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UNIQUENESS, CONTINUATION, AND NONOSCILLATION
FOR A SECOND ORDER NONLINEAR

DIFFERENTIAL EQUATION

J. W. HEIDEL

This paper considers the differential equation (1) y" +
f(t)yy = 0 where f(t) is nonnegative and continuous on [0, oo)
and γ is the quotient of odd, positive integers. For this
equation we discuss uniqueness of the zero solution, continu-
ation of solutions to [0, oo), and nonoscillation of solutions.
Using a relation between uniqueness and continuation on the
one hand and nonoscillation on the other, we can show that
the condition f'(t) ^ 0 in Atkinson's nonoscillation theorem
{Pacific J. Math. 5 (1955), 643-647), and in a corresponding
theorem for 0 < γ < 1, cannot be removed entirely.

The equation to be considered is

(1) y" + ΛW = 0

where f(t) is nonnegative and continuous on [0, oo) and 7 = p/q where
p and q are odd positive integers. These assumptions will hold through-
out this paper. We will be concerned only with real valued solutions.
Coffman and Ullrich [2] have shown that if, in addition, f{t) is positive
and locally of bounded variation on [0, oo) and 7 > 1, then all solutions
can be continued to [0, oo). Our purpose here is threefold. First we
give a result involving uniqueness of the zero solution of (1) which is
analogous to Coffman and Ullrich's, but for the case 0 < 7 < 1. Secondly
we extend these two results to allow f(t) to have isolated zeros.
Finally, we give a connection between either continuation or uniqueness
on the one hand and the nonoscillation problem for (1).

We begin with some definitions and basic facts. The assumption
on 7 yields that solutions of (1) with real valued initial conditions are
real valued and the negative of a solution of (1) is again a solution.

LEMMA 1. // 0 < 7 < 1, all solutions of (1) can be continued to
[0, oo). If 1 < 7, then there is a unique solution satisfying any set
of initial conditions.

Continuation follows from a theorem of Wintner (Hartman [4, p. 29]).
Uniqueness follows from the local Lipschitz condition. Here we will
be concerned with continuation for 1 < 7 and its analogue for 0 < 7 < 1
which is uniqueness of the zero solution (trivial solution). By definition
we say that the zero solution is unique if any solution y(t) of (1)
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satisfying the initial conditions y(tQ) = y'(tQ) = 0 for some tQ ̂  0 will
then necessarily satisfy y(t) = 0 for all t ^ 0 A nontrivial solution of
(1) which has zero initial conditions at some point will be called singular,
following Kiguradze [6].

LEMMA 2. Suppose 0 < 7 < 1. A nontrivial solution y(t) of (1)
is singular if and only if y(t) has an infinite number of zeros on a
finite interval.

Proof. Suppose y(t) is singular, y\Q + yf\Q > 0, y'fa) + yf\tx) =
0, and t0 < ίlβ Suppose that y(t) has no zero on (ί0, ί j , and that #(ί) >
0 on (t0, tj. Then j/'(ί) is decreasing on (ί0, ί j and therefore contradicts
2/'(̂ ) = 0. If y(t) has a last zero before t19 at ί2, then the same
argument holds on (t2, ί j . Therefore /̂(ί) does not have a last zero
on (tQ, tj), that is, y(t) has an infinity of zeros on (ί0, ί j , clustering at
tx. A similar argument applies if tx < ίo

Conversely, suppose that τ/(ί) has an infinity of zeros on some
finite interval (t0, ί j . Then they cluster at some ί*, ί0 ^ ί* ^ ίx; by
continuity 2/(ί*) = 0, and by the mean value theorem and continuity
y'(t*) = 0.

2. In this section we consider uniqueness of zero solution when
0 < 7 < 1. The techniques are modified from Coffman and Ullrich [2].

THEOREM 1. Suppose that 0 < 7 < 1 and that f(t) is positive and
class C" on [0, 00). Then the zero solution of (1) is unique.

