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1. Introduction, In this paper an algebraic characterization of the
fixed ideals in a certain class of function rings is given (an ideal in a
function ring is fixed if there is a point at which all functions in the
ideal vanish). This class of function rings includes the rings of all
real-, complex-, or quaternion-valued continuous functions on a normal
Hausdorff space whose points are G-delta sets and the ring of r-fold
differentiable functions on an r-differentiable manifold whose coordinate
covering is neighborhood finite. For these rings of functions we con-
struct the underlying space from the fixed ideals in the same way that
Gelfand and Kolmogoroff [3] have constructed a compact space from
the non-unit ideals in its ring of all real-valued continuous functions.

We also show the existence of certain homomorphisms from the
automorphism groups of these function rings into the group of homeo-
morphisms of the underlying space onto itself. In § 5 we find that an
isomorphism between the rings of all r-differentiable functions on two
r-differentiable manifolds can be extended to an isomorphism between
the rings of all continuous functions on these manifolds and that the
homeomorphism determined by this isomorphism is differentiable.

2. The general case.

(2.1) By & we mean a ring of functions from a regular Hausdorff
space X to a division ring D having the following properties :

Pi- If f is in & , then the set of zeros of f, which we denote by
Z(f), is closed.

Pz. If x is not in a closed set F, then there is a function f in
& such that Z(f) contains a neighborhood of F but does not
contain x.

Pi. If f in & does not vanish at any point of a closed set F, then
there is a function g in & such that fg (and also gf) has the
value 1 at every point of F.

Pi. For each x in X there is a function fx in /Jp which vanishes
at x and only at x.
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(2.2) By the "support of a function f" in &, which we denote by
Sp(/), we mean the set Cl(X—Z(f)), From the properties of closure
we have:

(i)

(ii) Int Sp (/) = X - Cl Int Z(f),

(iii) Sp(/) = ClIntSp(/).

By the i ' annihilator of a function f" in &, which ive denote by
A(f), we mean the set of all g in & such that fg=0 (and hence gf=
0). For any ring of functions with values in a division ring the
annihilator of an element is a two-sided ideal. In addition we have

and A(f) = & if an only if /=0.

(2.3) LEMMA. If f and g are in & and gφQ, then Z(f) and
Sp (g) are disjoint if and only if f — A(g) has an inverse in the residue
class ring &—

Proof. Since gφQ, then Z(g)φX and Sp (g) is not empty. If /
does not vanish at any point of Sp(#), then there is a function k in
& such that fh and hf have the value 1 at every point of Sp(#),
that is, fh=ί (mod A(g)) and hf=ί (mod A(g)). Hence f~A(g) has an
inverse in & —A(g). If f — A(g) has an inverse in & —A(g)y then there
is a function h in & such that (fh — 1) is in A(g)9 that is (fh — 1)
vanishes at every point of Sp(#). Hence / does not vanish at any
point of Sp(#).

(2.4) If f is in &, let H(f) be the set of all nonzero g in &
such that f — A(g) has an inverse in the ring & —A(g). An ideal I in &
is "bounded" if there is a function f in & without an inverse such
that H(f) contains H(g) for every g in I. We say that "I is bounded
by f". An ideal which is maximal in the set of all bounded ideals is
called a "maximal bounded ideal". The set of all maximal bounded
ideals is denoted by M[&"]. We observe that an ideal contained in a
bounded ideal is bounded.

(2.5) LEMMA. For f and g in &, Z(g) contains Z(f) if and only
if H(f) contains H(g).

Proof. From (2.3) and (2.4) H(f) is the set of all functions h in
& such that Z(f) and Sp(A) are disjoint. Hence if Z(f) is a subset
of Z(g)9 then H(f) contains H(g). Suppose there is a point x in Z(f)
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but not in Z(g), then by Pλ there is a function h in & which is
different from zero on a neighborhood of x but vanishes on a neighbor-
hood of Z(g). For this function h, Z(f) meets Sp(/&) but Z(g) does not.
Hence if Z(f) is not a subset of Z(g), then if(/) does not contain H(g).

(2.6) THEOREM. If & is a ring of functions from a regular
Hausdorff space X to a division ring D which satisfies Pl9 P2, P3, and
P4 of (2.1), then an ideal I in & is a fixed ideal if and only if it is a
bounded ideal.

Proof. If / is a fixed ideal, then there is a point x at which all
elements of I vanish. From P4 there is a function fx in & which
vanishes at x and only at x. For every g in /, Z(g) contains Z(fJ,
that is H{fx) contains H(g). Since fx has no inverse, / is bounded. If
/ is bounded by a function / in & without an inverse, then Z(f) is
a subset of Z(g) for every g in /. Since Z(f) is not empty, / is fixed.

