then w satisfies a reverse Holder inequality. As a
consequence, A, # Z, in general.

The plan of the paper is the following. In Section 2 we show some
examples which illustrate our results. In Section 3 we recall the basic
properties of the lattice of cubes introduced in [To3] and [To4], together
with its associated approximation of the identity. This construction will
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be an essential tool for our arguments. In the same section we will study
some of the properties of the maximal operator N. In Section 4 we
state Lemmas 4.1 and 4.2, from which Theorems 1.1, 1.2 and 1.3 follow
directly. Lemma 4.1 deals with the weak (p, p) estimates, and it is proved
in Sections 5—7, while the strong (p, p) case is treated in Lemma 4.2 and
is proved in Sections 8-10. In Section 11 we explain how to prove the
theorems above in their full generality, without a technical assumption
that is used in Sections 5-10 for simplicity. Finally, in Section 12 we
show which is the relationship between Z, and RBMO(u) (this is the
space of type BMO introduced in [To2]), and we make some remarks.
In particular in this section we prove the following result:

Theorem 1.4. Let1 < p < oco. If f € RBMO(u) ande = e(||f]|«,p) >0
is small enough, then e/ € Z,,.

For the precise definition of RBMO (), see Section 12.

2. Some examples

Example 2.1. If u(B(z,r)) = r™ for all € supp(p), then N f(z) ~
M f(x), where M is the usual centered Hardy-Littlewood operator (de-
fined in (1.6) with A = 1). In this case, the class Z, coincides with the
class A,.

Example 2.2. In R?, consider the square Qo = [0,1]? and the mea-
sure dp = xqQ, dm, where dm stands for the planar Lebesgue measure,
and take n = 1. That is, we are interested in studying the weights for
1-dimensional CZO’s such as the Cauchy transform. Notice that u is a
doubling measure which does not satisfy the assumption in Example 2.1.
For this measure, we have the uniform estimate [ Iyiwl du(y) < C.
Then, from Theorem 1.2, we deduce that the class Zp coincides with
the class of LP weights for the fractional integral

Iof(ﬂf)—/ﬁf(y) du(y),

since Nf(z) ~ Ip|f|(x). This is the result that should be expected
because, with our choice of p, Iy is a CZO, and for all other T' € CZO(v),
we have |Tf(z)| < Cy Io|f|(z).

Example 2.3. This is an example studied by Saksman in his paper
about weights for the Hilbert transform [Sak]. We are in R and n = 1.
Let ¢, = 1/k! and consider the intervals I, = (% - %, % + %’“) for k > 1.
Let p be the Lebesgue measure restricted to the set S :=Jpo; Ix.
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Let w be a weight such that w > 1 and w)g,, 1s constant for each k > 1.
In [Sak], it is proved that, for any p € (1,00), the Hilbert transform is
bounded on LP(w) if and only if w € L'(x). Almost the same calcula-
tions show that the operators Si (defined after Lemma 3.7 below) are
uniformly bounded on LP(w) if and only if w € L ().

So, if a weight wg is defined by wo|;, = (n —2)!, then wy € Z, for
all p € (1,00), by Lemma 4.2 below. However, it is easily seen that
wé“ ¢ LY(u) for any € > 0. Therefore, wy does not satisfy a reverse
Holder inequality.

Example 2.4. In this example we will show that there are measures p
and weights w € Z, such that the (centered) maximal Hardy-Littlewood
operator M is not bounded on LP(w). Also we will see that it may
happen w € Z, but w ¢ Z,_. for any € > 0.

We take d = n = 1. Suppose that I; and I are disjoint intervals
on R. The measure p is the Lebesgue measure restricted to I; U Is.
Suppose that p(I1) = p(lz) = L, and let D = dist(Iy, I), with D > 2L.
For f = x1,, the inequality || M f||zr(w) < O3 f| Lr(w) implies

(2.1) w(lz) < Cyw(ly),

with C4 depending on C5 but not on D or L. By symmetry, (2.1) also
holds interchanging I; and I.

Also, if w € Z,, from ||Nf||zo(w) < Csl|fllze(w) we get Zw(lz)/P <
Cw(I,)"/?. That is,

(2.2) <%)pw(12) < Couw().

The constant Cg depends only on Cs. By symmetry, we deduce

29 G (5) v e <ci (%) .

If w is constant on each interval Iy, I3, then N is bounded on LP(w) and
it is easily seen that || N||1r(w)—Lrw) < C(Cs).

Now we introduce a new measure g on R. For each integer m >
1 we consider the intervals I" = 1000™ + [—m — 1,—m] and I}* =
1000™ + [m,m + 1], so that D,, := dist(I]*,I3") = 2m and L = 1.
The measure 4 is the Lebesgue measure restricted to (J,-_, (I{" U I3").
The weight w is constant on each interval wrm, with wym =1 and
wip = (D /L) = (2m)r.
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The maximal operator M is not bounded on LP(w) because, other-
wise, we should have w(I§") < C'w(I") uniformly on m, as in (2.1). On
the other hand, (2.3) is satisfied (with the corresponding subindices and
superindices m) uniformly on m. Taking also into account that I7” U I*
is very far from I7 U I3 if m # r, it is easily checked that N is bounded
on LP(w). Moreover, N is not bounded on LP~¢(w) for any € > 0 because
the inequality

L\"*
fails for m big enough.

3. Preliminaries

3.1. The lattice of cubes. For definiteness, by a cube we mean a
closed cube with sides parallel to the coordinate axes. We will assume
that the constant Cy in (1.1) has been chosen big enough so that for all
cubes Q C RY we have u(Q) < Co £(Q)™, where £(Q) stands for the side
length of Q.

Given «a,3 > 1, we say that the cube Q C R? is («, 8)-doubling if
p(aQ) < Bu(Q). If a and B are not specified and we say that some cube
is doubling, we are assuming @ = 2 and [ equal to some constant big
enough (3 > 2%, for example) which may depend from the context.

Remark 3.1. Due to the fact that u satisfies the growth condition (1.1),
there are a lot “big” doubling cubes. To be precise, given any point z €
supp(p) and ¢ > 0, there exists some (a, 3)-doubling cube @ centered
at « with [(Q) > ¢. This follows easily from (1.1) and the fact that we
are assuming that 8 > a™.

On the other hand, if 3 > a?, then for p-a.e. x € R? there exists a
sequence of (a, §)-doubling cubes {Q}r centered at z with ¢(Qy) — 0
as k — 0o. So there are a lot of “small” doubling cubes too.

Given cubes @), R, with ) C R, we denote by zg the center of (), and
by @r the smallest cube concentric with @ containing @ and R. We set

SQR) = [ duta),
an\@ |7 =%l

We may treat points z € R? and the whole space R? as if they were
cubes (with £(z) = 0, /(R?) = 00). So for x € R? and some cube Q,
the notations &(z, Q), §(Q,RY) make sense. Of course, it may happen
§(z,Q) = co and §(Q,R?) = co.

In the following lemma, proved in [To3], we recall some useful prop-
erties of 6(, -).
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Lemma 3.2. Let P,Q,R C R? be cubes with P C Q C R. The following
properties hold:
(a) If 4(Q) ~ ((R), then 6(Q,R) < C. In particular, 6(Q,pQ) <
Co 2™ p™ for p > 1.
(b) If @ C R are concentric and there are no doubling cubes of the
form 2FQ, k >0, with Q C 2*Q C R, then §(Q,R) < Cs.
K(R))
c) 6(Q,R)<C|1+1o .
(© 3.7 < ¢ (1+ 108 g o)
(d) |6(P,R) — [§(P,Q) + 6(Q,R)]| < eo. That is, with a different
notation, 6(P,R) = 0(P,Q) + §(Q, R) + ¢p.

The constants C' and gy that appear in (b), (c) and (d) depend
on Cy, n, d. The constant C' in (a) depends, further, on the constants
that are implicit in the relation ~. Let us insist on the fact that a no-
tation such as @ = b £ ¢ does not mean any precise equality but the
estimate |a — b < e.

Now we will describe the lattice of cubes introduced in [To4]. In the
following lemma, ), i stands for a cube centered at x, and we allow
Qur =2 and Qg = R, If Quk # z,R%, we say that Qqu k 1s a transit
cube.

Lemma 3.3. Let A be an arbitrary positive constant big enough. There
exists a family of cubes Qg 1, for all x € supp(p), k € Z, centered at x,
and such that:

(a) Quk C Quyj ifk>7.

(b) limg—t00 £(Qu k) =0 and limy_—_ oo €(Qy k) = 00.

(€) 0(Quk,Qej)=(—k)Axe if j>k and Qu k, Qu,; are transit cubes.

(d) 5(Qm,kaQw,]) <(- k)A+€ if > k.

(e) If2Q4 kN2Qy .k # D, then 2Q. 1 C Qy k-1 and £(Qu k) <U(Qyx—1)/
100.

(f) There exists some n > 0 such that if m > 1 and 2Q 4 k+mN2Qy k F
&, then K(Qm,k-‘rm) < 2—nAm£(Qy7k)'

The constants €, n in (c), (d) and (f) depend on Cy, n, d, but not
on A.

See [To4, Section 3] for the proof. The constant € above must be
understood as an error term, because we will take A > . Let us notice
also that, if necessary, the cubes ), can be chosen so that they are
doubling (see [To4]). However we don’t need this assumption.
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Remark 3.4. If x € supp(u) is such that fB(m,l) ly—z| ™™ du(y) < oo, then
it follows from the properties of the lattice that there exists some K, € Z
such that Q. = = for k > K, and Q. # x for k < K,. In this case
we say that Q1 is a stopping cube (or stopping point).

If fRd\B(z,l) ly — 2| 7" du(y) < oo (which does not depend on z €
supp(ut)), then there exists some constant K, such that Q. = R¢
for k < K, and Quk # R? for k > K,. We say that R? is an (or
the) initial cube. From the property (e) in the lemma above, it follows
easily that | K, — K,| < 1 for 2,y € supp(p). However, as shown in [To4],
the construction of the lattice can be done so that K, = 7y =: K for
all z, y, and so that §(Q, z,1m, R%) = mA+e for m > 1. For simplicity,
we will assume that our lattice fulfils these properties.

If fB(m,l) ly — 7" du(y) = fRd\B(z,l) ly — x[~" du(y) = oo, then all
the cubes Qu i, k € Z, satisfy 0 < £(Q, 1) < oo. That is, they are transit
cubes.

We denote Dy = {Qux : ® € supp(u)} for k € Z, and D = | J;,cy, Di-

Consider a cube Q C R? whose center may not be in supp(u). Let
Qu 1 be one of the smallest cubes in D containing @) in the following
sense. Set

l= inf{g(@x,j) :Qz;€D,QC Qx,j}'

Take (s, containing @ such that (Qyx) < %é. Then we write Q €
ADy, (by the property (e) in Lemma 3.3, k& depends only on Q). In
a sense, () is approximately in Dy. Given k, j with —oo < k < j <
+00, we also denote ADy, ; = |J)_, ADp,. If Q is such that there are
cubes Qg k, Qy k-1 With Q, r C Q C Qy k1, then it follows easily that
Q S ADk7k_1.

3.2. The kernels sg(x,y). For each x € supp(u), sk(x,-) is a non neg-
ative radial non increasing function with center x, supported on 2Q 4 r—1,
and such that

1
(a) Sk(l’ay) < W for all y € R,

1
(b) Sk(.I,y) ~ m for all Yy S Qz,k-

1
(C) Sk(x,y) = w for all Y € Qzﬁkfl \ Qm,k-

1 1
UQu k) [ — y|mH!

(d) Vysk(z,y) <C A ' min < ) for all y € R9.
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Lemma 3.5. Ify € supp(u), then supp(si(-,y)) C Qyr—2. If Q € ADy,
and z € Q Nsupp(p), then supp(sp4m(2,-)) C 7tQ for all m > 3, and
SUpP(Si4m (-, 2)) C 15Q for all m > 4.

Proof: For the assertion supp(si(-,y)) C Qy k—2, see [To3] or [To4].
Let Q@ € ADy, and z € Q Nsuppp. We have @ ¢ @Q; k41, because
otherwise Q ¢ ADj. Thus £(Q. k+1) < 24(Q). Then,

11
supp(sk+m(2, )) - 2Qz7k+m—1 C 1_0Q7

because £(2Q; k+m—1) < W%E(Qz)k_i_l) < %E(Q). Finally, the inclusion

SUpp(Sk+m (-, 2)) C 16Q follows in a similar way. O

In [To4, Section 3] the following estimates are proved.

