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TENSOR AND TORSION PRODUCTS
OF SEMIGROUPS

RONALD F U L P

This paper is concerned with the study of tensor and
torsion functors on the category of abelian semigroups. We
show that such functors exist, that they satisfy the universal
diagram properties required of them in other branches of
algebra, and that many of the theorems obtained for tensor
and torsion products of modules may also be obtained in this
setting. In particular the tensor functor ® 0 is exact relative
to the category of identity preserving homomorphisms. We
determine certain structural characteristics of Cg). If E and
F are maximal semilattice homomorphic images of abelian
semigroups S and T respectively, then E ® F is the maximal
semilattice homomorphic image of S ® T. If G and H are
maximal subgroups of S and T then G® H may be identified
as a subgroup of S ® T and if G and H are the groups of units
of S and T respectively, then G ® H is the group of units of
S ® T. Moreover, the tensor product of abelian inverse semi-
groups is an abelian inverse semigroup. Similar results are
obtained for the torsion functor.

1* Basic properties of tensor* Throughout this paper A and B

will denote arbitrary abelian semigroups unless stated otherwise. J?~
will denote the semigroup of all functions of finite support from A x B
into the additive semigroup N of nonnegative integers under the
operation of point wise addition. Thus &~ is the free abelian semigroup
on A x B with an identity adjoined and will be referred to as the
free abelian semigroup on A x B. For (α, b) eA x B, <α, 6> will denote
the element of j ^ ~ having value 1 at (α, b) and having value 0
elsewhere. Let σ denote the relation on j ^ ~ such that (x, y)eσ if
and only if either x = y or one of the ordered pairs (x, y) or (y, x) is
of the form

(1) «α + 6, c>, <α, c> + <6, c» or
(2) «α, e + rf>, <α, c> + <α, d»

for α, 6 6 A and c, deB. The set of all ordered pairs (x + t, y + t)
for (a?, y)eσ and t e J?~ will be denoted by v and p will denote the
transitive closure of v. Thus p is the smallest congruence on J^
containing pairs of the form (1) and (2). We denote the semigroup
&~lp by A(g> B and we say that A (g) B is the tensor product of A
and B. Let ω denote the function from A x B into A (g) B defined
by ω(a, b) = <α, byp. For (α, 6) e A x 5, α <g) & will denote ω(α, 6) and
will be called the tensor product of a and b. Note that if α0 e A, then
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the function defined by 6 —> ω(α0, b) is a homomorphism from A into
A 0 B. Thus ω is a homomorphism in its first argument. It is also a
homomorphism in its second argument. Any such function will be
called a bihomomorphism. If a bihomomorphism is an identity pre-
serving homomorphism in each of its arguments, then it is called
an identity preserving bihomomorphism.

If each of A and B contains an identity (denoted 0 in each
semigroup), then σ0 will denote the relation on J^ which contains σ
and which also contains all ordered pairs of the form:

«α, 0>, 0), (0, <α, 0», «0, c>, 0), «c, 0>, 0)

for aeA and ceB. Define v0 and p0 analogously. Then AφQB will
denote ^/p0, co0 will denote the function defined by ωo(α, b) = <α, 6>/0o,
and a(g)ob will denote the element α>0(α, 6) of A ®0 B. Note that ω0

is an identity preserving bihomomorphism.

PROPOSITION 1. If S is any abelian semigroup and φ is a bihomo-
morphism from A x B into S, then there is a unique homomorphism
φ* from A^B into S such that the diagram

\ /

s

is commutative. If one assumes that A, B, and S have identities and
that φ is an identity preserving bihomomorphism, then there is an
identity preserving homomorphism φ* from A(&0B into S such that
φ = φ* o ω0.

The proof is straightforward and is omitted.

Let £S denote the category whose "objects" are abelian semigroups
and whose "morphisms" are semigroup homomorphisms. Let ^ denote
the category whose "objects" are abelian semigroups each having an
identity and whose "morphisms" are identity preserving semigroup
homomorphisms.

Suppose A, B, A!, Br are in the category S? and that <p: A —• A!
and θ\B-^Bf are morphisms of 6f. The function a from A x B into
A 0 B' defined by (α, b) H-> φ(a) 0 0(6) is a bihomomorphism (which is
identity preserving if φ and θ are) and thus there is a unique
homomorphism, denoted φζ&θ, such that the diagram
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_ ύ) χ _ ^ 7->

is commutative. In case φ and θ are identity preserving one obtains
a similar diagram for ®0. From these remarks it is easy to see that
the following proposition is true.

