TENSOR AND TORSION PRODUCTS OF SEMIGROUPS

Ronald Fulp

Abstract

This paper is concerned with the study of tensor and torsion functors on the category of abelian semigroups. We show that such functors exist, that they satisfy the universal diagram properties required of them in other branches of algebra, and that many of the theorems obtained for tensor and torsion products of modules may also be obtained in this setting. In particular the tensor functor \otimes_{0} is exact relative to the category of identity preserving homomorphisms. We determine certain structural characteristics of \otimes. If E and F are maximal semilattice homomorphic images of abelian semigroups S and T respectively, then $E \otimes F$ is the maximal semilattice homomorphic image of $S \otimes T$. If G and H are maximal subgroups of S and T then $G \otimes H$ may be identified as a subgroup of $S \otimes T$ and if G and H are the groups of units of S and T respectively, then $G \otimes H$ is the group of units of $S \otimes T$. Moreover, the tensor product of abelian inverse semigroups is an abelian inverse semigroup. Similar results are obtained for the torsion functor.

1. Basic properties of tensor. Throughout this paper A and B will denote arbitrary abelian semigroups unless stated otherwise. \mathscr{F} will denote the semigroup of all functions of finite support from $A \times B$ into the additive semigroup N of nonnegative integers under the operation of pointwise addition. Thus \mathscr{F} is the free abelian semigroup on $A \times B$ with an identity adjoined and will be referred to as the free abelian semigroup on $A \times B$. For $(a, b) \in A \times B,\langle a, b\rangle$ will denote the element of \mathscr{F} having value 1 at (a, b) and having value 0 elsewhere. Let σ denote the relation on \mathscr{F} such that $(x, y) \in \sigma$ if and only if either $x=y$ or one of the ordered pairs (x, y) or (y, x) is of the form
(1) $(\langle a+b, c\rangle,\langle a, c\rangle+\langle b, c\rangle)$ or
(2) $\langle\langle a, c+d\rangle,\langle a, c\rangle+\langle a, d\rangle)$
for $a, b \in A$ and $c, d \in B$. The set of all ordered pairs $(x+t, y+t)$ for $(x, y) \in \sigma$ and $t \in \mathscr{F}$ will be denoted by ν and ρ will denote the transitive closure of ν. Thus ρ is the smallest congruence on \mathscr{F} containing pairs of the form (1) and (2). We denote the semigroup \mathscr{F} / ρ by $A \otimes B$ and we say that $A \otimes B$ is the tensor product of A and B. Let ω denote the function from $A \times B$ into $A \otimes B$ defined by $\omega(a, b)=\langle a, b\rangle \rho$. For $(a, b) \in A \times B, a \otimes b$ will denote $\omega(a, b)$ and will be called the tensor product of a and b. Note that if $a_{0} \in A$, then
the function defined by $b \rightarrow \omega\left(a_{0}, b\right)$ is a homomorphism from A into $A \otimes B$. Thus ω is a homomorphism in its first argument. It is also a homomorphism in its second argument. Any such function will be called a bihomomorphism. If a bihomomorphism is an identity preserving homomorphism in each of its arguments, then it is called an identity preserving bihomomorphism.

If each of A and B contains an identity (denoted 0 in each semigroup), then σ_{0} will denote the relation on \mathscr{F} which contains σ and which also contains all ordered pairs of the form:

$$
(\langle a, 0\rangle, 0),(0,\langle a, 0\rangle),(\langle 0, c\rangle, 0),(\langle c, 0\rangle, 0)
$$

for $a \in A$ and $c \in B$. Define ν_{0} and ρ_{0} analogously. Then $A \otimes_{0} B$ will denote $\mathscr{F} \mid \rho_{0}, \omega_{0}$ will denote the function defined by $\omega_{0}(a, b)=\langle a, b\rangle \rho_{0}$, and $a \otimes_{0} b$ will denote the element $\omega_{0}(a, b)$ of $A \otimes_{0} B$. Note that ω_{0} is an identity preserving bihomomorphism.

Proposition 1. If S is any abelian semigroup and φ is a bihomomorphism from $A \times B$ into S, then there is a unique homomorphism φ^{*} from $A \otimes B$ into S such that the diagram

is commutative. If one assumes that A, B, and S have identities and that φ is an identity preserving bihomomorphism, then there is an identity preserving homomorphism φ^{*} from $A \bigotimes_{0} B$ into S such that $\varphi=\rho^{*} \circ \omega_{0}$.

The proof is straightforward and is omitted.

Let \mathscr{S} denote the category whose "objects" are abelian semigroups and whose "morphisms" are semigroup homomorphisms. Let \mathscr{S}_{0} denote the category whose "objects" are abelian semigroups each having an identity and whose "morphisms" are identity preserving semigroup homomorphisms.