Lemma 3.6. If A is big enough, then for all k € Z and z € supp(u) we

have

10 10
(3.1) /sk(z,y) du(y) < n and /sk(x,z) du(z) < 9
If moreover Q) 1 is a transit cube, then

9 9
(3.2) sk(z,y) du(y) > 10 and sk(z, z) du(x) > 0

In the following lemma we state another technical result that we will
need.

Lemma 3.7. For all k € Z and z,y € supp(u), we have

(3.3) sk(,y) < C(sp—1(y, ) + s(y, @) + sp41(y, ).

The proof follows easily from our construction. See also [To3, Lem-
ma 7.8].

We will denote by Sk the integral operator associated with the ker-
nel si(z,y) and the measure p. Observe that (3.1) implies that the
operators Sy are bounded uniformly on LP(u), for all p € [1,00]. Also,
from (3.3) we get

(3.4) Sef(z) < C(Si-1f (@) + Sif (@) + Sipa (@),

for f € L (1), f >0, and z € R<.
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Notice that the only property in the definition of Calderén-Zygmund
kernel which sg(z,y) may not satisfy is the gradient condition on the
first variable. It is not difficult to check that if the functions ¢(Qq )
were Lipschitz (with respect to x) uniformly on k, then we would be
able to define 3y (z,y) so that

C

. < Az — y|nt1
(3 5) |V$Sk($,y)(y)| = A|x_y|n+1’

in addition to the properties above. The following lemma solves this
question.

Lemma 3.8. The lattice D can be constructed so that the func-
tions £(Qqy k) are Lipschitz (with respect to x € supp(p)) uniformly on k
and the properties (a)-(f) in Lemma 3.3 still hold. In this case, the
operators Sy, k € Z, are CZ0’s with constants uniform on k.

Proof: Suppose that the cubes @), ; € D have already been chosen and
the properties stated in Lemma 3.3 hold. Let us see how we can choose
cubes Q. x, substitutes of Q x, such that ¢ (z) := £(Q, 1) are Lipschitz
functions on supp(u). For a fixed k, we set

(3.6) Yr(z) = sup  (U(Q:x) — [z —z|).
z€supp(p)

It is easily seen that this is a non negative Lipschitz function, with
constant independent of k. Then, we denote by @, 1 the cube centered
at « with side length ¢y (z).

We have to show that @,k is a good choice as a cube of the scale k.
Indeed, by (3.6) it is clear that £(Qu k) > £(Quk). Thus Qu i C Qu k-

Take now zy € supp(u) such that

99
>
— 100

We derive |z — 20| < £(Qz.1), and also £(Qy k) < 100 £(Q., )/99. Thus
T € 2Q. .k and Qux C 4Q.y k. The inclusions Qux C Qux C 4Q. &

imply 8(Qu.k, Q) < Cs < 8(Qa ok, Qo k1), with Cy depending only
on n, d, Cy. One can verify that the properties in Lemma 3.3 still hold,
assuming that the constant Cs is absorbed by the “error” ¢ in (c) and
(d) in Lemma 3.3. O

Z(on,k) - |£L' - ZO' ﬂ(@m,k)

3.3. The maximal operator NN. In the following lemma we show
which is the relationship between N and the operators Sy.
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Lemma 3.9. For all f € L{ (u), x € R, we have
N f(x) ~ sup S| f[(x),
kEZ

with constants depending on A, Cy, n, d but independent of f and x.

Proof: For fixed x € supp(u) and k € Z, we have si(x,y) < C ¢z r(Y),
with r = Cl(Qy ) and R = C¥(Qy k—1). Assume 0 < r, R < 0. Since
l¢z,rrllL1(w) < C we get

110 < Ty | Vel < O N ).

If r =0 or R = oo, we also have Sk|f|(x) < C N f(z) by an approxima-
tion argument, and so sup,, Si|f|(x) < C N f(z).

Let us see the converse inequality. Given 0 < r < R < o0, let k be the
least integer such that Q. C B(z,7). Now let m be the least positive
integer such that B(x, R) C Qg k—m. Then we have

(pm,r,R(y) S C (Sk((E, y) + Sk—l(xa y) +---+ Sk—m(xu y))
Also, it is easily checked that 1+ ||z rl|r1(u) = C~'m. Therefore,

wrrfld <_ S )<C'sup S; O
1+||%rRIIL1 /'90 rfldps Z nlfl(x 1p il f|().

In the rest of the paper we will assume that N is defined not
by (1.5), but as

N f(x) := sup S| f|(z).

kez
With this new definition we have:

Lemma 3.10. Let A > 0 and f € L (). For each k € Z, the set {z €
R?: Sy |f|(x) > A} is open. As a consequence, {x € RY: N f(z) > A} is

open too.

The proof is an easy exercise which is left for the reader.

Given a fixed = € supp(u), we can think of S f(z) as an average of
the means mp(, ) f = fB(I)T) fdup/u(B(x,r)) over some range of radii r.
Arguing in this way, (1.7) follows. We will exploit the same idea in the
following lemma.

Lemma 3.11. For all « > 1, we can choose constants A, 3, Co big
enough so that the following property holds: Let x € supp(u), k € Z and
f € Ll (1), and assume that Qg is a transit cube. Then there exists
some ball B(x,r) with Q1 C B(x,a~'r), B(x,r) C Qu -1 such that
B(z,a™'r) is (a, B)-doubling and mp, | f| < Co Sk|f](z).
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It is easy to check that there are balls B(z,71) and B(z,r2) with
Q. C B(x,a™try), B(x,r2) C Qg k such that B(z,a~1r;) is (o, 8)-dou-
bling and mp(z )| f| < C Sk|f|(x). However, it is more difficult to see
that we may take B(x,r;) = B(z,r2), as the lemma asserts.

On the other hand, the lemma is false if we substitute the condition

“Mp el f| < Co Skl fl()” by “mpanlfl > Cq' Sklf|(z)”.

Proof: We denote \:=Si|f|(x), Ro=d"?((Q..1), and R1 =0(Q. x_1)/2.
Recall that, for fixed z, k, we have defined si(z,y) = ¥(Jy — z|), where
1: R — R is non negative, smooth, radial, and non increasing. Then,

)\:/|f(y)|5k(17,y)d,u(y) —/0 |9’ (1)] (/B(w)|f|du> dr.

We denote h(r) = |[¢'(r)| p(B(z,a~'r)) and
1
el0) = ST 1

Thus, A = [ h(r) ma(r) dr.

Let us see that fféo h(r) dr is big. Recall that ¢'(r) = 1/(Ar"*1) for
r € [Ro, R1]. Then, for s€[Ry, a1 R1], we have [¢/(as)| = |9/ (s)|/a™ 1.
Therefore,

R a 'Ry
/ W(r)dr = o~ / ' (3)] (B, 5)) ds

Ro Ry

=a™" (/ se(w,y) du(y)
Ro<|z—y|<a~1R;

+9(Ro) (B(x, Ro)) = (e~ Ry) u(B(z, alRl)))

>a " </ sk(z,y) du(y) — Co Al) :
Ro<|z—y|<a~1R;

Since [, 1< g, sk(@,y) du(y) < C A~! and also
f|x7y|>of1R1 sk(z,y) du(y) < C A™L, for A big enough we obtain

Ry 1
/ h(rydr > — =: M,
aRo 20("
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using (3.2). If we denote the measure h(r) dr by h, we get
M o0
hr>0:mq(r) > 2 \/M} < ﬁ/ Me(r) h(r)dr = —.
0

Thus,
M M
h{r € [aRy, R1] : ma(r) <2X\/M} > M — 5 =5

Now we will deal with the doubling property. If B(xz,a~!r) is not
(c, B)-doubling, we write r € ND. We have

h([aRo,Rl]ﬂND):/e[ - |¢' (r)| w(B(z, " 7)) dr

Ry
<p / )] B ) dr

< 6*1/Sk(x,y) du(y) < %f)’*l-

Therefore,

M 10
h({r € [aRy, R1] : mqa(r) < 2/\/M}\ND) > > = gﬂfl.
So if we take 3 big enough, there exists some r € [aRy, R;] such that
B(z,a™'r) is (a, §)-doubling and mp(y )| f| < ma(r) < 2X/M. O

As a direct corollary of Lemma 3.11 we get:

Lemma 3.12. Assume that A, 3, C1g9 are positive and big enough. Let
x € supp(p), k € Z and f € Ll (). If Qu i is a transit cube, then there

exists some (2, 3)-doubling cube Q € ADy —1 centered at x such that
maq|f| < Cro Sk|f|(x).

In the rest of the paper we will assume that the constant A used
to construct the lattice D and the kernels si(z,y) has been chosen big
enough so that the conclusion of the preceding lemma holds.

4. The main lemmas

Theorems 1.1, 1.2 and 1.3 follow from the following two lemmas:
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Lemma 4.1. Let p, v be constants with 1 < p < oo and 0 < v < 1.
Let w > 0 be a weight and o = w= P~V (for p # 1). The following
statements are equivalent:

(a) All operators T € CZO(v) are of weak type (p,p) with respect
to wdpu.

(b) For all T € CZO(v), Tx is of weak type (p,p) with respect to w dp.
(¢) The mazimal operator N is of weak type (p, p) with respect to wdpu.

(d) The operators Sy, are of weak type (p,p) with respect to wdu uni-
formly on k € Z.

(e) (Only in the case p #1.) For all k € Z and all cubes Q,

(4.1 [18cwx@)l o dn < Cu(@)
with C independent of k and Q.

Lemma 4.2. Let p, v be constants with 1 < p < oo and 0 < v < 1.
Let w > 0 be a weight and o = w=Y®=1)  The following statements are
equivalent:

(a) All operators T € CZO(vy) are bounded on LP(w).
(b) For all T € CZO(v), Ty is bounded on LP(w).
(¢) The maximal operator N is bounded on LP(w).
d)

)

(e

—~

The operators Sy are bounded on LP(w) uniformly on k € Z.
For all k € Z and all cubes Q,

/ 1S(o xo)Pwdu < Co(Q)
and

[18cw @)l o dn < Cu(@)
with C independent of k and Q.

Notice that the Sawyer type conditions (e) in Lemma 4.1 and Lem-
ma 4.2 involve the operators Sy instead of the maximal operator N. In
the present formulation these conditions are much weaker and of more
geometric nature than the analogous conditions involving N.

The scheme for proving both lemmas is the same. In both cases we
will start by (c) = (b). Later we will see (b) = (a) = (d) = (e). These
will be the easy implications. Notice, for instance, that (b) = (a) is
trivial. Finally we will show (e) = (c) (except in the weak (1,1) case).
This will be the most difficult part of the proof (in both lemmas). In
the weak (1, 1) case, we will see directly the implication (d) = (c).
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For simplicity, to prove Lemmas 4.1 and 4.2, we will assume that all
the cubes Q. € D are transit cubes. In Section 11 we will give
some hints for the proof in the general case. We have operated in this
way because the presence of stopping cubes in the lattice D introduces
some technical difficulties which make the proofs more lengthy, but the
ideas and arguments involved are basically the same than in the special
case in which all the cubes in D are transit cubes.

First we will prove Lemma 4.1.

5. The implication (c) = (b) of Lemma 4.1

Definition 5.1. We say that w satisfies the Z,, property if there exists
some constant 7 >0 such that for any cube Q € AD;, and any set A C R¢,
if

(5.1) Skraxa(z) >1/4 forall z € Q,
then w(AN2Q) > 7w(Q).
Lemma 5.2. If

/ 157 (wxo)P o du < Cw(Q)

for all cubes Q and all k € Z, then w satisfies the property Z.

Proof: Take Q € AD;, and A C RY satisfying (5.1). By the assumption
above, the fact that supp(sgts(z,-)) C 2Q for x € @, and Holder’s
inequality, we get

w(@Q) <4 /Q (Sersxa) wdn

= 4/(Sk+3XAsz)wdﬂ
= 4/ SZ+3(U’ XQ)dM
AN2Q

1/p’
<a( [ Siwtwne? adn)  wian2Q)

< Cu(@)Y7 w(An2Q)7,
and so w(Q) < Cw(AN2Q). O
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Notice that if N is bounded on L"(w) for some r € (1, 00) or of weak
type (r,r), then the operators Sy, are bounded on LP(w) uniformly on &
for any p with » < p < oco. By duality, the operators S} are bounded
on L?' (o) uniformly on k too. Then, by Lemma 5.2, w satisfies Zo

Occasionally we will apply the Z, condition by means of the following
lemma.