(2.7) For x in X, I(x) means the fixed ideal {fe & \f(x) = 0}.
From (2.6) an ideal is a maximal bounded ideal if and only if it is of
this form.

(2.8) Let A be a subset of M\&\ If we define

JeCl(A) if and only if

for A nonempty and Cl(A)=A for A empty, then M\&~\ is said to have
the "Stone topology". We denote the set M[&] with the Stone topology
by X*.

(2.9) THEOREM. // & is a ring of functions from a regular
Hausdorff space X to a division ring D satisfying Pu Pz, P3, and P4 of
(2.1), then X is homeomorphic to X*.

Proof. From (2.7) the mapping x->I(x) is a one-to-one mapping of
X onto X*. Let ae C1(A), ACX, and let A* be the image of A under
the mapping x-+I(x), then every function in & vanishing on A (that
is, every function in Γ\xeAI{x)= Γ\ieA^) also vanishes at a (that is, is in
I{a)) and I{a) is in C1(A*). If, however, a is not in G\{A), then there
is a function / in ^ vanishing on A but not at a. Then / is in
Γ\ieA*I but not in /(α), and I(a) is not in C1(A*). Hence the corre-
spondence x->I(x) is a homeomorphism of X onto X*.

(2.10) COROLLARY. If the rings Λ and ^ ' of functions from
the regular Hausdorff spaces X and Xf to the division rings D and Df,
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respectively, satisfy Pu P2t P3, and Pi of (2.1) and are isomorpkic, then
the spaces X and Xf are homeomorphic.

(2.11) Let i: &-*&' be the isomorphism referred to in the
preceding paragraph. With the point x in X we associate the x' (which
exists uniquely) in X' which is the common zero of all functions in the
isomorphic image of the ideal consisting of all functions in SJ& which
vanish at x, that is,

One can show that the correspondence x-*x' is a homeomorphism from
X onto X'. We will denote this homeomorphism by φ(i) and refer to
it as "the homeomorphism from X onto Xr corresponding to (or deter-
mined by) the isomorphism i from / ^ onto &f"

(2.12) By S</{.&) we mean the automorphism group of ^ , By
<^{X) we mean the homeomorphism group of X, that is the group of
all homeomorphisms of X onto itself. If iγ and iz are in s/(ss&), then
it follows from (2.11) that Φ(iii2) = φ(iι)φ('h)> Hence we have the theorem
of the following paragraph.

(2.13) THEOREM. The mapping φ: s/(/^)~^β^(X) is a homo-
morphism from the automorphism group of /^ into the homeomorphism
group of X.

(2.14) For x in X we denote the set of values [f(x)\fe:j^} by
V(x). From P2 and Pό the set V(x) is a subdivision ring of D. The
correspondence f-*f(x) is a homomorphism from & onto V(x) with
kernel I(x), hence the correspondence f—I(x)->f(x) is an isomorphism
from the residue class ring & —I(x) onto V(x). Since & —I(x) is,
therefore, a division ring, I(x) is a maximal ideal, that is, every maximal
bounded ideal is a maximal ideal.

(2.15) LEMMA. // f->ff is an isomorphism from />? onto ̂ r and
x~>xf is the corresponding homeomorphism, then the correspondence
f{x)~+fr{x') is an isomorphism from V(x) onto Vf(;xf).

Proof. Since Γ(xr) is the isomorphic image of I(x)9 the corre-
spondence /—/(.τ)-*/' —I'(x') is an isomorphism. Since f{x)~>f—I{x) and
f'—F(xf)-*f'(xf) are isomorphisms, f(x)-+f'(x') is an isomorphism from
V(x) onto V'{x').

3* Rings of continuous functions,

(3.1) Cech [2] has showτn that a subset of a normal Hausdorff
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space is the zero set of some real-valued continuous function if and
only if it is a closed Gδ set. Using his result and Urysohn's lemma
concerning real-valued continuous functions on a normal space, one
may show that the rings — C(X, R) of all real-valued continuous func-
tions on X, C{X, K) of all complex-valued continuous functions on X, and
C(X, Q) of all quaternion-valued continuous functions on X— satisfy Pu

P2, P3, and P4 of (2.1) if X is a normal Hausdorff space all of whose
points are Gδ sets. Hence we have the following.

(3.2) THEOREM. Let X and Xf be normal Hausdorff spaces all of
whose points are G8 sets and let F denote either the real field, the com-
plex field, or the quaternion ring. If C(X, F) and C(X', F) are iso-
morphic, then X and X' are homeomorphic.

(3.3) According to results obtained by Gelfand and Kolmogoroff [3],
Hewitt [6], and Gillman, Henriksen, and Jerison [4], Theorem (3.2)
holds for completely regular spaces satisfying the first axiom of counta-
bility. There are, however, normal spaces all of whose points are Gδ

sets which do not satisfy the first axiom of countability (cf. Bing [1,
p. 180, Example C]).