Suppose $A, B, A^{\prime}, B^{\prime}$ are in the category \mathscr{S} and that $\varphi: A \rightarrow A^{\prime}$ and $\theta: B \rightarrow B^{\prime}$ are morphisms of \mathscr{S}. The function α from $A \times B$ into $A^{\prime} \otimes B^{\prime}$ defined by $(a, b) \mapsto \varphi(a) \otimes \theta(b)$ is a bihomomorphism (which is identity preserving if φ and θ are) and thus there is a unique homomorphism, denoted $\varphi \otimes \theta$, such that the diagram

is commutative. In case φ and θ are identity preserving one obtains a similar diagram for $\boldsymbol{\otimes}_{0}$. From these remarks it is easy to see that the following proposition is true.

Proposition 2. \otimes is a functor from $\mathscr{S} \times \mathscr{S}$ into \mathscr{S} which is covariant in each of its arguments. Moreover, if φ and θ are morphisms of \mathscr{S} which are onto, then so is $\varphi \otimes \theta$. A similar statement for $\boldsymbol{\otimes}_{0}$ holds relative to the category \mathscr{S}_{0}.

Assume that for each λ in some set Λ, A_{λ} is an object in \mathscr{S}_{0}. The direct sum of the family $\left\{A_{\lambda}\right\}_{\lambda_{\in}}$, denoted $\sum_{\lambda} A_{\lambda}$, is the subsemigroup of the direct product of $\left\{A_{\lambda}\right\}_{\lambda \in A}$ consisting of those members of the product of the form $\left\{a_{\lambda}\right\}_{\lambda_{\in A}}$ where the set of $\lambda \in \Lambda$ such that a_{λ} is not the identity of A_{2} is finite.

The following proposition has a proof similar to the proof of the corresponding theorem for abelian groups and is omitted.

Proposition 3. If $\left\{A_{\lambda}\right\}_{\lambda \in \Lambda}$ and $\left\{B_{\mu}\right\}_{\mu \in \Omega}$ are families of semigroups each member of which is abelian and has an identity, then

$$
\left(\sum_{\lambda} A_{\lambda}\right) \otimes_{0}\left(\sum_{\mu} B_{\mu}\right) \cong \sum_{\lambda} \sum_{\mu}\left(A_{\lambda} \otimes_{0} B_{\mu}\right)
$$

In other investigations where the notion of a tensor product plays an important role one also has the notion of an exact sequence and a corresponding theorem which yields a relationship between the two ideas. We wow present a definition of "exact sequence" which preserves that relationship for the cotegory \mathscr{S}_{0}.

If S is an abelian semigroup and φ is a homomorphism with domain S, then the kernel of φ, denoted $\operatorname{ker} \varphi$, is the relation on S defined by $(x, y) \in \operatorname{ker} \varphi$ if and only if $\varphi(x)=\varphi(y)$. If φ is a homomorphism from some abelian semigroup T into S, then the image of φ, denoted im φ, is the relation on S defined by $(x, y) \in \operatorname{im} \varphi$ if and only if there exists $t_{1} \in T, t_{2} \in T$ such that $x+\varphi\left(t_{1}\right)=y+\varphi\left(t_{2}\right)$. Note that $\operatorname{ker} \varphi$ and im φ are always congruences. If A, B, and C are abelian semigroups, φ is a homomorphism from A into B, and θ is a homomorphism from B into C, then we say that $A \xrightarrow{\varphi} B \xrightarrow{\theta} C$ is an exact sequence if and only if $\operatorname{ker} \theta=\operatorname{im} \varphi$. Unlike the situation for abelian groups one may have $A \xrightarrow{\varphi} B \xrightarrow{\theta} C$ exact and C trivial (C
has only one element) and yet not have φ onto. If we wish to indicate that φ is onto B we write $A \xrightarrow{\varphi}>B$. Similarly, if we write $\varphi: A>\rightarrow B$, then we mean that φ is one-to-one.

Proposition 3. The functor $\boldsymbol{\otimes}_{0}$ is right-exact on $\mathscr{S}_{0} \times \mathscr{S}_{0}$. More generally, if A, B, C, and D are abelian semigroups each having an identity and if φ and θ are identity preserving homomorphisms such that

$$
A \xrightarrow{\varphi} B \xrightarrow{\theta}>C
$$

is an exact sequence,then the sequences
(1) $A \otimes_{0} D \xrightarrow{\varphi^{*}} B \otimes_{0} D \xrightarrow{\theta^{*}}>C \otimes_{0} D$, and
(2) $D \otimes_{0} A \xrightarrow{\bar{\varphi}} D \otimes_{0} B \xrightarrow{\bar{\theta}}>D \otimes_{0} C$, are exact where $\varphi^{*}, \theta^{*}, \bar{\varphi}$ and $\bar{\theta}$ are the natural maps induced from φ and θ via the tensor functor $\boldsymbol{\theta}_{0}$.

Proof. It is sufficient to prove that (1) is exact since the proof of (2) is analogous.