Lemma 5.3. Suppose that w satisfies the Z, property. Let A C R
and Q € ADy,. Let {P;}; be a family of cubes with finite overlap such
that AN %Q C U; P, with P; € AD oo hta for all i. There exists some
constant 0 > 0 such that if W(ANP;) <6 u(P;) for each i, then

(5.2) w(2Q\ A) > Tw(Q),

for some constant T > 0 (depending on Zs). If, moreover, w(2Q) <
Cr1w(Q), then

(5.3) w(AN2Q) < (1-Cp 7') (2Q).

This lemma, specially the inequality (5.3), shows that the Z, prop-
erty can be considered as a weak version of the usual A, property satis-
fied by the A, weights. Notice that unlike A, the Z, condition is not
symmetric on g and w.

Let us remark that we have not been able to prove that the con-
stant 1 — C’11 7 in (5.3) can be substituted by some constant Cj tending
to 0 as § — 0. Many difficulties in the arguments below stem from this
fact.

Proof: For a fixed z¢ € @), we denote QQp := Qz,,n+3. Observe that
3
supp(sn+3(7o,-) X4) C AN 2Quy 2 C AN 5@ C UPi-

‘We have

(27 NnA
Sht3xa(zo) < CZ %6020))’

where ng is the least integer such that 2Qzo,h+2 C 2™ Q. If P; N27Qqy #
@, then £(P;) < £(27Q)/10. Therefore,

pPQonA)< D pBnA< Y Su(P)<Cp(2t Qo).
©:P;N27 Qo #L 11 P;N27 Qo #LD

Therefore,

(2711Q0)

< C.
£(29Qo)™

Shyaxa(o) < 052 u
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If 0 is small enough, we have Shizxga\a(zo) > 1/4 for all zyp € Q,
by (3.2). Thus (5.2) holds.
Finally, (5.3) follows easily from (5.2). O

The implication (c) = (b) of Lemma 4.1 is a direct consequence of
the good A inequality in next lemma.

Lemma 5.4. Let T € CZO(v) and w which satisfies the Z, condition.
There exists some 1 > 0 such that for all \,e >0

(5.4) w{x: Tuf(x)>A+e) A\, Nf(x) <A} < (1—n)w{z : Tuf(z) > A}
if 6 = (n,e) > 0 is small enough.

The constant § depends also on the weak (1,1) norm of T, (with
respect to u) and on n, d, besides of 7, e, but not on \.

Proof: Given A > 0, we set Qy = {z: T,.f(x) > A} and
Ay ={z:T.f(z) > (1+e) A\, Nf(z) <A}

So we have to see that there exists some n > 0 such that, for all € > 0
and A > 0, w(Ax) < (1 —n)w(Qy) if we choose § = d(n,e) > 0 small
enough.

Since 2, is open, we can consider a Whitney decomposition of it.
That is, we set Qy = [J; @i, so that the cubes Q; have disjoint interiors,
dist(Q;, RY\Qy) =~ £(Q;) for each i, and the cubes 4Q; have finite overlap.

Take a cube @; such that there exists some xg € 2Q; with N f(zg) <
0A. By standard arguments, one can check that for any z € 2Q);,

To(fxra\3q,) (@) < A+ C Mpf(x),
where M, is the centered radial maximal Hardy-Littlewood operator:
1
Mif(@)=suwp— [ [fldu.
r>0 7T B(z,r)

Since Mg f < C N f, we get T fxra\3q, (z) < (1+C o) Nif z € AxN2Q;.
For § small enough, this implies 7% (fx3q,)(z) > § A for allz € AxN2Q;.
So we have

(6.5)  AxN2Q; C{xe€2Q;: Tu(fxsq,)(x) >eA/2, Nf(x) <A}
Let k € Z be such that Q; € ADj. Let us check that
(5.6) Skiaxa,(y) < Cse™t forally € Q;.
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For a fixed y € Q;, let jo be the least non negative integer such that
there exists some yo € 270Q, r4+3 N Ax. Let us denote Cj = 27Q k13 \
23’1Qy7k+3 for j > jo, and C}, = 2j°Qy k+3. Then we have

20 A>\ N C
Sk+3X A,y =/ Sky3(y, 2 y<C
+3X4,(Y) 0, +3( Z @

where ng is the least integer such that 2Qy7k+2 C 2™Qy k+3. Let
V; be the £(27Q, r+3)-neighborhood of C;. It is easily checked that
Tu(fx3g,\v;)(2) < CNf(z) for all z € C;. Therefore, if ¢ is small
enough, for z € Ay N C; we must have T.(fxv;)(z) > e\/4. Then, by
the weak (1, 1) boundedness of T, with respect to u, we get

HANNG)) < = < T )(2) = M4} < S /V fldp

Using the finite overlap of the neighborhoods V},

cé
Sk+3XAx (Y gAZm/ |f|dﬂ<—Nf(y0)§?

which proves (5.6).

By (3.2), we get Spi3Xra\a, (y) > 9/10—Coe™! > 1/4 for all y € Q,
if ¢ is small enough. By the Z., condition, w(2Q; \ Ax) > Tw(Q;).
Therefore, by the finite overlap of the cubes 2Q);,

(5.7) w() <771 w2Qi\ A)) < Calw(y | Ay).

Thus, w(Ay) < (1 — C77H)w(Q). Now we only have to take n :=
1 — C 77! (which does not depend on 4§, € or \), and (5.4) follows. O

6. The implications (b) = (a) = (d) = (e) of
Lemma 4.1

The implication (b) = (a) is trivial. Let us see the remaining ones.

Proof of (a) = (d) in Lemma 4.1: We have defined the kernels si(z,y)
so that they are CZ kernels uniformly on k € Z. By the statement (a)
in Lemma 4.1 we know that they are of weak type (p,p) with respect
to wdu. We only have to check that this holds wuniformly on k.
Indeed, if this is not the case, for each m > 1 we take Sj, such
that [|Sk,, | 2o (w), Lo () = m>. Then we define T = > > LG .
Since Y, -5y < oo, T is a CZO (using also uniform estimates for
the operators Si). On the other hand, we have ||T'||1(w), Lroo(w) >
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#HSkm”LP(w))LP,m(w) > m for each m, because Sj are integral oper-
ators with non negative kernel. Thus ||T'(|zv(w), Lr.oe(w) = 00, Which
contradicts the statement (a) in Lemma 4.1. O

Proof of (d) = (e) in Lemma 4.1 for 1 < p < co: Since the operators Sy,
are of weak type (p,p) with respect to wdpu, from (3.4) it follows that
their duals are also of weak type (p,p) with respect to w du, uniformly
on k. Then, the statement (e) is a consequence of duality in Lorentz
spaces. We only have to argue as in [Saw1l, p. 341], for example:

1/p’
([1sswrlodn) = s [ Sutwxe) rodn

Ifllzp (o)<

— suwp /QSZ(fU)wdu

1fllzp (o) <1

= sup /Oow{:veQ:S,:(fo)(x)>)\}d)\

IfllLp (<10

S/mmin(c AP, w(Q)) d)\sz(Q)l/P/, 0
0

7. The implication (e) = (c) of Lemma 4.1

We need to introduce some notation and terminology. Let €2 be an
open set. Suppose that we have a Whitney decomposition Q = | J; Q; into
dyadic cubes Q; with disjoint interiors, with 10Q; C Q, dist(Q;, Q) =~
£(Q;), and such that the cubes 4Q); have finite overlap. We say that two
cubes @ and R are neighbors if @ N R # & (recall that we are assuming
that the cubes are closed). For a fixed 7, we denote by U;(Q);) the union
of all the neighbors of 3Q; (including Q; itself). For m > 1, inductively
we let Up,(Q;) be the union of all the cubes which are neighbors of some
cube in U,,—1(Q;). That is, one should think that U,,(Q;) is formed
by 3Q; and m “layers” of neighbors.

We denote by Mg the non centered radial maximal Hardy-Littlewood
operator:

1
Mg f(x) S B /B S dps,
where B stands for any ball containing = and r(B) is its radius.
In order to prove the implication (e) = (c) we will need a very sharp

maximum principle. In the following lemma we deal with this question.
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Lemma 7.1. Let € > 0 be some arbitrary fived constant. There exist
B8 >0 and m > 1, m € Z, both big enough, such that the operator T =
N + 8 Mg satisfies the following maximum principle for all X > 0 and
all f € L (u): Let Qy = {x : Tf(x) > A}, and consider a Whitney
decomposition Q2 = J; Q; as above. Then, for any x € Q;,

(7.1) T(f xra\U,.(@)(®) < (1 +e) A

The point in this lemma is that the constant € > 0 can be as small as
we need, which will be very useful. We only have to define the operator T’
choosing 3 big enough, and also to take the integer m sufficiently big
in Uy, (Q;). Notice also that N f(x) < Tf(z) < (14+C B)N f(z), because
Mpf(z) < CNf(x).

Proof: Let x € Q; be some fixed point. First we will show that, for some
z € 09,

(7.2) MR(f xza\v,, (@) (@) < (1+¢/2) Mrf(2),

if we choose m big enough. Let B be some ball containing = such that

1
(1+ 5/2)1/27“(3)" @l die > MR(f Xra\v,, (@) (%)-

Notice that if Mg(f xra\v,,(@,))(®) # 0, then B\ Uy, (Q;) # @. Since
3Q; C Upn(Q;), we get

(7.3) diam(B) > 4(Q;).

Recall also that U,,(Q;) is formed by m “layers” of Whitney cubes, and
so we have
(7.4) diam(B) > m inf 0Q;).

7:Q3CUm (Qs)
Q;NB#2

We distinguish two cases:

(a) Assume 1004(Q;) < [(1 +¢/2)'/?" —1]r(B) =: C.r(B). That is,
2(Q;) is small compared to r(B). We choose z € 99 such that
dist(z,RY\ Q) = |z — 2| < 1004(Q;). Then there exists some
ball B’ containing z and B with radius r(B’) < r(B) + | — z| <
(1+¢/2)t/2n r(B). Therefore,

(7.5)  Mgrf(2) 2 -

> T, e
and (7.2) holds.
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(b) Suppose that 1004(Q;) > C.r(B). Then there exists some
Whitney cube P in U,,(Q;) such that PN B # @ and 4(P) <
300 C-1(Q;)/m. Otherwise, by (7.4), 27(B) > 300C-14(Q;),
which contradicts our assumption.

Since PN B # &, we can find z € 09 such that dist(z, B) <
100 4(P). Thus,

dist(z, B) < 30000 C- 1 0(Q;)/m < C-4(Q;)/2,

if m is chosen big enough. By (7.3), we obtain dist(z, B) < C. r(B).
Then there exists some ball B’ containing z and B with radius

r(B') < (1+C.)r(B) = (1+¢/2)Y?"r(B).

Arguing as in (7.5), we obtain (7.2).

Now we have to deal with the term N f(z). Notice that if z €
0N is the point chosen in (a) or (b) above, then in both cases we have
|z — z| < CUQ;), where C' may depend on m. Thus we may choose
some constant 77 > 0 big enough so that n¢(Q;) > dist(z,9Q), |z — z|.
We set By, := B(z,1n4(Q;)), and we have

N(f xra\v,. (@) (@) < N(f XB,\Um (@) (@) + N(f xpa\B,) ().
Since |z — z| < n€(Q;), for each k we get

1Sk (f Xra\B,)(x) — Sk(f Xra\B,)(2)] < Ci2 MR f(2),

where C12 may depend on 7. Thus N(f xga\, )(z) <N f(2)+Ci12MRrf(2).
We also have N(f xp,\v,.(@:))(®) < Ci13 Mrf(z), with C13 depending
on 7. Therefore,

N(f xr\v,. (@) (@) < Nf(2) + Cy Mrf(2).
If we take ( such that C,, < fe/2, by (7.2), we obtain
T(f xra\U,. (@) (@) < Nf(2) + Cy Mpf(2) + 8 (1 +¢/2) Mrf(2)
SNf(z)+B8(1+¢e) Mrf(z)
<(A+e)Tf(z) <(A+e)A O

Proof of (e) = (c) in Lemma 4.1 for 1 < p < co: We will show that for
some (3 > 0, the operator T := N + 8 Mg is bounded on LP(w). The
precise value of § will be fixed below. Without loss of generality, we
take f € L'(u) non negative with compact support. Given any A > 0,
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we denote Qy = {x : T'f(x) > A}. We will show that there exists some
constant 7, with 0 < n < 1, such that for all e, A\ > 0

(7.6) W@ 1a0) < (@) + 52 [ 117wd

where C; is some constant depending on € but not on A. It is straight-
forward to check that (7.6) implies that T is of weak type (p,p) with
respect to w dy for € small enough.