(3.4) For the rings C(X, F) it can be established that the homo-
morphism φ : s/{C(X, F))-^£^(X) of (2.11) and (2.13) is a homomorphism
onto

4* Rings of real-valued functions.

(4.1) If & is a ring of real-valued functions on X satisfying Pl9

P2, P3, and P4, then for each x the set of values V(x)={f(x)\feR}
is a subfield of the real field R. We now introduce an additional
property for the ring & :

P5. For each x in X the set of values V(x) is a subfield of the real
field R which has only one isomorphism into R, the identity
isomorphism.

Property P5 holds if V(x)=R; hence C(X, R) satisfies P5. There are
rings of real-valued functions satisfying Pl9 P2, P3, Pi, and Pΰ which
contain discontinuous functions as is shown by the example of the
following paragraph given to the author by D. W. Dubois.

(4.2) EXAMPLE. Let X be the closed interval [0, 1], a be a finite
subdivision {0=^0, #i, , a?w-i, ^ = 1 } of X, and A be the set of all a.
Let 0(aO=exp(α?) f °r %Φ§ and 0(0) = 0. Let B{ά) be the set of all
real-valued functions / on X such that
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f(x) ) [[ , Xi-i<P<JXι,i> l,2r,n,
Qtix, Θ(X))

where Pi(x, θ) and q.i(x, θ) are polynomials in x and θ(x) such that f(x)
is continuous at ^ t, x2, ", xn-2> a n d #w.-i and q^x, θ(x)) does not vanish
for Xi-i<^x<L.Xi for any ΐ. If <^ = UΛei-δ(«)( then / ^ is a ring of
real-valued functions which satisfy Pu P2, P3, P±, and P 5 but some of
which are discontinuous.

(4.3) Theorem (4.4) and (4.5) may be established by using P5 and
the results of § 2.

(4.4) THEOREM. If & and <β#' are ίsomorphic rings of real valued
functions on regular Hansdorff spaces X and Xf satisfying Pίf P2,
P3, Pi7 and Pδ, i is the isomorphism from, & onto &', and h is the
corresponding homeomorphism from X onto Xr, then:

(i) f(x)=(if)(h(x)) for all f in R and x in X. Hence f is bounded
above {below) if and only if (if) is bounded above (below); lub / = l u b ff,
gib / = g i b / 7 ; and the subrings of all bounded functions in R and
R' are isomorphic.
(ii) There is an isomorphism i* from C(X, R) onto C(X', R) such
that i(f)=i*(f) for all f in C(X,

(4.5) THEOREM. // & is a ring of real-valued functions on a
regular Hausdorff space satisfying P 1 ? P2, Pd, Pif and P5, then the homo-
morphism φ of (2.11) and (2.13) is an isomorphism of S/(R) into

From (3.4) and (4.5) we have the following.

(4.6) THEOREM. The groups s/(C(X, R)) and <%*(X) are iso-
morphic.

5. Rings of continuously differential)le functions*

(5.1) If Cr(M) is the ring of r-fold continuously differentiate
functions on an r-differentiable manifold M with a neighborhood-finite
covering of coordinate neighborhoods (r may be either a positive integer
or the symbol oo), then Cr(M) satisfies PL, Pa, P3, P±, and P5. The
theorem of the following paragraph may be obtained.

(5.2) THEOREM. If Cr(M) and Gr\Mr) are isomorphic, then M and
M' are homeomorphic. The homeomorphism h determined by the iso-
morphism is differentiable (that is, f(h) is in Cr(M) if f is in Cr'(M'))
and the isomorphism can be extended to an isomorphism from C(M, R)
onto C(Mf, R).
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6. Additional remarks* Since the above was written the author
has observed that P± may be replaced by the weaker hypothesis:

PI. For each x in X there is a pair of functions g and h in ,y?
such that x = Z(g) — Z(h).

If /̂ ? satisfies Pu PZf P>, and Pf, one can show that an ideal / is fixed
if and only if there is a pair of functions g and h in & such that
H{g) does not contain H(h) but H(gh) does contain H(fh) for every /
in the ideal /. (Lemma (2.5) holds as before.) The results of (2.9)
through (2.15) may then be established if X* is defined to be the set
of maximal fixed ideals with the Stone topology.

If X is a completely regular, locally-compact space all of whose
points are Gδ sets, then the rings C0(X, R), C0(X, K), and CQ(X, Q) of
all real-, complex-, or quaternion-valued continuous functions with com-
pact supports satisfy Pu P2, P3, and Pf. Hence it follows that they
determine X. (This result for C0(X, R) has already been established
by Shanks [7] without assuming that points are Gδ sets). One can
also show that the automorphism group s/(CQ(X, R)) is isomorphic to
JY(C(X, B)) and ^T(X).
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