First assume $(x, y) \in \operatorname{im} \varphi^{*}$. We show that $(x, y) \in \operatorname{ker} \theta^{*}$. Since $(x, y) \in \operatorname{im} \varphi^{*}$, there exists $p, q \in A \bigotimes_{0} D$ such that $x+\varphi^{*}(p)=y+$ $\varphi^{*}(q)$ and consequently

$$
\theta^{*}(x)=\theta^{*}(x)+\theta^{*}\left(\varphi^{*}(p)\right)=\theta^{*}(y)+\theta^{*}\left(\varphi^{*}(q)\right)=\theta^{*}(y)
$$

Thus $(x, y) \in \operatorname{ker} \theta^{*}$.
We now show that $\operatorname{ker} \theta^{*} \cong \operatorname{im} \varphi^{*}$. First we show that there is a function α from $C \times D$ into $\left(B \otimes_{0} D\right) /$ im φ^{*} such that for $(c, d) \in C \times D$

$$
\alpha(c, d)=\left(\theta^{-1}(c) \otimes_{0} d\right) \operatorname{im} \varphi^{*}
$$

where $\theta^{-1}(c)$ denotes any element of B such that $\theta\left(\theta^{-1}(c)\right)=c$. To see that α is well-defined, assume $b, b^{\prime} \in B$ such that $\theta(b)=c=\theta\left(b^{\prime}\right)$. Then there exists $a, a^{\prime} \in A$ such that $b+\varphi(a)=b^{\prime}+\varphi\left(a^{\prime}\right)$. If $d \in D$, then

$$
\begin{aligned}
\left(b \otimes_{0} d\right)+\varphi^{*}\left(a \otimes_{0} d\right) & =[b+\varphi(a)] \otimes_{0} d=\left[b^{\prime}+\varphi\left(a^{\prime}\right)\right] \otimes_{0} d \\
& =\left(b^{\prime} \otimes_{0} d\right)+\varphi^{*}\left(a^{\prime} \otimes_{0} d\right)
\end{aligned}
$$

and $\left(b \otimes_{0} d, b^{\prime} \otimes_{0} d\right) \in \operatorname{im} \varphi^{*}$. Thus α is well-defined and is clearly an identity preserving bihomomorphism. Let α^{*} denote the induced homomorphism from $C \otimes_{0} D$ into ($B \otimes_{0} D$)/im φ^{*}. A straightforward computation now shows that if $(x, y) \in \operatorname{ker} \theta^{*}$, then

$$
x \operatorname{im} \varphi^{*}=\alpha^{*}\left(\theta^{*}(x)\right)=\alpha^{*}\left(\theta^{*}(y)\right)=y \operatorname{im} \varphi^{*}
$$

and $(x, y) \in \operatorname{im} \varphi^{*}$. The proposition now follows.
2. Semigroup properties of $A \otimes B$. In this section we investigate the subgroup and semilattice structure of the tensor product.

Proposition 4. Assume that each of A and B is an abelian semigroup and that η and ξ are the natural maps onto their respective maximal semilattice homomorphic images E and F. Then $E \otimes F$ is the maximal semilattice homomorphic image of $A \otimes B$ and $\eta \otimes \xi$ is the natural mapping of $A \otimes B$ onto its maximal semilattice homomorphic image. A similar statement holds for \otimes_{0}.

Proof. Assume G is a semilattice and that τ is a homomorphism from $A \otimes B$ onto G. We define a map τ^{*} such that the diagram

is commutative. Let α denote the function from $E \times F$ into G defined by $\alpha((e, f))=\tau(a \otimes b)$ where $a \in A$ and $b \in B$ such that $\eta(\alpha)=e$ and $\xi(b)=f$. It follows from Theorem 4.12 of [1] that if $\eta\left(a^{\prime}\right)=e$ and $\xi\left(b^{\prime}\right)=f$, then there exists positive integers n, n, p, q and $s_{1}, s_{2} \in A$ and $t_{1}, t_{2} \in B$ such that

$$
\begin{array}{rlrl}
n a & =a^{\prime}+s_{1} & p b & =b^{\prime}+t_{1} \\
m a^{\prime} & =a+s_{2} & q b^{\prime} & =b+t_{2} .
\end{array}
$$

Thus

$$
\begin{aligned}
\tau(a \otimes b) & =n p \tau(a \otimes b)=\tau(n a \otimes p b) \\
& =\tau\left(a^{\prime} \otimes b^{\prime}\right)+\tau\left(a^{\prime} \otimes t_{1}+s_{1} \otimes\left(b^{\prime}+t_{1}\right)\right)
\end{aligned}
$$

and $\tau(a \otimes b) \leqq \tau\left(a^{\prime} \otimes b^{\prime}\right)$. Similarly, $\tau\left(a^{\prime} \otimes b^{\prime}\right) \leqq \tau(a \otimes b)$ and $\tau(a \otimes b)=$ $\tau\left(a^{\prime} \otimes b^{\prime}\right)$. It follows that α is a well-defined map which is evidently a bihomomorphism. Let τ^{*} denote the unique homomorphism from $E \otimes F$ into G induced by α. It is easy to show that $\tau^{*} \circ(\eta \otimes \xi)=\tau$. It follows that $\eta \otimes \xi$ is the natural map of $A \otimes B$ onto its maximal semilattice homomorphic image $E \otimes F$ (the kernel of $\eta \otimes \xi$ is the smallest semilattice congruence on $A \otimes B$). The proof of the analogous statement for \boldsymbol{Q}_{0} is similar.