As in Lemma 7.1, we consider the Whitney decomposition Q) =
U; Qi, where Q; are dyadic cubes with disjoint interiors (the Whit-
ney cubes). Suppose that m and § are chosen in Lemma 7.1 so that
the maximum principle (7.1) holds with /2 instead of €. Take some
cube @; C Q). To simplify notation, we will write U; instead of U,,(Q;).
Then, for z € Q; N Q11)x, we have T'(f xga\y,)(7) < (1 +¢/2) A, and
S0

(7.7) T(f xv)(x) = e /2.

Let h € Z be such that Q; € ADy,. If for all k with h —n; < k< h+5
we have Si(fxu,)(z) < d A, where ny, 0 are positive constants which
we will fix below, then we write x € By (i.e. z is a “bad point”) and,
otherwise, x € G.

Notice that G\ U Bx = Q(14)x C Q1. We will see that By is quite
small. Indeed, we will prove that

(7.8) w(Bx) < mw(l),

for some positive constant 71 < 1 independent of € and .
Assume that (7.8) holds for the moment, and let us estimate w(Gy).
For Q; € ADy,, we have

h+5

w(QiNGH) < —/ Z Sk(f xu,) wdp
i k=h—n1
h+5
/\ > /fo Sk(wxq,) du
(7.9) h=hom
1 h+5 , 1/p’ 1/p
S5y (/Sk(wwi)” Udu) ( Ifl”wdu>
k=h—n, Ui

C(n , 1/p
< @ ([ 1w
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Using the inequality a'/?" b/P < fa + 6=7'/Pb, for a,b,0 > 0, we get

co—r'/p
w(Q; NGy) < 0w(Q;) + P / | £IP w dp.
U;

It is not difficult to check that the family of sets {U;}; has bounded
overlap (depending on m). Then, summing over all the indices i, we
obtain

c(o

w(Gy) < COw(S) + ()\’pm)/|f|pwdu.
y (7.8), if we choose § = (1 —n1)/2C, we get
1+ C

w@on) < 5w + 5 [ 1P wdn

which is (7.6) with n = (1 +n1)/2.
Now we have to show that (7.8) holds. We intend to use the Zo, prop-
erty. Let us see that

1
(7.10) Sw+axri\B, (¥) 2 7
for all y € Q;. By (7.7), if z € Q;, then N(f xv,)(z) > Ci4), where
C14 is some positive constant depending on &, 8. Then we have

(7.11) Sk(f xv.)(2) > Cra)

for some k > h —ny. If moreover z € By NQ;, then this inequality holds
for some k > h + 6, assuming that we take § < C1y.

Suppose that By N supp(spt3(y,-)) # @. Let jo > 0 be the least
integer such there exists some zy € 2j°Qy7h+3, and let ng be the least
integer such that Qy 42 C 2™ Qy n+3. Then we have

Sh43XB, (Y) :/ sh+3(y, 2) dp(z)
zEB)
<c Z u(Bx N (2771Q, h+3\2Jth+3))'
=0 23Qy h+3)

It is not difficult to check that if z € Bx N (2771Qy nys \ 27Qy nt3)
and k > h + 6, then supp(si(z,-)) C 2772Qy nt3 \ 2771Qy nys =t V.
Therefore, N(fxv;)(z) > C1aA. Then, by the weak (1,1) boundedness
of N, we have

#(BA N (271 Qy 43\ 27 Qyn43)) < uiz t N(f xv;)(2) = Crar}

C
< — .
S )\/Vj|f|dﬂ
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Thus, by the finite overlap of the sets V;, and since x¢ € By,

C & 1
Shaxm <SS L / d
h+3X B (Y) b\ ];:0 U027 Qynrs)" v, |fldp

< %(Shwf(ﬂ?o) + Sntaf(wo) + Snyaf(wo)) < Ci56.

Notice that C15 depends on &, but not on §. If ¢ is small enough, we
obtain Shi3xs, (y) < 1/4. Now, we have Shizxre\p, (y) > 9/10 —
ShaaXxp, (y) > 1/4, and (7.10) holds.

By the Z,, property, we get w(2Q; \ By) > 7 w(Q;), and because of
the finite overlap of the cubes 2Q);,

w() <771 w(2Qi\ By) < Crem'w(2\ By),

which implies (7.8). O

A slight modification of the arguments above yields the proof of
the implication (d) = (c) in the weak (1,1) case. Instead of
using (4.1) to estimate w(Q; N Gy) in (7.9), one can apply directly that
the operators Sy are bounded from L!(w) into L'*°(w). We leave the
details for the reader.

8. Preliminary lemmas for the proof of Lemma 4.2

Sections 8-10 are devoted to the proof of Lemma 4.2. As in our
lemma about the weak (p,p) case, the implication (c) = (b) is a direct
consequence of the good A inequality of Lemma 5.4. The proofs of the
implications (b) = (a) = (d) = (e) are similar to the ones of Lemma 4.1.
We will not go through the details. So we have to concentrate on the
implication (e) = (c), which is more difficult than the corresponding
implication of the weak (p,p) case, as we will see.

In this section we will obtain some technical results which will be
needed later for the proof of (e) = (c).

Lemma 8.1. Let p > 1 be some fized constant. Let Q C R? be some
cube and suppose that x € Q Nsupp(p), ' € pQ N supp(p), and y €
R%\ 2Q. Then, sp(x,y) < Ciz 252275 sj(@',y), for any k € Z, with
Cy7 depending on p and assuming A big enough (depending on p too).
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Proof: We denote s*(z/,y) = 2522_5 sj(z’,y). Observe that, by the
definition of s;(z’,y), we have
1

1
kit N oo . ,
B 6 = min (gt ) e Qs

Let h € Z be such that Q € ADy,. If k > h + 3, then supp(sk(z,-)) C
2@ by Lemma 3.5, and then sg(z,y) = 0.

Assume now k < h — 3. Since ) € ADj, we have Q@ C Qg p_1.
If A is big enough (depending on p), we deduce ' € Quhr—2 C Qux
by (g) in Lemma 3.3. Then we get 2Qu x—1 C Qu k—4, and so y €
Qo k—a if sp(z,y) #0. We also deduce £(Qy k+5) < £(Qqr). By (8.1),
if si(x,y) # 0, we obtain

1 1
s®(2',y) > C~ ' min ( , )
()2 A@en) A — g

1 1 ) > su(o,4)
AUQup)™ Afx =y ) =0
Suppose finally that |h — k| < 2. As above, we have 2’ € Q4 2, and
since h —2 >k —4, 2’ € Qzr—a. Then we get 2Q4 k-1 C Qg k-5, and
80 Y € Qu k—s if sp(x,y) # 0. On the other hand, @ ¢ Q4 nh+1, because
Q € ADj,. Thus

> C~ ! min (

U(Qar nt1) < CUQ) < Clo =yl
with C' depending on p. Then, if si(x,y) # 0, by (8.1) we get

sk(z!,y) > C7t > O lsp(x,y). O

Alz —y|™

Given a, 3 > 1, we say that some cube Q C R? is p-0-(a, 3)-doubling
if p(aQ) < Bu(Q) and o(aQ) < Bo(Q). We say that Q is pu-o-doubling
if « =2 and 3 is some fixed constant big enough (which perhaps is not
specified explicitly). Next lemma deals with the existence of this kind of
cubes.

Lemma 8.2. Suppose that the operators Sy, are bounded on L" (o) uni-
formly on k for some r with 1 < r < oo and that the constant A is
big enough. Then there exists some constant § > 0 such that for any
x € supp(p) and all cubes Q, R centered at x with 6(Q, R) > A/2, there
exists some p-0-(100, B)-doubling cube P centered at x, with Q C P C R.

Proof: The constant 3 will be chosen below. For the moment, let us say
that 8 > 100%t!. Let Ny be the least integer such that R C 100No0Q).
For each j > 0, we denote R; = 10077 R. We have §(Ry,,R) > A/2 —
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100Cy > A/4. We will show that some cube R;, with 7 = 0,... Ny, is
doubling with respect to ¢ and o.

Suppose that all the cubes R;, j = 0,... Ny, are either non (100, §)-
p-doubling, or non (100, 57)-o-doubling (for simplicity, we will show the
existence of a cube P which is (100, 8")-o-doubling, instead of (100, 3)-o-
doubling). For each j =0, ..., Ny, let a; be the number of non (100, 5)-
p-doubling cubes of the form 1007%R, k = 0, ..., j and let b; the number
of non (100, 3")-o-doubling cubes of the form 1007*R, k = 0,...,].
From our assumption we deduce

(8.2) aj +b; >j+1.
We have p(R;) < 5~% p(R). Thus,
; —aj 1009™

¢(R;)™ — 100—74(R) B
Let Rg, be the largest non (100,3")-o-doubling cube of the
form 1007*R, k =0, ..., Ny. Then, for j > sg we have
1
o(R;) < "0 (100R,) < 55”%(100350 \ Rs,),
if 0 is big enough.

Let h € Z be such that Q € AD;,. We denote S = Z?:—s Shpi-
From the properties of the kernels si(z,y), it is easily seen that, for
r € 100Rs, \ Ry, and j = sg,50 + 1,..., No, we have S(xg,)(z) >
C~'u(R;)/¢(R)"™. Then, using the boundedness of S on L" (w), we obtain

Co(R;) > / 1S, )" o di > C o (100Rs, \ Ry )lB0)
100R.,\ R+, ((R)™

Bb]‘T
10057 7

>C!

if 5 > so. Thus,

pRy) _ 1007
n =BG
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if 3/2 > 2.100™. Thus §(Ry,, R) < A/4 if § is big enough, which is a
contradiction. O

Let us remark that if in the lemma above we also assume that the
operators Sy are bounded uniformly on k on L*(w) for some s with 1 <
s < oo, then it is possible to show the existence of cubes which are
p-doubling, o-doubling and w-doubling simultaneously, by an easy mod-
ification of the proof.

Notice also that if [|Sk(ox@)Pwdy < Co(Q) for k € Z and all
the cubes @ C RY, then N is of weak type (p/,p’) with respect to o
and bounded on L" (o) for p’ < r < oo. Thus the assumptions of the
preceding lemma are satisfied.

Lemma 8.3. Suppose that the operators Sy, are bounded on L" (o) uni-
formly on k for some r with 1 < r < oo and that the constant A is big
enough. Then there exists some constant  with 0 < n < 1 such that, for
alr €RY and k € Z, 0(Qut)) <10 (Quk—1)-

Proof: We denote S = 212:72 Sh+i- Then, we have S(xq, ,_\qQ...)(¥) =
Cig > 0, for all y € Q. Therefore,

U(Qw,k) < Cl_8T / |S(XQz,k—1\Qm,k)|T odp < Ch U(Qw,k—l \Qw,k)

Thus, 0(Qek—1) > (14 Cig") 0(Quk)- O
We will use the following version of Wiener’s Covering Lemma.

Lemma 8.4. Let A C R be a bounded set and {Q;}icr some family of
cubes such that A C |J;c; Qi, with QiNA # & for eachi € 1. Then there
exists some finite or countable subfamily {Q;};es, J C I, such that

(1) AcC Uje] 20Q);.

(2) 2Q;N2Qr =2 if j ke J.

(3) Ifjed, k¢ J, and 2Q; N2Qy # D, then L(Qr) < 104(Q;).

The main novelty with respect to the usual Wiener’s Lemma is the
assertion (3). Although the lemma follows by standard arguments, for
the sake of completeness we will show the detailed proof.

Proof: We will construct inductively the set J = {j1,j2,...}. Let ¢ =
sup;e; £(Q;). If {1 = oo, the lemma is straightforward. Otherwise, we
take @;, such that ¢(Qj,) > di/2. Assume that Qj,,...,Q;, _, have
been chosen. We set

b = sup{ €(Qy) : 4Qs ¢ UJ5'200;.
and we choose @);,, such that £(Qp,) > /2 and 4Q;,, ¢ U;n:_ll 20Q;,-
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By construction, A C |J,»_;20Q;,., and also £(Q;,.) > £(Q;.)/2
for s > m. We have 2Q; N 2Q; = @ for each s = 1,...,m — 1,
because otherwise 2Q);,, C 10Q;_, and then 4Q); , C 20Q);,.