Proof. Suppose that y(t) is a solution of (1) such that (y(t0))2 +
(y'(t0))2 > 0 for some ί0 ^ 0. It suffices to show that (y(t)f + (y'(t))2 > 0
for all t ^ 0. Let tx > t0. Let

φ{t) = JWL(y(t)y+ι + (y'(t))2

7 + 1

Then Φ'(ί) = (2/(7 + l))f'(t)(y(t)Y+ί. Therefore
φ>{t) = -,l

An integration shows that

Φ(t) ̂  Φ(ίo)exp ( -

where $(«) - (2/(7 + l))(|/'(ί) |//(ί)) Since
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\\\f'(x)\/f(s))ds <oo ,

it follows that Φ(t) > 0 for t0 ^ t ^ t,. Therefore (y(t))2 + (y'(t))2 > 0
for ί0 ^ * ^ *i Since t, is arbitrary, (?/(£))2 + (y'(t))2 > 0 for ί0 ^ ί. A
similar argument applies for tx < ίo

REMARK. In their continuation theorem Coffman and Ullrich were
able to replace class C by locally of bounded variation. Their approxi-
mation argument breaks down in our case because we are dealing with
uniqueness rather than continuation.

EXAMPLE 1. The example given by Coffman and Ullrich of an
equation (1) with a noncontinuable solution can be modified to give an
example where the zero solution is not unique, when 0 < 7 < 1. Since
this example will be used later in this paper, we will outline its
construction. The following lemma is a simple modification of a lemma
of Coffman and Ullrich [2].

LEMMA 3. Suppose 0 < 7 < 1. For each positive integer n7 there
exists a continuous function qn(t) on [0,1] with qn(0) = qn(l) = 0 and
such that

( 2) -Z-Z- + (C2 + qn{t))Ur = 0 ,
dt

where C is a suitable constant, has a solution Un(t) satisfying

_ dUJX)^ Qf U M = ^ UΛ1) ^ ( n γ/<w>
dt dt

and having at least two zeros in (0,1). In addition the qn{t) can be
chosen in such a way that each is of bounded variation in [0,1] with

for a suitable k.

Construction of example. Define

0Ί = 0, σn = Σ T Γ I w > 1
Λ=I k2

Note that l i m ^ σn = π2β. Now f(t) and y(t) (which will be the
solution of (1)) are defined on [0, π2/6) as follows,

f(t) = C2 + qn(n2(t - σn))σn ^ t ^ σn+ί

y(t) = (l/n^~r)Un(n2(t - σn))σn ^ t ^ σn+1.
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Define f(t) = C2 for t ^ ττ2/6. Then, as in Coffman and Ullrich [2],
it follows readily that f(t) is positive and continuous on [0, oo) and
that y(t) is a solution of (1) on [0, π2/6). Continue y(t) to [0, oo) by
Lemma 1. Since y(σn) = (l/ni!ί~r) it follows that y(π2β) = y'(π2/6) = 0.

3. In this section we will show that f(t) can have isolated zeros
and continuation and uniqueness will still hold. First of all we state
two nonoscillation theorems which will be needed.

THEOREM A ([1]). Suppose that 1 < 7 and that f(t) > 0, f(t) ^ 0,
0 rg t < 00. If

^s^q(s)ds < 00

then all nontrivial solutions of (1) are nonoscillatory (i.e., have a
finite number of zeros on [0, 00).

THEOREM B ([5]). Suppose that 0 < 7 < 1 and that f(t) > 0,
f(t) ^ 0 , 0 ^ t < 00. If

then all nontrivial solutions of (1) are nonoscillatory.

THEOREM 2. Let 7 > 1. Suppose that on the interval [0, °o)/(ί)
is continuous, locally of bounded variation, and positive except at a
sequence of isolated points {ίj, i = 1, 2, 3, •••. // /(£) is differen-
tiable in a left neighborhood (^ — ε, t^ of each t{ (ε depends on i)
and if for each i the function

A(x) = — *J-
v ; x^

satisfies A'(x) ^ 0 for large x, then any solution of (1) existing at
some tQ^0 can be continued to [t0, 00). Likewise if f(t) is differ-
entiable in a right neighborhood (U, U + ε) of each U (ε depends on i)
and if for each i the function

satisfies A'(x) ^ 0 for large x, then any solution of (1) existing at
some t0 ^ 0 can be continued to [0, ί0].
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Proof. Suppose that yx{t) is defined at ί0. Then by Coffman and
Ullrich's theorem yγ{t) exists on [t0, U) where t{ is the first zero of
f(t) to the right of tQ. Suppose y^t) can't be continued to t{. Then
yx(t) has an infinite number of zeros on [tQ, ti) clustering at tt. Let