If A and B are abelian semigroups and G and H are subgroups of A and B, respectively, then $\boldsymbol{\otimes}(G, H)$ will denote the set of all elements of $A \otimes B$ of the form

$$
\sum_{i=1}^{n} n_{i}\left(g_{i} \otimes h_{i}\right)
$$

where n is a positive integer and for $1 \leqq i \leqq n, n_{i} \in N, g_{i} \in G$, and $h_{i} \in H$. A similar definition is supposed for $\boldsymbol{\otimes}_{0}$.

Lemma 1. If G and H are subgroups of A and B respectively, then $\otimes(G, H)$ is a subgroup of $A \otimes B$. A similar statement holds for \boldsymbol{Q}_{0}.

Proof. Observe that if $g \in G, h \in H$, and e and f are the respective identities of G and H, then $g \otimes f=e \otimes f=e \otimes h$. The rest follows in a straightforward manner. The following lemma is an immediate consequence of Proposition 1 and Lemma 1.

Lemma 2. If G and H are abelian groups, then $G \otimes H$ and $G \otimes_{0} H$ both become the "usual" tensor product of G and H as defined in group theory (see, for example, Fuchs [2]).

Proposition 5. If G and H are maximal subgroups of A and B respectively, then $G \otimes H \cong(G, H)$ and $G \bigotimes_{0} H \cong \bigotimes_{0}(G, H)$.

Proof. Throughout this proof $\boldsymbol{\otimes}$ will denote the tensor operation in $A \otimes B$ and \otimes^{\prime} will denote the tensor operation in $G \otimes H$. Let α denote the function from $G \times H$ into $\otimes(G, H)$ defined by $\alpha(g, h)=$ $g \otimes h$ for $(g, h) \in G \times H$. Since α is a bihomomorphism it induces a homomorphism α^{*} from $G \otimes H$ into $\otimes(G, H)$. Clearly α^{*} is onto. We show that it is one-to-one. Let \mathscr{F}, ρ, ν, and σ be defined as at the beginning of this paper. Assume

$$
\alpha^{*}\left(\sum n_{i}\left(g_{i} \otimes^{\prime} h_{i}\right)\right)=\alpha^{*}\left(\sum n_{j}^{*}\left(g_{j}^{*} \bigotimes^{\prime} h_{j}^{*}\right)\right)
$$

for $n_{i}, n_{j}^{*} \in N, g_{i}, g_{j}^{*} \in G$, and $h_{i}, h_{j}^{*} \in H$. Then there exists x_{0}, x_{1}, \cdots, x_{q+1} in \mathscr{F} such that $x_{0}=\sum n_{i}\left\langle g_{i}, h_{i}\right\rangle, x_{q+1}=\sum n_{j}^{*}\left\langle g_{j}^{*}, h_{j}^{*}\right\rangle$ and for $0 \leqq$ $k \leqq q,\left(x_{k}, x_{k+1}\right) \in \nu$. For each k, there exists a positive integer q_{k} and elements $m_{p^{k}} \in N, a_{p k} \in A$, and $b_{p k} \in B$ for $1 \leqq k \leqq q_{k}$, such that $x_{k}=$ $\sum_{p} m_{p k}\left\langle a_{p k}, b_{p k}\right\rangle$. Clearly we may choose $a_{p 0}=g_{p}$ and $b_{p 0}=h_{p}$. Now define x_{k}^{\prime} to be $\sum_{p} m_{p k}\left\langle a_{p k}^{\prime}, b_{p k}^{\prime}\right\rangle$ where $a_{p k}^{\prime}=a_{p k}+e$ and $b_{p k}^{\prime}=b_{p k}+f$, and e and f are the identities of G and H, respectively. We show (by induction on k) that for each p and k the "components" $a_{p k}^{\prime}$ and $b_{p k}^{\prime}$ of x_{p}^{\prime} are in G and H, respectively. The latter statement is clearly true for $k=0$. Assume $a_{p h}^{\prime} \in G$ and $b_{p h}^{\prime} \in H$ for all p and for all $1 \leqq$ $h<k$. Since $x_{k-1} \nu x_{k}$, there exists $(x, y) \in \sigma$ and $t \in \mathscr{F}$ such $x_{k-1}=$ $x+t, x_{k}=y+t$. We may assume (x, y) is of the form (1) or (2) at the beginning of the paper and since for each $p, a_{p(k-1)}^{\prime} \in G$ and $b_{p(k-1)}^{\prime} \in H$, all the "components" of t ' are appropriately in G or H. Thus it suffices to show that if one has an ordered pair (x, y) of the form (1)
and (2) such that x^{\prime} has its "components" in the appropriate group G or H, then so does y^{\prime} (here, as before, $x^{\prime}, y^{\prime}, t^{\prime}$ denote elements obtained from x, y, and t by adding e or f to the appropriate "components" of x, y, and t). To show the latter statement, one merely needs to show that if $a, b \in A$ such that $a+b+e \in G$, then $a+e$ and $b+e$ are in G (plus a similar statement for H, of course). Clearly $a+e$ and $b+e$ are in the archimedean components of A containing e. But if g is in an archimedean semigroup C which contains an idempotent e, then $g+e$ is in the maximal subgroup of C. It follows that x_{k}^{\prime} has its "components" in the appropriate group G or H. For each k, let \bar{x}_{k} denote the restriction of x_{k}^{\prime} to $G \times H$. If \mathscr{F}^{\prime} is the free abelian group on $G \times H$, and $\rho^{\prime}, \nu^{\prime}, \sigma^{\prime}$ are the relations on \mathscr{F}^{\prime} corresponding to ρ, ν, and σ on \mathscr{F}, then the fact that $x_{k} \nu x_{k+1}$ for each k, implies that $\bar{x}_{k} \nu^{\prime} \bar{x}_{k+1}$ for each k, and thus $\bar{x}_{0} \rho^{\prime} \bar{x}_{q+1}$. We have