Finally we show that the third property holds. Suppose that k& ¢ J
and 2Q;,, N2Qy # . I £(Qy) > 104(Q;,,), it is easily seen that 4Q),, C
4Q)y. Because of the definition of Q);,,, we must have 4Q C U::ll 20Q;.
(otherwise £,, > €(Qr) > 10£(Q;,,), which is not possible). However the
last inclusions imply 4@Q);,, C U:L:_ll 20Q);,, which is a contradiction. O

9. Boundedness of N over functions of type oxq
on LP(w)

The main result of this section is the following lemma.
Lemma 9.1. If

[18coxo)l wdn < Co(@)
for all cubes Q C RY uniformly on k € Z, then

/wwmmeSCd%@

for all cubes Q C RY.

In a sense, Lemma 9.1 acts as a substitute of the usual reverse Holder
inequality for the classical A, weights. Its proof will follow by a self
improvement argument in the same spirit as the proof of the reverse
Holder inequality for the A, weights.

Given h € Z and f € L] (1), we denote

N" f(z) = sup Sg| f|(x).
k>h

The next technical result concentrates the main steps of the proof of
Lemma 9.1.

Lemma 9.2. Let S = supyo(15Q)~" [IN(oxq)[P wdp, where the
supremum is taken over all cubes Q C R, Assume that

Lﬂ&@mwwWSCdm

for all cubes @ C R uniformly on k € Z. Then, for alle > 0, there exists
some constant C. such that for any p-0-(2, 3)-doubling cube @ € AD;,,

(9.1) léJNhWXQNPwduS(C%+€SﬁﬂQ)
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Proof: The construction. Let Qg be some fixed p-0-(2, 3)-doubling cube,
with Qo € ADj. We also denote g := mg,0. We will show that
(9.1) holds for Qp. To this end, by an inductive argument, for each k > 1
we will construct a sequence of u-o-doubling cubes {Qf}Z

First we will show how the cubes {Q}} are obtained. Let

(9.2) Qo = {N"%(z) > K)o},

where K is some big positive constant which will be fixed below. By
Lemma 3.10, this set is open. We consider some Whitney decomposition
Qo = U, R}, where R} are dyadic cubes with disjoint interiors.

Let us check that Qo \ Qo # @. If Qo C Qo, then for all z € Qo N
supp() there exists some cube @, centered at z, with Q, € AD4oo ht19
with mg,o0 > C K Ag (where C' > 0 is some fixed constant). Since Q, €
AD o h+19, we have £(Qy) < £(Qo)/10. By Besicovitch’s Covering
Theorem, there exists some covering Qo C |J; @z, with finite overlap.
Using that g is o-doubling, we obtain

/ od,uZC_l/ Ud/LZC_lZ ody
Qo 2Qo i Y Quy

>CT K N Y 1(Qr,) = C7H K Mo Qo).

Therefore, mg,0c > C~! K )¢, which is a contradiction if K is big
enough.

Since Qo \ Qo # &, by the properties of the Whitney covering, we
have K(le») < C0¢(Qo) for any Whitney cube le» such that le NQo # 2.
Moreover, subdividing the Whitney cubes if necessary, we may assume
that CQO S 1/10

Let gjl- € 7Z be such that le- € ADQ}_. Observe that if R}QQO # &, then
le» C %QO, and so gjl» >h—2. Forz € le» N supp(p), we consider some
p-0-(100, 3)-doubling cube QL € AD 1, 14, with 3 given by Lemma 8.2.
Now we take a Besicovitch’s covering of Qo N Qo with this type of cubes:
Qo N Qo C User, Q}, and we define A; := User, Q. Notice that, for
each i, 10Q} C %Qo, because all the Whitney cubes intersecting Qg
have side length < £(Qp)/10. In particular, we have A; C %QO. For
each i € I, let h} € Z be such that Q; € ADy1. It Q; is centered
at some point in R]l, then h}! = gjl» 4+ 16 > h + 14. This finishes the
step k = 1 of the construction.

Suppose now that the cubes {Q¥};cr, (which are u-o-(100, 3)-dou-
bling, with 10Q% C %Qo, and have finite overlap) have already been
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constructed. Let us see how the cubes {QF™},cr, ., are obtained. For
each fixed cube Q¥ we repeat the arguments applied to Qp. We denote
A} = mgeo and let kY € Z be such that Qf € ADj.. We consider the
open set QF = {Nh+205(z) > KXF}, and a decomposition of it into
Whitney dyadic cubes with disjoint interiors: QF = J ; R;-H’l. Arguing
as in the case of Qo, we deduce QF \ QF # @, and if Rf N Q¥ # @, then
E(R;?) < £(Q¥)/10. Given gf“ € Z such that R?H € AD ji+1, for x €
J

R?H, we consider some p-0-(100, 3)-doubling cube Qf;rl € Angl_c+l+16.

It may happen that the union {J;c;, (QFNQYF) is not pairwise disjoint,
and so for a fixed z € U/, (QF N QF) there are several indices i such
that Qf‘;l is defined. In any case, for each z € [J,(2¥ N QF) we choose
QL= Qf;l with i so that « € QF N Q¥ (no matter which i). Now we
take a Besicovitch covering of |J,(Q2F NQF) with cubes of the type Q¥*1.

k41 k41
So we have J;c; (% N Q) C Ujers QjJr , and the cubes QjJr have
bounded overlap. Moreover, for each j € I;11 there exists some ¢ such
that 10Q5™" C $QF C $Qo. We define Ajy1 = Uy, Q' and we
denote by h;”'l the integer such that Q?H € AD, k4.
J

The first step to estimate fQo IN"o|Pwdu. We want to show that
given any € > 0, if K is big enough, then

oo

03 [ IN"oxa)Pwdn < (C.+8)Y ol
0 k=0

We will prove this estimate inductively. First we deal with the case k = 0.
We have
h419

L W oxarwdns |37 Skoxa) s
0

0 k=h

(9-4) +/ |IN" 206 1P w dp
9]

<Col@u)+ [ Nl wdp.
0

Given some small constant € > 0, let By = {z € Qo : Shtso(x) <

eXo}. Let us see that o(Bp) is small. By Lemma 3.12, for all z € By

there exists some p-doubling cube P, € AD o h42 centered at = such

that maop,0 < Celog. We consider a Besicovitch’s covering of By with
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this type of cubes. That is, By C J; Px,, with >, xp,, < C. We have
> 0(2P.,) < Cedo » p(2Py,) < Cedo Y p(Pe,)
< CeXo p(2Q0) < CeXg u(Qo) = Cea(Qo).
In particular, we deduce o(By) < Ceo(Qp). Then we obtain

/ |IN" 205 dy < Z/ |N" 20517 dy
By — Jp,,

= [ IV, P wd
A Pu; 27"
<S> o(1iP.)

<8 0(2P:,) < CeSa(Qo).

Now we have to estimate fQo\Bo |N"206|Pw dp. Given z € R} C Qy,

let 2’ € 9 be such that |z — 2’| = dist(x,R?\ ). From Lemma 8.1,
we derive the following maximum principle:

(96) Nh+25(O'XRd\2R]1)(I) S CglNh+200(I/) S CglK)\(),

where Ca; > 1 is some fixed constant depending on Cy, n, d. Let us see
that if N"*25¢(z) > 2C5; K\, then

(9.7) N'™*¥0(x)<max(2 | max  Si(oxam) @), N (0xap) (@)
g} —2<t<g}+4 ’ ;

Indeed, we have

N 254 (2) < max( max  Sio(z), N9J1'+50(x)>,
h+25<t<gl+4

(with equality if h + 25 < g} +5). If N0 (z) < Ngal'+5a(:1:), then
(9.7) follows from the fact that N%t5g(z) = N9;+5(UX2R;)(33). If
N'"25g(z) = Sj,0(x) for some to with h + 25 < to < g + 4, then
Stoo(x) > 2C K g, and so
1
St (@Xar)(@) > Sty (@) = N0 gm0 (@) > 251,002,
by (9.6). Thus,

N" 250 (z) <281, (0xop)(2) <2 max  Sy(oxap)(2).
j h+25<t<g}+4 J
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Moreover, it is easily checked that, for ¢ < gjl- —2 (and z € le-), we have
St(axQR]l)(x) < Sg];,Q(axQR;)(x). Therefore, (9.7) holds in any case.

We denote Dy := {z € Qo : N"*250(x) > 2Co K)o}. Notice that
Dy C QNQo C A;. We have

h+24

/ |IN" 206 1P w dp < Z / |Sio|P wdu
Qo\Bo t=h—+20 " Qo\Bo

+/ |INIF256|Paw dp
Qo\Bo

< Co(Qu) + / N1 s,
Qo\Bo

where we have used that S;o(x) = Si(ox2g,)(x) if ¢ = 20,...,24 and
x € Qo. Now we write

/ IN" 256 P wdp :/ +/ = T+II
Qo\Bo Qo\(BoUDy) Do\ Bo

First we will estimate I. For z € Qo \ (Bo U Dy), we have
NM245(2) < CKMN < CKe™ ! S, 30(x).

Therefore,
I= / |INF 256 |P w dp < C’Kpsfp/ |ShtsolP wdp
Qo\(BoUDo) 0

< CKPe?0(2Q0) < CKPePo(Qy),

where we have used that Spy30(x) = Shys(ox20,)(2).
It remains to estimate I7. Given z € R; N (Do \ Bo), by (9.7) we get

g;+39
/ |Nh+250.|pwdu < C Z /|St(O'XQRJ1)|p’LUd,Uf
RIN(Do\Bo)

t:g}72

+/ |N9J1'+400|pwd,u
R}ﬁ(Do\Bo)

< CU(2RJ1-)+/ |Ngfl'+400|pwdu.
R;Q(Do\Bo)

Given k > 1, for z € Ay, we denote HF := max{h} : i € I}, v € QF}.

It is easily seen that if z € le» N Az, then H! +20 < gjl» + 40. Then,
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summing over all the cubes R} C € such that R} N Qo # &, due to the
finite overlap of the cubes 2R]1, we obtain

(9.8) / Nl wansCol2qo)t | INHEA2 ()P () dp(a).
Do\ Bo 1

So we have shown that

(9.9) : IN"(0x )P w dp < (CagtCaseS) o(Qo )+ : INHt2041P 4 dp,
0] 1
with Chs, but not Cas, depending on K and e.

The k-th step to estimate fQo IN"o|Pwdu. Now we will show that
for any k > 1,

©.10) [ INTE R0 wdp < (G + CpgeS) ol
Ay
+/A [NHT 420010 4y dy,
k+1

with Cj,, but not C%,, depending on K and e. The arguments to prove
(9.10) are similar to the ones we have used to obtain (9.9), although a
little more involved because the cubes {QiC }ier, are non pairwise disjoint.

For each i € I), we define Bf = {z € QF : Shrq30(x) < eAF}. Arguing
as in (9.5), we deduce

/ |Nhf+2oa|pwdu < CeSa(QF).
By

We denote By = |J..; BF. Using the definition of HY, we obtain

i€l

H§+200x Pw(x T H:+2OU,’E Pw(x T
[ I ) <>du<>s;/3ikuv (@) w(z) du(z)

(9.11) g/ |NPEH205 120 dy,
B}

< Ce8Y o(QF) < CeSo(Ay).