PROPOSITION 2. ® is a functor from S^ x £f into & which is
covariant in each of its arguments. Moreover, if φ and θ are
morphisms of 6^ which are onto, then so is φ®θ. A similar
statement for ®0 holds relative to the category S^Q.

Assume that for each λ in some set Λ, Aλ is an object in ^ 0 .
The direct sum of the family {Aλ}XeΛ9 denoted ΣxAχ, is the subsemigroup
of the direct product of {Aλ}λeΛ consisting of those members of the
product of the form {aλ}λeΛ where the set of XeΛ such that aλ is not
the identity of Aλ is finite.

The following proposition has a proof similar to the proof of the
corresponding theorem for abelian groups and is omitted.

PROPOSITION 3. // {Aλ}λeΛ and {Bμ}μeΩ are families of semigroups
each member of which is abelian and has an identity, then

(Σx Aλ) ®0 (Σμ Bμ) = Σ* Σ , (Ax ®o Bμ) .

In other investigations where the notion of a tensor product plays
an important role one also has the notion of an exact sequence and a
corresponding theorem which yields a relationship between the two
ideas. We wow present a definition of "exact sequence" which preserves
that relationship for the cotegory ^ 0

If S is an abelian semigroup and φ is a homomorphism with
domain S, then the kernel of φ, denoted ker<̂ >, is the relation on S
defined by (a?, y)ekerφ if and only if φ(x) = φ(y). If φ is a homo-
morphism from some abelian semigroup T into S, then the image of
φ, denoted im φ, is the relation on S defined by (x, y) e im φ if and
only if there exists tte T, t2e T such that x + φ(tx) = y + φ(t2). Note
that ker φ and im φ are always congruences. If A, B, and C are
abelian semigroups, φ is a homomorphism from A into B, and θ is a

homomorphism from B into C, then we say that A —̂ -> B > C is an

exact sequence if and only if ker θ = im φ. Unlike the situation for

abelian groups one may have A —̂ -> B > C exact and C trivial (C
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has only one element) and yet not have φ onto. If we wish to indicate

that φ is onto B we write A > > B. Similarly, if we write
φ: A > —* By then we mean that φ is one-to-one.

PROPOSITION 3. The functor ® 0 is right-exact on S% x &**. More
generally, if A, B, C, and D are abelian semigroups each having an
identity and if φ and θ are identity preserving homomorphisms such
that

is an exact sequence, then the sequences

(1) A(g)0D-^B®0D-^ >C(g>oA and

(2) D®QA-^D®QB-^>D®0C,
are exact where φ*, θ*, φ and θ are the natural maps induced from
φ and θ via the tensor functor ®0

Proof. It is sufficient to prove that (1) is exact since the proof
of (2) is analogous.

First assume (xf y) e im <£>*. We show that (a?, y) e ker θ*. Since
(x, y) £ im 9>*, there exists p, q e A (g)0 D such that x + φ*(p) = y +
9?*(ί) and consequently

(?*(») = β*(α) + 0*(9>*(p)) = (?*(!/) + θ*(φ*(q)) - ί*(y) .

Thus (x, y)ekeτθ*.
We now show that ker#* S im^>*. First we show that there is

a function a from C x D into (5 (g)0 D)/im ̂ * such that for (c, d) e C x D

a(c, d) = {θ-ι{c) ® 0 d) im cp*

where θ~\c) denotes any element of B such that θ{θ~\c)) — c. To see
that a is well-defined, assume 6, 6' e B such that (9(6) = c = 0(6') Then
there exists α , α ' e 4 such that 6 + <p(α) = 6' + φ(a'). If ώeJ9, then

(6 ®0 d) + φ*(a ®0 d) = [6 + φ(α)] 0 O d = [δ; + ^(α')] ®o d

= (&'®od) + ζp*(^Θoώ)

and (60 o d, 6'0od)eim9>*. Thus α is well-defined and is clearly an
identity preserving bihomomorphism. Let α* denote the induced
homomorphism from C&)0D into (J?®0 jD)/im^>*. A straightforward
computation now shows that if (x, y)ekerθ*, then

^imcp* - α*(0*(a?)) = a*(θ*(y)) = yimφ*

and (a?, y)eimφ*. The proposition now follows.
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2* Semigroup properties of A 0 B. In this section we investi-
gate the subgroup and semilattice structure of the tensor product.