$$
\sum n_{i}\left(g_{i} \otimes^{\prime} h_{i}\right)=\bar{x}_{0} \rho^{\prime}=\bar{x}_{q+1} \rho^{\prime}=\sum n_{j}^{*}\left(g_{j}^{*} \otimes^{\prime} h_{j}^{*}\right)
$$

and α^{*} is one-to-one. The proposition follows.
The following proposition is easy and its proof is omitted.
Proposition 6. If A and B are abelian inverse semigroups, then so are $A \otimes B$ and $A \otimes_{0} B$.

Remark. If A and B are semilattice unions of abelian groups, $A=\mathbf{U}_{e \in E} A_{e}$ and $B=\bigcup_{f \in F} B_{f}$, then $A \otimes B$ is a semilattice union of groups by the last proposition. It is clear that each element x of $A \otimes B$ may be written in the form

$$
x=\sum_{i=1}^{n} x_{i}
$$

where, for each i, x_{i} is an element of $A_{e} \otimes B_{f}$ for some $e \in E$ and $f \in F$. At a later point in the exposition it shown that $E \otimes F$ is isomorphic to the direct product of E and F. It therefore follows from Proposition 4 that

$$
A \otimes B=\bigcup_{(e, f) \in E \otimes F}\left(A_{e} \otimes B_{f}\right)
$$

is the semilattice decomposition of $A \otimes B$ into a union of disjoint groups.

Proposition 7. Assume A and B are abelian semigroups and that η and ξ are the natural maps onto their respective maximal semilattice homomorphic images E and F. Also assume e is an
identity of E, f is an identity of F, and that e_{1} and f_{1} are idempotents in $\eta^{-1}(e)$ and $\xi^{-1}(f)$, respectively. Then the maximal subgroup of $A \otimes B$ containing $e_{1} \otimes f_{1}$ is $G_{e_{1}} \otimes H_{f_{1}}$ where $G_{e_{1}}$ and $H_{f_{1}}$ are the respective maximal subgroups of A and B containing e_{1} and f_{1}.

Proof. It is clear that $G_{e_{1}} \otimes H_{f_{1}}$ is a subgroup of the maximal subgroup M of $A \otimes B$ which contains $e_{1} \otimes f_{1}$. Let $x \in M$, then $x=$ $\sum n_{i}\left(a_{i} \otimes b_{i}\right)$ for some $n_{i} \in N, a_{i} \in A$, and $b_{i} \in B$. Now

$$
e \otimes f=(\eta \otimes \xi)(x)=\sum n_{i}\left(\eta\left(a_{i}\right) \otimes \xi\left(b_{i}\right)\right)
$$

and since $e \otimes f$ is the identity of $E \otimes F$, it follows that $\eta\left(a_{i}\right) \otimes \xi\left(b_{i}\right)=$ $e \otimes f$ for each i. Let $e^{\prime}=\eta\left(a_{i}\right)$ and $f^{\prime}=\xi\left(b_{i}\right)$. Then by expanding $\left(e+e^{\prime}\right) \otimes\left(f+f^{\prime}\right)$ one sees that $e^{\prime} \otimes f=e \otimes f=e \otimes f^{\prime}$. Note, however, that the function $\sigma: E \times F \rightarrow E$ defined by $(s, f) \mapsto s$ is a bihomomorphism and if $\sigma^{*}: E \otimes F \rightarrow E$ is its induced morphism, then $e=\sigma^{*}(e \otimes f)=\sigma^{*}\left(e^{\prime} \otimes f\right)=e^{\prime}$. Similarly $f=f^{\prime}$. Thus $\eta\left(\alpha_{i}\right)=e$ and $\xi\left(b_{i}\right)=f$ for each i. Since $a_{i} \otimes f_{1}$ and $e_{1} \otimes b_{i}$ are both idempotents in the same archimedean component of $A \otimes B$ it follows that $a_{i} \otimes f_{1}=$ $e_{1} \otimes b_{i}=e_{1} \otimes f_{1}$ and thus

$$
\left(a_{i}+e_{1}\right) \otimes\left(b_{i}+f_{1}\right)=\left(a_{i} \otimes b_{i}\right)+\left(e_{1} \otimes f_{1}\right)
$$