U — t

Then (1) is transformed into

( 3 ) w" + A(x)wr = 0

where

yλ(t) is transformed into a solution w^x) of (3). wx(x) exists on
[l/(ti — t0), oo) and is oscillatory (i.e., has arbitrarily large zeros). Also
A(x) satisfies

ί ~sr+2-εA(s)ds < co

for any ε > 0. Since A'(x) ^ 0, Theorem A above says that wL(x) is
nonoscillatory. This contradiction shows that y^t) can be continued
to ti. Therefore, by standard existence theorem, y^t) can be continued
to a neighborhood of tt. By Coίfman and Ullrich's theorem y^t) can
be continued up to the next zero of f(t). Since the zeros of f(t) are
isolated y^t) can be continued to [ί0, °°).

The second part of the theorem follows in a similar manner by
making the transformation

t — ti

REMARK. The transformation in the preceding theorem has been
used previously by Kiguradze [7].

REMARK. Kiguradze [7] has shown that if f(t) < 0 on some inter-
val (tlf t2) then (1), with 7 > 1, has a solution which can't be continued
to the right of t2. Therefore a necessary condition for continuation
of all solutions is f(t) >̂ 0. Whether or not f(t) ^ 0 is sufficient
(together with locally of bounded variation) is an open question.

THEOREM 3. Let 0 < 7 < 1. Suppose that f(t) is class C on
[0, 00) and positive except for a sequence of isolated points {ίj, i =
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1, 2, 3, . Suppose that for each i the function

A(x) =
x

b-+3

satisfies A'{x) <g 0 for large \x\. Then the zero solution is unique
on [0, oo).

Proof. Suppose there is a singular solution yλ(t). Then yt(t) has
an infinite number of zeros clustering at some point t*. By Theorem
1, t* = ti for some i. If the zeros of yx(t) cluster at t{ from the left
(i.e., on (ti — ε, tt) use the first transformation in the proof of Theorem
2. If the zeros of yλ(t) cluster at tt from the right use the second
transformation in the proof of Theorem 2. Thus yλ(t) is transformed
into an oscillatory solution wx(x) of

w" + A(x)wr = 0 .

Since A'(x) ^ 0, this is a contradiction to Theorem B above.

REMARK. By using theorems of Gollwitzer [3], Theorems 2 and 3
can be improved somewhat in the sense that the condition A'(x) ^ 0
can be slightly relaxed.

4. Finally, we will answer a conjecture made in [5] about
Theorem B and a similar question for Theorem A. The question is,
can the condition f(t) > 0, f'(t) <Ξ 0 in Theorems A and B be replaced
by the weaker condition f(t) ^ 0. The answer is no in both cases.

EXAMPLE 2. Coffman and Ullrich have shown that there is a
continuous function f(t) > 0 defined on [0, oo) and a solution φ(t) of
(1) such that φ(t) exists only on a finite interval [t0, tx) and has an
infinity of zeros clustering at tλ. Using the transformation of the pre-
ceding section φ(t) is transformed into a solution w(t) of

w" + A(x)wr = 0

where

A(x) = v *' , x ^

and w(x) is oscillatory on [l/(ί2 — t0), oo). Also

[°°xrA(x)dx
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This shows that the condition ff(t) ^ 0 can't be removed in Theorem A.

EXAMPLE 3. Similarly, by Example 1 above, let f(t) be a positive
and continuous function on [0, oo) and ψ(t) a solution of (1) for 0 <
7 < 1 such that ψ(t) is singular, ψitj = ψ\t^) — 0, and ψ(t) has an
infinity of zeros on some interval [t0, tλ) clustering at tx. Then ψ(t)
is transformed by the above transformation to w(x) which is a solution of

w" + A(x)wr = 0, x ^ I/it, - ί0)

and w(x) is oscillatory on [l/fa — t0), oo). Since

l xA(x)dxx < oo

it is clear that f'(t) ^ 0 can't be removed from Theorem B.

REMARK. Again, results of Gollwitzer [3] show that the condition
f'(t) ^ 0 can be weakened slightly.
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