To estimate fAk\Bk |NHz+205(P o dy, we need to introduce some ad-
ditional notation. Assume I, = {1,2,3,...}. We denote Iy, := {i € I :
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QF € AD,}. We set

QF == QF\ U ev U &

l€I) ¢, t>hk lel, i, l<i
T

It is easily checked that the sets @f, 1 € I, are pairwise disjoint, that
Uier, @F = Uier, @F = Ak, and moreover that if z € QF, then HY = hf.
We have

/A . |NH§+200,|pwdu
k k

= Z /A |Nhf+200|pwd,u
QF\ By,

i€ly,

h¥+24

<S> [ iselud

Nk
i€l t=hk+20 Q7 \Br

+ Z /A |Nhf+25a|pwd,u
Q¥\By

i€ly

(9.12)

<C Z o(2Q%) —|—/ |NH§+25J|pwdu

i€l Ap\Br

< Co(Ay) —|—/ |NH:+25J|pwdu.
Ak\Bk

Now we set DF = {z € QF : N'*255 > 205, KAF}, and Dy =
Uier, DF. For z € QF \ (D U By), we have

NH§+250($) < Nhf+250(x) < CKe! Shi 130 ().
Therefore, operating as in the case k = 0, we get
Lo Nl ue) dula) < CKP=7o(Qh).
QF\DFuUB;,
Summing over i € Iy, we obtain
(9.13) / INFEt25 6 ()P w(z) du(z) < CKPe Po(Ay).
Ak\(BkUDk)

Finally we deal with ka\Bk |NH: 4255 ()P w(z) du(z). For a fixed k,
let {Rf“}je Juia De the collection of all the Whitney cubes (originated
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from all the sets QF, i € I)) such that if R?'H comes from QF, then
R;-H'l NQF # @. Assume Jyy1 = {1,2,3,...}. We denote Jy41,:={j €
Jpa1 R?H € AD,}. We set

pk+l . 3 pkt+l 3 pk+1 3 pk+1
REFL = BRI U SRITMU U 3R]

I€Jki1,e, t>ght? 1€, gkl <y
The sets R;-H’l, J € Ji41, are pairwise disjoint and

U B+ = U 3RS A

JE€JTk+1 JE€EJk+1

Moreover, it easily seen that if € }A%fﬂ, then gf“ +40 > HF1 420,
and so Ng?+1+400’($) < NH:'4205(2). If }A%;?H is originated by QF,

arguing as in the case k = 0, we deduce
NH§+250(x) < Nhf+250($)

gk+1+40 )
gmax(zgﬁl_zg}gﬁlwSt(aX2R§+l)( 2), N0, ) (@) )

Therefore,

/D NI ) du)

N Z /ﬁzj*lm(pk\Bk)

JE€JTk+1

g5t 439

(9.14) Z Z /|St UXng+1)| wdp

]EJk+1t _f*l 2

+ 2 / INFE 200 (@) 7 w(a) du(a)

€ Tes1 N(Dk\Bx)

<C S QR[N @) (o) du(o)
Apy1

JE€EJIk+1
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In the following estimates the notation R?'H ~ QF means that R;?H is
a Whitney cube of QF:

Z Rk+1 Z Z 0_(2R;_€+1)

I€Tk+41 i€k jeJp 1 RET Q)

(9.15)
<CY o N2Q)<C Y o(QF)<Co(A).

IS IS

By (9.11), (9.12), (9.13), (9.14) and (9.15), (9.10) follows.
From (9.9) and (9.10), we get

oo

N(ox@,)lPwdp < (C+ CeS) > o(A)
9.16) ~ k=0

+limsup/ |NH:+200(x)|p w(z) dp(z).
Ay

k—oo

This is the same as (9.3), except for the last term on right hand side.
However, we will see below that this term equals 0

The estimate of ), o(Ay). We are going to prove that
(9.17) > o(Ar) < Ca(Q).
k=0

We denote Ek = Uielk QQf. It is easily seen that Avk_l,_l - gk for all &k

(this is the main advantage of Ay over Ay). We will show that there
exists some positive constant 7y < 1 such that

(9.18) 0(Agi2) < 70 0(Ay)

for all k. This implies (9.17), because /Nlo,gl C 2Qp and @y is o-dou-
bling.

For a fixed £ > 1, by the covering Lemma 8.4, there exists some
subfamily {2Qé?}j6[2 C {2QF}icr, such that

(1) A C Ujero 40Q5.

(2) 4Q¥N4QF = @ if j,1 € I,

(3) IfjeI? 1 ¢1Y and 4Q;? N4QF # @, then £(QF) < 10[(@?).
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First, we will see that
(9.19) o(2Q N Apyz) < T o(2Q%) if j € I,

for some fixed constant 0 < 7 < 1. By Lemma 5.3 it is enough to show
that, for each z € %Qf N supp(u), there exists some cube P € ADh§+4

centered at x such that p(Ag2NP) < 8o u(P), with 8y sufficiently small.

Let 2Q**! some cube which forms Ay, such that 2Q*1 N 2Q§ + @.
By our construction, there exists some cube QF such that 10Q**! C
%Qf, so that Q%! comes from QF. Because of the property (3) of the
covering, we have £(QF) < 10((@?). Therefore, 2QF € AD+m7h?73,
which implies Q¥*! € AD too 47 and 2Q% € AD oo,k 46

Let P € ADh§+4 be some p-doubling cube whose center is in %Q§
(which implies P C 2@?). Let Sp be the set of indices s such that
2Q1 N P # @. We have £(Q*+1) < ¢(P) for s € Sp, because 2Q%*! €
AD o i 16 (since 2Q¥1 N 2Q% # @). Thus, 2Q%* C 2P. From our
construction, we deduce

;L(/TkJrQ NP)<upu ( U (Q/SH-I N 2Q1;+1)> < Z ILL(QISC-H n 2@1;4-1)'

seSp seSp

Since N +205 () = Nh§+1+20(0X3Qk+1)(CC) for z € QF!, by the weak

(1,1) boundedness of N*=""+20 and by the o-doubling property of Q¥+1,
we obtain

L(QFF A 208 < Co(3Q)

C okt

Thus, by the finite overlap of the cubes Q**' and the fact that P is
p-doubling,

p(A2 1 P) < 25 u(QE) < SueP) < Tu(P) = solP).

seESp

Since we may choose K as big as we want, dy can be taken arbitrarily
small, and (9.19) holds.
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Let us see that (9.18) follows from (9.19). We denote ZM) = Ujel}g 2Q?.
Since the cubes QQ;?, j € I}, are disjoint, (9.19) implies o(gkg NAgss) <
T o(gk70). By the property (1) of the covering and the fact that Q;“ is
(100, 8)-o-doubling, we have

o(Ako) = Y 0(2QF) = C3" Y 0(40Q%) > €3l o (Ay).
Jery Jery
Then,
o( Ak \ Agya) > 0(Apo \ Apga) > (1= 1) 0(Aro) > (1— 1) Coi o(Ag).
Therefore,
(A;C N Ak_,_g) (1—(1—7)C5h o(gk) =: Toa(gk).

The end of the proof. We only need to prove the lemma for S < +o0.

For each k > 1 we have
[ o udu) < 3 [Nl wle) i)
A i€ly

<CSs Z ) < CSo(Ar).

From (9.17) we deduce that o(A;) — 0 as k — oo, and then the integral
on the left hand side above tends to 0 as £ — 0o. Now the lemma follows
from (9.16) and (9.17). O

Proof of Lemma 9.1: Let @@ be some cube with Q € ADjy and zy €
Q Nsupp(p). We write

/|N (oxQ)|P wdp = / / / = I+II+1I1.
o Qup.h—1\2Q RINQz(,h—a

First we will estimate the integral I. For each = € %Q N supp(p), let
P, be some p-0-(4, 8)-doubling cube with P, € ADj19. Notice that
for each y € P, and k > h + 15, we have supp(si(y,-)) C 2P,. Thus by
Lemma 9.2, if we denote Cg := C. + &S, we get

/ N3P 4 dyy = / NP3 (0 )P w d

< Cso'(QPm) <CCg U(Pm)

By Besicovitch’s Covering Theorem, there exists some subfamily of cubes
{P:,}i C {P:}» which covers 22Q N supp(p) with finite overlap. Since
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U(Py,) < £(Q), we have P,, C 1+Q. Then we obtain
/21Q |IN'H 6P dp < Z/ IN" 6P w dp
20 4 zi

<CCs)y o(P,) < CCso($Q).

i

It is easily seen that, for all y € ZQ, N(oxq)(y) < CN"2(ox0)(y).
Therefore,

1< [ IVt Roxo) wd
2Q

</,

< C(1+Cs)o(5Q)-

h+14

Z Sk(xQ0)

k=h—2

wdu—!—/ |IN" 6P w dp
21Q

20

Now we turn our attention to the integral II. For y € Quy n—a \ 3—(1)62,

h+3
Co(Q
Nloxo)) < 7A€ 3 Suloxa)()
Y=o k=h—6
Thus,
h+3
IIS/ Z Sk(oxQ) wd,uSCU(Q).
k=h—6

Finally we deal with ITI. For k < h—4 and y € Qg x-1 \ Quo,k, We
have

o(Q) o(Q & .
N(oxq)(y) < C|y R ey j;gsj (OXQug 1) (¥)-

Thus,

p

Co(Q)P sy
Vol wins 7SS [ 3 S(oxa.y )| wi
/on £\ Qg k-1 @ U(Qw(),k-i-l)p jzkz_s J Qug .kt

Co(Q)P
T 0(Qap k)P
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From Lemma 8.3, we deduce 0(Q) < 0(Quon-1) < 7" % 20(Quo k+1)
for some fixed constant n with 0 < n < 1. Therefore,

-y / N(oxg)l" wdn

k= —o00 Y Quo,k—1\Quq,k

h—4
<Co(Q) Y nP 2 < 0o (Q).

k=—o0

So we have
/|N oxo)lP wdi < C(1 + Cs) o(1Q) = Cas(1 + C- + 25) 0 (11Q).

Choosing € < 1/(2C35) and taking the supremum over all the cubes @,
we get S < Cos(1+ Cc) + 25, Thus S < 2Ca5(1 + C¢) if S < 4o0.

One way to avoid the assumption S < +o0o would be to work with
“truncated” operators of type N™!f := sup, <<, Sk|f| in Lemma 9.2,
instead of N"; and also to consider a truncated version of S in (9.1), etc.
The technical details are left for the reader. O

10. Boundedness of N on LP(w)

The implication (e) = (c) of Lemma 4.2 follows from Lemma 9.1 and
the following result.

Lemma 10.1. If for any k € Z and any cube @,

(10.1) /N(J xo)F wdp < CO’(%Q)
and
(102) [ Suwre)” adi < Cu(Q),

with C' independent of k and Q, then N is bounded on LP(w).

The proof of this lemma is inspired by the techniques used by
Sawyer [Saw2] to obtain two weight norm inequalities for fractional
integrals. In our case, we have to overcome new difficulties which are
mainly due to the fact that the operator N is not linear and it is very
far from behaving as a self adjoint operator, because it is a centered
maximal operator.
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Proof: We will show that for some § > 0 the operator T':= N + 8 Mg
is bounded on LP(w). Without loss of generality, we take f € L*(p) non
negative with compact support. Given some constant o > 1 close to 1,
for each k € Z, we denote

Qp = {2: Tf(x) > "}

The precise value of o and g will be fixed below. As in Lemma 7.1, we
consider the Whitney decomposition €, = |J; Q%, where QF are dyadic
cubes with disjoint interiors (the Whitney cubes).

Take some cube Q¥ C Q. and z € Q¥ N Qk12. Suppose that m and 3
are chosen in Lemma 7.1 so that the maximum principle (7.1) holds
with e = a — 1. Then, we have

(103) T(f XRd\Um(Q?))(‘T) < (1 + E) ak = Oék+1,
and so

-1
10.4 T > G2 R a—1 k+2
(104)  T(fx,gn)) 2 a2 —a —a

Let h € Z be such that Q¥ € ADy,. If for all j withh — M < j < h+ M
(where M is some positive big integer which will be chosen later) we
have
Si(Fxv, @0 (@) < ba¥,

where § > 0 is another constant which we will choose below, then we
write x € By, (i.e. x is a “bad point”). Notice that By, C Q12 C Q.