We have

$$
\begin{aligned}
x & =\sum n_{i}\left(a_{i} \otimes b_{i}\right)=\sum n_{i}\left(\left(a_{i} \otimes b_{i}\right)+\left(e_{1} \otimes f_{1}\right)\right) \\
& =\sum n_{i}\left(\left(a_{i}+e_{1}\right) \otimes\left(b_{i}+f_{1}\right)\right)
\end{aligned}
$$

But $a_{i}+e_{1} \in G_{e_{1}}$ and $b_{i}+f_{1} \in H_{f_{1}}$ for each i; thus $x \in G_{e_{1}} \otimes H_{f_{1}}$. The proposition follows. The following corollaries are immediate.

Corollary 8. Assume A and B are abelian semigroups with respective groups of units G and H. Then $G \otimes H$ is the group of units of $A \otimes B$.

Corollary 9. Assume A and B are abelian archimedean semigroups each of which contains an idempotent. If G and H are the maximal subgroups of A and B respectively, then $G \otimes H$ is the maximal subgroup of $A \otimes B$.
3. The torsion functor. We follow MacLane [3]. Throughout this section A and B will denote abelian semigroups with nonvoid sets of idempotents E and F, respectively. Let N^{*} denote the set of positive integers and let $T(A, B)$ denote the set of all triples $(a, n, b) \in A \times$ $N^{*} \times B$ such that $n a$ and $n b$ are idempotent. For each (a, n, b) in $T(A, B)$, let $\langle a, n, b\rangle$ denote the corresponding element of the free
abelian semigroup \mathscr{F} on $T(A, B)$. Finally, define $\operatorname{Tor}(A, B)$ to be the semigroup \mathscr{F} subject to the relations:

$$
\begin{aligned}
\left\langle a_{1}+a_{2}, n, b\right\rangle & =\left\langle a_{1}, n, b\right\rangle+\left\langle a_{2}, n, b\right\rangle \\
\left\langle a, n, b_{1}+b_{2}\right\rangle & =\left\langle a, n, b_{1}\right\rangle+\left\langle a, n, b_{2}\right\rangle \\
\langle a, n m, b\rangle & =\langle n a, m, b\rangle \\
\langle a, n m, b\rangle & =\langle a, n, m b\rangle
\end{aligned}
$$

for $a_{1}, a_{2}, a \in A, b_{1}, b_{2}, b \in B$ and $m, n \in N^{*}$ such that each of the triples $\langle,$,$\rangle above is member of \mathscr{F}$ determined by a member of $T(A, B)$. Whenever $(a, n, b) \in T(A, B),[a, n, b]$ will denote the member of $\operatorname{Tor}(A, B)$ which (as an equivalence class of \mathscr{F}) contains $\langle a, n, b\rangle$.

Observe that Tor (A, B) has a universal property similar to the one stated for \otimes in Proposition 1. More precisely, if $\varphi: T(A, B) \rightarrow C$ is a function from $T(A, B)$ into an abelian semigroup C such that φ "preserves" the relations which define $\operatorname{Tor}(A, B)$, then there exists a unique semigroup morphism $\varphi^{*}: \operatorname{Tor}(A, B) \rightarrow C$ such that $\varphi^{*}([a, n, b])=$ $\varphi((a, n, b))$ for all $(a, n, b) \in T(A, B)$. This property along with many elementary arguments similar to the ones displayed for tensor above may be used to establish various propositions regarding the torsion functor. We state some of these propositions below without proof as the proofs are not particularly instructive. First we need some terminology. If A is an abelian semigroup (having a nonvoid set of idempotents) and $x \in A$, then there is $n \in N^{*}$ such that $n x$ is idempotent if and only if there exist distinct r and s in N^{*} such that $r x=s x$. Each such x is said to be torsion. The least $s \in N^{*}$ such that $s x=r x$ for some $r \in N^{*}$ such that $r \neq s$ is called the index of x. The subsemigroup of A consisting of all the torsion elements of A will be denoted by A_{t}.

Proposition 10. Assume A and B are abelian semigroups each of which contains idempotent elements. Then
(1) $\operatorname{Tor}(A, B)=\operatorname{Tor}\left(A_{t}, B_{t}\right)$
(2) $\operatorname{Tor}(A, B) \cong \operatorname{Tor}(B, A)$
(3) Tor is a covariant bifunctor defined on the category of pairs (A, B) where A and B are objects of \mathscr{S} which contain idempotents.