PROPOSITION 4. Assume that each of A and B is an abelian
semigroup and that rj and ξ are the natural maps onto their respective
maximal semilattice homomorphic images E and F. Then E®F is
the maximal semilattice homomorphic image of A® B and rj0 ξ is
the natural mapping of A§§ B onto its maximal semilattice homomor-
phic image. A similar statement holds for 0O .

Proof. Assume G is a semilattice and that τ is a homomorphism
from A 0 B onto G. We define a map τ* such that the diagram

G

is commutative. Let a denote the function from E x F into G defined
by a((e,/)) = τ(a0 6) where aeA and beB such that η(a) = e and
f(δ) = /. It follows from Theorem 4.12 of [1] that if η{a') = e and
£(6') = /, then there exists positive integers n, n, p, q and sly s2eA
and tl9 t2eB such that

na = a1 + s± pb — br + tx

ma' — a + s2 qb' = b + t2 .

Thus

τ(a 0 6) = ^pτ(α 0 6) = τ(na 0 p6)
= r(α' 0 6') + r(α' 0 ίt + βL 0 (6' + tj)

and τ(α 0 6 ) ^ τ(af 0 6'). Similarly, τ(α' 0 6') <̂  r(α 0 6) and τ(a 0 6 ) =
τ(α' 0 6'). It follows that a is a well-defined map which is evidently
a bihomomorphism. Let τ* denote the unique homomorphism from
E®F into G induced by a. It is easy to show that τ* o (η 0 f) = r.
It follows that 57 0 £ is the natural map of A 0 5 onto its maximal
semilattice homomorphic image E§§F (the kernel of rj 0 £ is the
smallest semilattice congruence on 4 ® β). The proof of the analogous
statement for ®0 is similar.

If A and B are abelian semigroups and G and H are subgroups
of A and J5, respectively, then <g) (G, H) will denote the set of all
elements of A 0 B of the form

0 λ<)
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where n is a positive integer and for 1 ̂  i ^ n, n{ e N, g{ e G, and
hiβH. A similar definition is supposed for ®0

LEMMA 1. If G and H are subgroups of A and B respectively,
then ® (G, H) is a subgroup of A (g) B. A similar statement holds
for ®0.

Proof. Observe that if g e G, h e H, and e and / are the respective
identities of G and H, then g (g) / = e ® / = e§§h. The rest follows
in a straightforward manner. The following lemma is an immediate
consequence of Proposition 1 and Lemma 1.

LEMMA 2. // G and H are abelian groups, then G (g) if and
G (g)0 H both become the "usual" tensor product of G and H as defined
in group theory (see, for example, Fuchs [2]).

PROPOSITION 5. If G and H are maximal subgroups of A and B
respectively, then G (g) H ~ (G, H) and GζZ)QH ~ ®0 (G, H).

Proof. Throughout this proof ® will denote the tensor operation
in A 02? and ®' will denote the tensor operation in G(g)iί. Let a
denote the function from G x H into ® (G, H) defined by a(g, h) =
g (g) h for (gf h) e G x H. Since a is a bihomomorphism it induces a
homomorphism α* from G (g) H into <g) (G, if). Clearly α* is onto.
We show that it is one-to-one. Let ^ p, v, and σ be defined as at
the beginning of this paper. Assume

tf*(Σ n^g, (g)' ht)) = α*(Σ nf(gf (g)' hf))

for ni9 nf e N, g^ gf e G, and hi9 hf e H. Then there exists x0, xιy ,
xq+ι in ̂  such that x0 = Σ ^ < ^ , fe<>, £g+i = Σnfζgf, hfy and for 0 ^
k ^ q, (xk, xk+1) e v. For each Λ, there exists a positive integer qk and
elements m ^ e N, apk e A, and bpk e B for 1 ^L k <^ qk, such that % =
Σ P mvk^flpk, bpky. Clearly we may choose apQ = gp and bpQ = λp. Now
define c4 to be Σ?> WptiCflpu, K*} where α^ = apk + β and δ;fc = bpk + /,
and e and / are the identities of G and i ϊ , respectively. We show
(by induction on k) that for each p and k the "components" apk and
6p& of ^p are in G and ίZ", respectively. The latter statement is clearly
true for k = 0. Assume αJA e G and b'ph e H for all p and for all 1 <̂
h < k. Since X^JJXJ,, there exists (α?, y) eσ and £ e ̂ ^ such x^-i =
a; + ί, % = y + ί. We may assume (x, y) is of the form (1) or (2) at
the beginning of the paper and since for each p, αp(/b_1) e G and δp^D e H,
all the "components" of V are appropriately in G or i ϊ . Thus it
suffices to show that if one has an ordered pair (a?, y) of the form (1)
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and (2) such that xr has its "components" in the appropriate group G
or iJ, then so does y' (here, as before, x\ yf> V denote elements obtained
from x, y, and t by adding e or / to the appropriate "components" of
x, y, and t). To show the latter statement, one merely needs to show
that if α, b e A such that a + b + e e G, then a + e and b + e are in
G (plus a similar statement for H, of course). Clearly a + e and δ + e
are in the archimedean components of A containing e. But if g is in
an archimedean semigroup C which contains an idempotent e, then
g + e is in the maximal subgroup of C It follows that xk has its
"components" in the appropriate group G or H. For each &, let xk