We will see that the set of bad points is quite small. Indeed, we will
prove that

(10.5) w U B; | <nw(Q),
Jizk
where 0 < 1 < 1 is some constant which depends on 7 (from the
Z oo property), n, d, but not on 3, m, o, M. We defer the proof of (10.5),
which is one of the key points of our argument, until Lemma 10.2 below.
Let us denote Ay, = ;> Bj. Now we have

Jirsrwda=[ " o2t u@s) ax
0
(10.6) < Zp(ak-i-l _ ak)a(k-i-l)(:ﬂ—l) w(Q)
keZ

=p aP~ ! (04— 1)Zozkp[w(9k\Ak,2)+w(Qk ﬂAk,QH .
keZ
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From (10.5) we get

(10.7) pa? Mo —1)) a™w(Q N Ay o)
keZ

<npaP~a-1) Zakp w(Qg—2).
keZ

From calculations similar to the ones in (10.6), it follows
/ TP wdp >pla—1)a™"> " o w(_ ).
kEZ

If we take o such that n*/2a*?~! = 1, then the right hand side of (10.7)
is bounded above by n'/2 [ |T f|Pw du, and so

[P wan s @—n) Y ot (e Aa)
kezZ
Summing by parts we get

J1mrPwdn < €3 0t @\ 40

keZ

= CZ akp [M(Qk+2 \ Ak) — w(Qk+3 \ Ak-‘,—l)]

kez
Observe that if we assume [ |Tf|P wdp < oo, then
Z PP w(Qpya \ Ag) < 0o and Z P (Qprs \ Aprr) < 00,
keZ kEZ

which implies that our summation by parts is right. Since Ap41 C Ag,
we have w(Qpys \ Akt1) > w(Qgs \ Ag). Thus,

108) [T wdn €3 0 wl(Rusa \ D) \ Av).
keZ

We denote EF = Q¥ N (Qkra \ Quta) \ Ak for all (k,i). To simplify
notation, we also set UF = U,,,(Q¥). Given h € Z such that Q¥ € ADy,
we consider the operator

S(k,z) =Sh_pm + Sh—M+1 + .4 Sh-l—M-
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Since EF C RY\ Ay, we obtain
w(E) <5707 [ S Gaup w d
EF ‘
=5 tat /Uk J Sy (e w) dp

et ([ [ Yesatot e
UR\Quss  JUFNQis

From (10.8) we get

[1rsrwin< ey ot (el
k,i

10.9
(10.9) = >+ > + > | -rwE
(k,i)eE  (kg)eF  (ki)EG
=C{I+1I+1II),
where

E={(ki):w(Ef) <0w(@)},
F={(k,i): w(EF) > 0w(Q}) and o > 7/},
G = {(k,7): w(EF) > 0w(QF) and oF < Tf},

and where 6 is some constant with 0 < § < 1 which will be chosen below.
The term [ is easy to estimate:

I= Y ow(EF)<0> o w(@f)

(ki)eE ki

<0 o w{Tf>a} < 09/|Tf|pwdu.
k
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Let us consider the term IT now. By Hélder’s inequality and (10.2),
we obtain

. . & 20F P
II= Z aPw(Ey) < Z w(Ei)<5w(£,—;k)>

(kji)eF (k3)eF

P
e 1 N
<CO7P§ pr(Ef) (w(Qk) /Uk\ﬂ fS(k,i)(wXEf)dﬂ>
\Qk43

ki i

w(EF) p/p’
<Co7P§P . / Sl (wx L m / fPwdp
kzﬂw(Qf)p ( Uf (kv ) Ez U,L-k\Qk+3

<CO™P§TP Z/ fPwdp.
ki YU

N\ Qs

It is easy to check that the family of sets {UF}; has finite overlap for
each k, with some constant which depends on m. This fact implies

ZXUI-’“\QHs < CZXQk\Qk+3 <C.
ki k

Therefore, IT < C [ fPwdp.
Finally we have to deal with the term I71. Notice that EF C R\ Q3
and, for y & Qx3, by Lemmas 8.1 and 3.7 we have

t+6
10.10 sup  Si(y,x) < C inf sr(y,
(0 SR SO i 2

forall t € Z. Let HF = {j : Qi**NU} # @}. Then, for j € HF, we have

h+M+6

sup S n(wxgs)(xz) <C  inf SHw xgr)(x).
2 Skooxs@ <C L, 3 Sioxe)e)
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We set 3(;“-) = ?;r,f\{;/[ﬁ_ﬁ S, and we obtain

U{Cﬂﬂk+3

<C Z inf g?k,i)(’w XEf)(gC)/ fdu

jemh v€2Q5" Qi
— 1
<cC }ZHk (/zg’?“* S(k,i)(wXEf)Udﬂ> (Wzﬁg) /@Hﬁ fdu> -
JEH] J J

We denote T} = Jor fdu/o(2QF) and LF = {s: Q¥ NUF # @}. Then

we have

k < k+3
n <C Z (/2@’?+3 S(k,i)(wXEf)UdM> T}

J

(10.11)

< S, . k+3
<C Z Z (/2(2)&3 S(k)l)(wXEf)ad,u> T;

seEL¥ j:Q?+3CQ§ J

We will show that

(10.12) > aPw(Ef) < O/fpwdu,

for any Ny and My. For the rest of the proof we follow the convention
that all indices (k, %) are restricted to k > Ny and k = My mod 3.
Now we will introduce principal cubes as in [Saw2, p. 540] or [M'W,

p. 804]. Let G be the set of indices (k,i) such that Q¥ is maximal.
Assuming G,, already defined, G,,4+1 consists of those (k,) for which
there is (¢,u) € G,, with QF C Q! and

(a) Tzk > 2T1§7

(b) Tr <270 if Q¥ C Q1 QL
We denote I' = (J°°, G,,, and for each (k,i), we define P(Q¥) as the

n=0 4
smallest cube QY, containing Q¥ with (t,u) € I'. Then we have

(a) P(Q}) = @', implies TF < 2T,
(b) QF C Q! and (k,4), (t,u) € T implies TF > 2T,
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By (10.11) and the fact that #L¥ < C, we get

Z o™ w(EF)

(k,i)eG

<Y w <

(k,i)eG

b w(EF)
<C
) <oTi

p

CZ Z lz) Z </2Qk+33?k7i) (w XEf) o'd‘u> TJ{@+3

kiserk @ :(k+3,5) €T .
Q‘?+3CQ§
P(QE)=P(QY)
p
w(EF) . .
! CZ w(@)P | 2 ‘ (/Q,?+3S(k,i)(w XEg) odu> T
P JEHE:(k+3,5)€T i
=1V +V.

Let us estimate the term I'V first. Notice that if (k+ 3,7) € T, then
Q;-H'?’ + P(Q;H'?’). As a consequence, E(Q;ﬁ'?’) < E(P(Q;-H'?’))/Q, and
2Q?+3 C %P(Q?*g). Taking into account this fact, the finite overlap of
the cubes Q?‘LS (for a fixed k), and (10.1), for any (¢,u) € T" we get

w(EF) . .
S (ki k)od T
2 o V(@) Z)H(/ZQ;M (ki) (W XEE) u) ;

ki seLk:P(Qk)= j:(k+3,5
Q?‘FI&CQI‘:
PQETH=Q!,

<oy ¥ w(Eik)(ﬁQf) / Qﬁa,o(wxw)adu> Ty

ki seLr:P(Q%)=QY

P

C(Ti)pz Z w(Ek)< (;k)/ S(kZ(UXALQt)wd‘LL)

kyi seLk:P(QF)=Qt,

<C(rly [ MANxQ) v du

<C@ [ Noxgo) wdn < O o(2Q)),
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where we have denoted by M¢ the dyadic maximal operator with respect
to w. Thus,

(10.13) v<c Y o2Q)

(t,u)el’

Let us estimate the term V. By Holder’s inequality and (10.2), for a
fixed (k,1),

w(EY) !

w(QF)P

= <~/2Q"+3 Sty (wxz2) odﬂ) TS

JEHY:(k+3,5)€l J

p'1p/p
ZO’(2Q;€+3)*ZD /p</2Qk+38(k’i) (w XE?)Udﬂ) ]
j

jEHE

K3

~w(@F)P

Z U(2Q?+3) (TijrB):D

JEHY:(k+3,5)€l

p/p
p/
E /M (ki) (W X Er) Udu]

JEHF

’

% [ Z U(?Q;-H_g) (TJ{C+3>P
JjEHE

Fi(k+3,5)el

<c Y oM@y

JEHE:(k+3,5)er

Summing over (k, ), since any cube Q;?Jr?’ occurs at most C' times in the
resulting sum, we get

(10.14) V<C > o2QL)(Th”

(t,u)el
Notice that for each (¢,u) we can write
1
(QZ)
10 (Qu) (T ' maqy (fo ™).

o(2QL)(TL) = o(QL) (T et
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‘We have obtained

IV+V<C Y a@)TH 'meg(fo)
(t,u)el

(t,u)el’

Notice that for any fixed x we have

S (TP me g (fo xgy (@) <C sup (THPT ME(fo (@)
(t,u)erl (tyu)elzeQt,

<CMg(fo ) ().

Therefore,

IV+Vv< C/Mj(fcfl)padu < O/(fa’l)padu = O/fpwdu,
which yields (10.12). Thus, by (10.9),

/|Tf|pwdu <CIA+1II+1II)< C@/|Tf|pwdu+0/fpwdu.
We only have to choose 6 small enough, and we are done. O

To complete the proof of the implication (d) = (c) of Lemma 4.2, it
remains to prove the following result.

Lemma 10.2. With the notation and assumptions of Lemma 10.1,

. olds. at s, w . i) <npw(), wit <n<l.
10.5) holds. That 4 JZkBJ Q ith 0 1

Before proving the lemma, a remark:

Remark 10.3. Besicovitch’s Covering Theorem asserts that if A ¢ R? is
bounded and there exists some family of cubes Q = {Qi;}zca, with
each @, centered at x, then there exists some finite or countable family
of cubes {Qg, }; C Q which covers A with finite overlap. That is, x4 <
> XQ., < C, with C' depending only on d.

We are going to show that the covering {Q.,}; can be chosen so that
the following property holds too:

(10.15) If z€ ANQ, for some i, then £(Q.) < 4U(Qy,).
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Indeed, for each z € A, let R, be some cube of the type Q,, v € A,
with = € %Rz and such that

UR,) > 9 sup  £(Qy).

y:mG%Qy

Now we will apply Besicovitch’s Covering Theorem to the family of
cubes {R;}zca. Let us remark that the Theorem of Besicovitch also
holds for the family {R;},ca because, although the cubes R, are not
centered at z, we still have z € 3R, (see [Mo] or [Gu, pp. 6-7], for
example). So there exists some finite or countable family {R,,}; which
covers A with finite overlap. Notice that {R,,}; C Q, and if z € R, N A4,
then £(Q.) < 4¢(R,,). Otherwise, z; € 3Q. and £(Q.) > 4((R,,), which
contradicts the definition of R,,.

It is worth comparing this version of Besicovitch Covering Theorem
with the version of Wiener’s Covering Lemma 8.4. Notice that the state-
ment (3) of Lemma 8.4 and (10.15) look quite similar.

Proof of Lemma 10.2: We use the same notation as in the proof of the
preceding lemma.

Let = € B; and take Q/ containing z (recall B; C Q12 C §;), with
Q’ € ADj,. By (10.4), we have N(f Xy ) (@) > g o for some g9 > 0 de-
pending on a, 3, m. It is easily seen that this implies that S;(f Xy )z) >

g0 for t > h — M, where M is some positive constant which depends
on L(U})/€(Q?). Also, by the definition of Bj, S¢(f xy7)(x) < da for
h—M <t<h+ M. So, if we choose § < ey and M > 10, then

(10.16) sup Sif(x) >epal.
t>h+10

We denote Ay, 1= (J;5), Bj. For a fixed z € Ay, let r be the least
integer such that » > k and x € B,. There exists some cube Q] con-
taining z, with Q} € AD}, for some h. Since Shi5(f xvr)(z) < da”, by
Lemma 3.11 there exists some doubling cube P, € ADjp 5 44 centered
at z such that

1
10.17 7/ dp < Cda”.
( ) M(2Pz) 2me a

Now, by Besicovitch’s Covering Theorem, we can find some family of
cubes {P;_}s (with zs € Ay) which covers Ay, with finite overlap. More-
over, we assume that the covering has been chosen so that the prop-
erty (10.15) holds.
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Given any p with 0 < p < 1, we will show that if ¢ is small enough,
then

(10.18) p(Ax N Py,) < pu(Py,)

for all s.
Let P,, some fixed cube from the family {P,_ }s, and let 7o be the
least integer such that z¢ € B,,. First we will see that

(10.19) w(U Bine) < Bul)

Jj=ro
If z € B; N Py, for some j > ry and z € Q7, then by (10.16) we have

(10.20) sup S;f(z) >epal,
j>h+10

where h is so that Q{ € ADj. Let us denote by Q;° the Whitney
cube of €2, containing xg, with Q;° € ADy,. Since Q; C Q,, we
have E(Q{) < Co6l(QF)), and so h > ho — 1. In fact, if Cz, which
depends on d, is very big, then we should write h > hg — g, where q is
some positive integer big enough, depending on Css. The details of the
required modifications in this case are left to the reader. From (10.20),
we get
(10.21) sup S;f(z) >epal >epa™.

j>ho+9
For j > ho + 9 and z € P,,, we have supp(s;(z,-)) C 2P,,, because
P, € ADpyt5,h9+4. Thus (10.21) implies N(f x2p,,)(2) > 0™, and
then, from the weak (1,1) boundedness of N, by (10.17), and because
P,, is doubling, we obtain

u< U B; ﬂPx0> <p{z€ Py : N(fx2p,,)(2) > 0™}
Jj=To

(10.22)
<[ rascstonr).
Eo ' 2Pz,

So (10.19) holds if ¢ is sufficiently small.