Proposition 11. If, for each $\lambda \in \Lambda$ and each $\mu \in \Omega, A_{\lambda}$ and B_{μ} are abelian semigroups with identity, then

$$
\operatorname{Tor}\left(\sum_{\lambda} A_{\lambda}, \sum_{\mu} B_{\mu}\right) \cong \sum_{\lambda} \sum_{\mu} \operatorname{Tor}\left(A_{\lambda}, B_{\mu}\right)
$$

Proposition 12. If G and H are abelian groups $\operatorname{Tor}(G, H)$ is a group and is isomorphic to the usual torsion product of two groups
(as is defined, for example, in MacLane [3]).
Proposition 13. If A and B are abelian semigroups and G and H are maximal subgroups of A and B, respectively, then $\operatorname{Tor}(G, H)$ may be naturally identified with the set of elements of $\operatorname{Tor}(A, B)$ of the form

$$
\sum_{i} n_{i}\left[g_{i}, m_{i}, h_{i}\right]
$$

for $n_{i} \in N^{*}, m_{i} \in N^{*}, g_{i} \in G$, and $h_{i} \in H$ such that $m_{i} g_{i}$ and $m_{i} h_{i}$ are the identities of G and H, respectively.

Corollary 14. The torsion product of two abelian inverse semigroups is an abelian inverse semigroup.

Proposition 15. If E and F are semilattices, then $\operatorname{Tor}(E, F) \cong$ $E \otimes F \cong E \times F$ where $E \times F$ denotes the direct product of E and F.

Remark. The isomorphism $E \otimes F \cong E \times F$ is obtained in the proof of Proposition 7.

Proposition 16. Assume that A and B are abelian semigroups each of which contains idempotent elements, that A_{t} and B_{t} are their respective torsion subsemigroups and that E_{A} and E_{B} are their respective idempotent subsemigroups. Let $\delta_{A}: A_{t} \rightarrow E_{A}$ and $\hat{o}_{B}: B_{t} \rightarrow E_{B}$ denote the functions which associate with each x the idempotent in the cyclic subsemigroup generated by x. Then δ_{A} and δ_{B} are the natural maps of A_{t} and B_{t} onto their respective maximal semilattice homomorphic images E_{A} and E_{B}. Moreover the maximal semilattice homomorphic image of
$\operatorname{Tor}(A, B)=\operatorname{Tor}\left(A_{t}, B_{t}\right) \quad$ is $\operatorname{Tor}\left(E_{A}, E_{B}\right) \cong E_{A} \otimes E_{B} \cong E_{A} \times E_{\beta}$
and the canonical mapping of $\operatorname{Tor}\left(A_{t}, B_{t}\right)$ onto its maximal semilattice homomorphic image is precisely $\operatorname{Tor}\left(\delta_{A}, \delta_{B}\right)$.

Remark. As with tensor, note that if $A=\bigcup_{e \in E} A_{e}$ and $B=$ $\bigcup_{f \in F} B_{f}$ are semilattice unions of groups, then

$$
\operatorname{Tor}(A, B)=\operatorname{Tor}\left(A_{t}, B_{t}\right)=\bigcup_{(e, f) \in E \times F} \operatorname{Tor}\left(\left(A_{e}\right)_{t},\left(B_{f}\right)_{t}\right)
$$

4. The Grothendieck functor. Recall that if A is an abelian semigroup then the Grothendieck group of A is an abelian group $K(A)$ having the property that there is a homomorphism K_{A} from A into $K(A)$ such that if G is any abelian group and φ any homomorphism
from A into G then there exists a unique homomorphism φ^{*} from $K(A)$ into G such that the diagram

is commutative. Also recall that $K(A)$ is obtained as follows. Let \mathscr{F} denote the free abelian group on A and H the subgroup of \mathscr{F} generated by all elements of \mathscr{F} of the form

$$
\begin{equation*}
\left\langle a_{1}+a_{2}\right\rangle-\left\langle a_{1}\right\rangle-\left\langle a_{2}\right\rangle \tag{*}
\end{equation*}
$$

for a_{1} and a_{2} in A. Define $K(A)=\mathscr{F} / H$. One may then show that K is actually a functor by using the universal property above. We call this functor the Grothendieck functor.

Proposition 17. If A and B are abelian semigroups, then

$$
K(A \otimes B) \cong K(A) \otimes K(B)
$$

Proof. Let $\mathscr{F}_{A}, \mathscr{F}_{B}$, and $\mathscr{F}_{A \otimes B}$ denote the respective free abelian groups on A, B, and $A \otimes B$. Let H_{A}, H_{B}, and $H_{A \otimes B}$ denote the subgroups defined by $\left(^{*}\right)$ above so that $K(A)=\mathscr{F}_{A} / H_{A}, K(B)=\mathscr{F}_{B} / H_{B}$, and $K(A \otimes B)=\mathscr{F}_{A \otimes B} / H_{A \otimes B}$. Let

$$
\eta_{A}: \mathscr{F}_{A} \rightarrow K(A), \eta_{B}: \mathscr{F}_{B} \rightarrow K(B), \quad \text { and } \quad \eta_{A \otimes B}: \mathscr{F}_{A \otimes B} \rightarrow K(A \otimes B)
$$

denote the natural mappings. Using the universal properties of free abelian groups one obtains the existence of a bihomomorphism $\sigma: \mathscr{F}_{A} \times$ $\mathscr{F}_{B} \rightarrow K(A \otimes B)$ such that $\sigma(\langle a\rangle,\langle b\rangle)=\eta_{A \otimes B}(a \otimes b)$ for $\mathrm{a} \in A$ and $b \in B$. Define $\sigma^{*}: K(A) \times K(B) \rightarrow K(A \otimes B)$ by $\sigma^{*}\left(\eta_{A}(x), \eta_{B}(y)\right)=\sigma(x, y)$ for $x \in \mathscr{F}_{A}$ and $y \in \mathscr{F}_{B}$. We show that σ^{*} is well-defined. Assume $\eta_{A}(x)=$ $\eta_{A}\left(x^{\prime}\right)$ and $\eta_{B}(y)=\eta_{B}\left(y^{\prime}\right)$. Then $x=x^{\prime}+h$ and $y=y^{\prime}+k$ for some $h \in H_{A}$ and $k \in H_{B}$. Thus

$$
\sigma(x, y)=\sigma\left(x^{\prime}+h, y^{\prime}+k\right)=\sigma\left(x^{\prime}, y^{\prime}\right)+\sigma\left(x^{\prime}, k\right)+\sigma\left(h, y^{\prime}+k\right)
$$

We show that $\sigma\left(h, y^{\prime}+k\right)=0$. Since $y^{\prime}+k \in \mathscr{F}_{B}$ and $h \in H_{A}$ there exist integers n_{i} and m, elements of $A, a_{1 j}$ and $a_{2 j}$ and b_{i} in B such that $y^{\prime}+k=\sum_{i} n_{i}\left\langle b_{i}\right\rangle$ and $h=\sum m_{j}\left[\left\langle a_{1 j}+a_{2 j}\right\rangle-\left\langle a_{1 j}\right\rangle-\left\langle a_{2 j}\right\rangle\right]$. Thus

$$
\begin{aligned}
& \sigma\left(h, y^{\prime}+k\right) \\
& \quad=\sum_{i} n_{i} \sum_{j} m_{j}\left[\sigma\left(\left\langle a_{1 j}+a_{2 j}\right\rangle,\left\langle b_{i}\right\rangle\right)-\sigma\left(\left\langle a_{1 j}\right\rangle,\left\langle b_{i}\right\rangle\right)-\sigma\left(\left\langle a_{2 j}\right\rangle,\left\langle b_{i}\right\rangle\right)\right]
\end{aligned}
$$

which is zero by the definition of σ. Similarly $\sigma\left(x^{\prime}, k\right)=0$ and $\sigma(x, y)=$
$\sigma\left(x^{\prime}, y^{\prime}\right)$. Thus σ^{*} is well-defined. The map σ^{*} is clearly a bihomomorphism thus there exists a unique homomorphism $\psi: K(A) \otimes K(B) \rightarrow$ $K(A \otimes B)$ such that $\psi(x \otimes y)=\sigma^{*}(x, y)$ for $(x, y) \in K(A) \times K(B)$. We claim that ψ is an isomorphism and we prove that this is so by constructing its inverse. Let $\varphi: A \times B \rightarrow K(A) \otimes K(B)$ be defined by $\varphi(a, b)=K_{A}(a) \otimes K_{B}(b) . \quad$ Let φ^{*} denote the homomorphism from $A \otimes B$ into $K(A) \otimes K(B)$ induced by φ. Let θ denote the homomorphism for which the diagram

is commutative. It is a tedious computation to show that θ and ψ are inverses of one another but the computation is straightforward and thus is omitted. The proposition follows.

At this point it seems appropriate to mention the work of two others who have done some work on the notion of tensor products of semigroups. T. J. Head has written a series of papers on the subject and has obtained our Proposition 4. Also Pierre Grillet has obtained Proposition 4. There seems to be not a great deal of other overlap among these papers. All three of us obtained our results independently and almost simultaneously.

The author wishes to express his appreciation to the referee for pointing out various blunders which we hope have now been corrected.

References

1. A. H. Clifford and G. B. Preston, Algebraic theory of semigroups, Amer. Math. Soc. Mathematical Surveys No. 7, 1961.
2. L. Fuchs, Abelian groups, Budapest Publishing House of the Hungarian Academy of Sciences, 1958.
3. S. MacLane, Homology, Academic Press, 1963.

Received November 3, 1967, and in revised form September 6, 1969. The author of this research was supported in part by NASA Grant NGR 44-005-037.

University of Houston
Houston, Texas