Now we have to estimate M(ngjgrofl B; N on)- If z € B; NPy,

then £(P,) < 44(Py,), by (10.15). Recall also that Py, € ADp,+5 ho+4-
As a consequence, we deduce P, € AD o p,+3. Moreover, we have
P, C {Tf > a™}, and so Nf(z) > Cara™, with Cy7 > 0. Since
by (10.3) we have

N(f XRd\Ug)(Z) < Cag aja
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we obtain
o j 027 o
N(f XUg')(Z) > Cyra™® — Cga? > - @

assuming j < rg — 1, where 1 is some positive integer which depends
on Ca7 and Cag. Recall also that the fact that z € B; yields

10.23 Si(fx;i)(z) <da? for hy —10 <t < hy + 10,
U

where hp is given by Q{ € ADy,. If we choose § small enough, then
dad < Oy7a™ /2 and, for j < rg —rq, (10.23) implies

C
(10.24) St(f xpi)(z) > %of‘) for some t > hy + 10.

On the other hand, if ro — 1 < j < 79, then by (10.16) we have
(10.25) Sef(z) > e’ ™™ > Oy for some ¢ > hy + 10,

with Caog > 0.

In any case, from the fact that P, € ADp, 45 4,44 we deduce h; >
ho — 2, and so supp(s¢(z,-)) C 2Py, for t > hy 4+ 10. Thus, from (10.24)
and (10.25) we get

N(f x2p,,)(2) = min(Ca7/2, Cag) o™

for any j with k¥ < j < ro. If we take & small enough, operating as
in (10.22), we obtain

p
iU Binr) < Coutre) < i)

k<j<ro

which together with (10.19) implies (10.18).

By (10.18) and Lemma 5.3, using the Z., condition for w, we get
w(2Q% \ Ay) > 7w(QF) for each Whitney cube Q¥ € Q. By the finite
overlap of the cubes 2Q¥, we obtain

Tw( Q) < TZW(Q?) < Zw(QQf \ Ak) < Csow(Qy \ Ap).

Therefore,
w(Ag) < (1 — Cyy' 1) w(Q) =: nw(Qy). O

11. The general case

In this section we consider the case where not all the cubes @y 1 € D
are transit cubes.

If R? is an initial cube but there are no stopping cubes, then the
arguments in Sections 510 with some minor modifications are still valid.



450 X. ToLsA

If there exist stopping cubes, some problems arise because the func-
tions Skxre are not bounded away from zero, in general. As a conse-
quence, the property Z., has to be modified. Indeed, notice that if we
set A := R? and Q is some cube which contains stopping points, then
(5.1) may fail, and so the Z, condition is useless in this case.

The new formulation of the Z,, property is the following. For k € Z,
we denote STy, := {z € supp(u) : Q. is a stopping cube}. Notice by
the way that S;f(z) =0 for j > k+2 and x € ST.

Definition 11.1. We say that w satisfies the Z,, property if there exists
some constant 7 > 0 such that for any cube Q € AD}, and any set A C R?
with Q NST 43 C A, if

(11.1) Skiaxa(z) >1/4 forallx € Q\ ST ka3,
then w(AN2Q) > 7w(Q).

With this new definition, Lemma 5.2 still holds. The new proof is a
variation of the former one. On the other hand, Lemma 5.3 changes.
Let us state the new version:

Lemma 11.2. Suppose that w satisfies the Z, property. Let Q € ADy,
and A C R? be such that ANQNST 4 =@. Let {P;}; be a family of
cubes with finite overlap such that AN %Q C U, P, with P; € AD oo 44
and £(P;) > 0 for all i. There exists some constant 6 > 0 such that
if W(ANP;) < 6u(P;) for each i, then

(11.2) w(2Q \ A) > Tw(Q),

for some constant T > 0 (depending on Zs). If, moreover, w(2Q) <
Criw(Q), then

(11.3) w(AN2Q) < (1 - 05 ) w(2Q).

The proof is analogous to the proof of Lemma 5.3, and it is left for
the reader.

The results stated in the other lemmas in Sections 5-10 remain true
in the new situation. However, the use of the Z., condition is basic
in the proofs of Lemma 5.4, the implication (e) = (c) of Lemma 4.1,
Lemma 9.2, Lemma 10.1, and Lemma 10.2. Below we will describe the
changes required in the arguments. In the rest of the lemmas and results,
the proofs and arguments either are identical or require only some minor
modifications (which are left for the reader again).
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Changes in the proof of Lemma 5.4. The proof is the same until (5.5),
which still holds. Given Q; € ADy, it is easily seen that if y € ST k13N
Qi; then T*(fXBQz)(y) < Cgle(y) By (55), if we choose § < 5/2031,
then Ay NQ;NST i3 =0.

On the other hand, now the estimate (5.6) is valid for y € Q;\ ST k3.
Then we deduce Sky3x20,\4,(y) > 1 for y € Q; \ ST k43, and by the
Z s, condition we get w(2Q; \ Ax) > Tw(Q;). Arguing as in (5.7), we
obtain w(Ay) < p,w(Qy).

Changes in the proof of the implication (e) = (c) of Lemma 4.1. The sets
Qx, G and B, are defined in the same way. The estimates for w(Q;NG )
are the same.

As shown in (7.11), if z € ByNQ;, with Q; € ADp, then Sk (fxv,)(z) >
Ci6\ # 0 for some k > h + 6. This implies z & ST p14. Now the
arguments used to prove that w(By) < mw(2y) are still valid, because
ByxNQ; ﬂSTh+4 = .

Changes in the proof of Lemma 9.2.

The construction. The construction is basically the same. The only
difference is that now we must be careful because the cubes Q! (and Q¥
for k > 1) may fail to exist due to the existence of stopping points. In
the first step of the construction (k = 1), we circumvent this problem
as follows. If z € R} \ 8T g1 115, then we take a p-0-(100, 3)-doubling

cube QL € A’Dg]1+16. If z € le- ﬂSTg}HS, we write v € AS;. We
consider a Besicovitch covering of Qo N \ .AS1 with this type of cubes:
Qo N Qo \ AS1 C U,ey, @i, and we set Ay := {J;;, Qi We operate in
an analogous way at each step k of the construction.

The estimate of fQo |N"a|Pw dp. Here there are little changes too. Equa-
tion (9.3) is proved inductively in the same way. Let us see the required
modifications in the first step. The definition of By is different now:
By :={z € Qo \ ST h4s5 : Sptszo(x) < eAo}. With this new definition,
(9.5) holds. On the other hand, notice that fQoﬁSTh+5 |N' 200 P dpy =
0, since N"*205(2) =0 if 2 € STy, 5.

The definition of Dy does not change, and all the other estimates
remain valid. In particular, (9.8) holds now too, because N#=1205(z) =
0 if x € AS; (recall that the definition of A; has changed).

The changes required at each step k are analogous.

The estimate of Y, 0(Ay). The former arguments remain valid in the
new situation.
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Changes in the proof of Lemma 10.1 and Lemma 10.2. The proof of
Lemma 10.1 does not change. In the arguments for Lemma 10.2, we
have to take into account that if z € By and § is small enough, then
x & SThpipm-1. Indeed, if z € @, with Q; € ADjy, then we have
T(fxur)(x) = a=lak+2 and Si(fxur)(z) < SaF for h—M < j < h+M.
These inequalities imply S; (fxy+)(z) > goa® # 0 for some j > M + 1 if
0 is small enough. In particular,lzzr & ST hinr-1.

If we assume M > 20, for instance, then all the cubes P, that appear
in the proof of Lemma 10.2 exist and are transit cubes, and the same
estimates hold.

12. Relationship with RBMO(u) and final remarks

Let us recall one of the equivalent definitions of the space RBMO(u)
introduced in [To2]. We say that f € L{ _(u) belongs to RBMO(u) if
there exists a collection of numbers {fg}ocre C R such that

/Q (@) — fol du(z) < Cy u(2Q)

for each cube @ C R? and

(12.1) [fo — frl < Cr(1+6(Q, R))

for all the cubes @, R with Q C R. The optimal constant C is the
RBMO() norm of f, which we denote by || f||..

Let 1 < p < oco. In general, if w € Z,, then logw ¢ RBMO(u).
This follows easily from Example 2.3. Indeed, in this case it can be
checked that 6(0, I) < C uniformly on k. As a consequence, for all f €
RBMO(u), the numbers f7, are bounded uniformly on k. If moreover
f is constant on each interval I, then we deduce f € L*°(u). However,
the weight wy of Example 2.3 is constant on each interval I, and it is
not a bounded function, and the same happens with logwy.

On the other hand, if f € RBMO(y), then there exists some & >
0 depending on || f|+, p such that e/ € Z,. To prove this, first we
will show in the following proposition that a weight of the type e/,
with f € RBMO(p), satisfies a (rather strong) property in the spirit of
the classical A, condition.
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Proposition 12.1. Let 1 < p < oo. If f € RBMO(u) and € =
(| fll«,p) > 0 is small enough, then

1 ! 1 PR C330(Q.R)
12.2 —/eE d,u-{—/esppdu} < Cgge™330t it
122 ) J, W2R) Jr &

or all the cubes Q, R with Q C R or R C Q, where C3o, Cs3 are positive
f p
constants depending on n, d, Cjy.

Proof: The funcions f € RBMO(u) satisfy an inequality of John-Niren-
berg type (see [To2, Theorem 3.1]), which implies that for some con-
stants Cs4, C35 and any cube @ and A\ > 0 we have

/Qexp(034|f($) = fel/Ifl+) du(z) < Cs51(2Q).

If we take e < C3ymin(1,p/p")/||f]l«) and we use (12.1), we deduce
(12.2). O

Remark 12.2. For 1 < p < 0o, in Lemma 4.1, the statement (e) can be
replaced by the following weaker assumption:

(e’) For all k € Z and all cubes @,
(12.3) /{D2 ISk(wxQ) o du < Cw(2Q),
with C independent of k and Q.

To see this, only some minor changes (which are left for the reader) in
the proof of Lemma 4.1 are required.

Since (e) and (¢’) in Lemma 4.1 are equivalent, we deduce that the
statement (e) of Lemma 4.2 can be weakened in the analogous way: We
only need to compute both integrals over @), and on the right hand side
@ can be replaced by 2Q).

Theorem 12.3. Let1 < p < oco. If f € RBMO(p) and e = (|| f]|+,p) >
0 is small enough, then ef € Zp.

Proof: By the preceding remark, we only need to show that w := ef
satisfies (12.3) and its corresponding dual estimate. Moreover, for sim-
plicity we will assume that there are no stopping cubes.

Let us see that (12.3) holds any given cube @ € ADj. We may
assume k > h — 3, since Si(wxg)(z) < 02?2_3 Shi(wxg)(z) for x €
Q N supp(p).
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For each x € @ Nsupp(u), let R, be a doubling cube centered at x,
with R, € ADjq10,k4+9- Let [J;, Ri O @ Nsupp(u) be a Besicovitch
covering of @ N supp(p) with this type of cubes. Notice that R; C 2Q
for all 7. Let Q, € ADy, —2 be some cube centered at . If x € R;, then
R; C Qg because ((R;) < £(Q,). Since 6(R;,Q,) < C, by (12.2) we

have
1 1 p/p/
_ wdp - —/ od ] < C.
w(2Qx) /Qz a |:,U(Ri) . H

Taking a suitable mean over cubes @, centered at x (as in the proof of
Lemma 3.11), we obtain

Skw(x) - [mg, (@)]"" <,
for all x € Q. Then we get

/ |Sk (wxo ) o dp < Z |Sk )P o dp

O'Rl' Rz
SCZ%—CZ#'

By Holder’s inequality, 1 < mg,w - (mg,o)?~ 1. Thus

/ [Sk( wXQ)|p odu < CZmR w-p(R;) = CZw(Ri) < Cw(2Q).

The estimate dual to (12.3) is proved in an analogous way. O

We will finish with some remarks and open questions:

Remark 12.4. (a) Using Lemma 9.2 and modifying a little the proof

of the implication (e) = (c) of Lemma 4.1 one can show that
w € Z;V"ak if and only if there exists some A > 1 such that
J N(wxg)?odp < Cw(AQ) for all cubes Q. We don’t know if
this holds with A =1 too.

(b) We don’t know if Z, = Z;V"ak.

(c) In the case p = 1, a statement such as (e) in Lemma 4.1 is missing.
We don’t know if there is a reasonable substitute.
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