denote the restriction of xk to G x if. If , ^ r ' is the free abelian group
on G x H, and p', i/, af are the relations on ^~f corresponding to
p, v, and σ on ,̂ ~, then the fact that xkvxk+1 for each fc, implies that

for each &, and thus xop'xq+ι. We have

Σ %(</* ®' ^) = £oί>' - S W - Σ ttffo; ®' hf)

and α* is one-to-one. The proposition follows.

The following proposition is easy and its proof is omitted.

PROPOSITION 6. If A and B are abelian inverse semigroups, then
so are A 0 B and A (g)0 B.

REMARK. If A and B are semilattice unions of abelian groups,
A= \JeeEAe and B — \JfeFBf, then A®B is a semilattice union of
groups by the last proposition. It is clear that each element x of
A ® B may be written in the form

where, for each i,Xi is an element of Ae 01?/ for some β e 2? and
/ G J P . At a later point in the exposition it shown that £'0jP7 is
isomorphic to the direct product of E and F. It therefore follows
from Proposition 4 that

(A 0 Bf)

is the semilattice decomposition of A 0 i? into a union of disjoint
groups.

PROPOSITION 7. Assume A and B are abelian semigroups and
that Ύ] and ξ are the natural maps onto their respective maximal
semilattice homomorphic images E and F. Also assume e is an
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identity of E, f is an identity of F, and that e{ and fλ are idempotents
in rf\e) and ξ~1(f)ί respectively. Then the maximal subgroup of
A 0 B containing eι & ft is Gei ® Hfl where Gei and Hfί are the
respective maximal subgroups of A and B containing eγ and f±.

Proof. It is clear that Gei 0 Hfl is a subgroup of the maximal
subgroup M of A 0 B which contains eλ 0 fίm Let xeM, then x =
Σ ni(ai (8) &«) ί ° r some w< eN, aiβ A, and 6̂  e J5. Now

e 0 / - (7 <g) £)(s) - Σ %0?(^) ® £(&<))

and since e 0 / is the identity of i? 0 JP, it follows that (̂α*) 0 ί(6i) =
6 0 / for each i. Let β' = 57^) and / ' = ζφi). Then by expanding
(e + e') (8) (/ + /') one sees that e' 0 / = e 0 / = e 0 / ' . Note, how-
ever, that the function σ: E x F —* E defined by (s, f)\-> s is a
bihomomorphism and if σ*:E(ξ!)F~+E is its induced morphism, then
e = <7*(e 0 / ) - σ*(e' 0 / ) = e'. Similarly / - / ' . Thus Ύ]{a%) = β and
ί(6i) = / for each i. Since a{ 0 /x and ex 0 6̂  are both idempotents in
the same archimedean component of A 0 J5 it follows that α* 0 Λ =

and thus

We have

x = Σ

= Σ ^((α* + eλ) 0 (6, + /,))

But α< + e,. e Gβl and 6< + /L e jff/1 for each i; thus a? e Gβl 0 JEΓ̂  The
proposition follows. The following corollaries are immediate.

COROLLARY 8. Assume A and B are abelian semigroups with
respective groups of units G and H. Then G 0 H is the group of units
of A®B.

COROLLARY 9. Assume A and B are abelian archimedean semi-
groups each of which contains an idempotent. If G and H are the
maximal subgroups of A and B respectively, then G ® H is the
maximal subgroup of A® B.

3. The torsion functor• We follow MacLane [3]. Throughout
this section A and B will denote abelian semigroups with nonvoid sets
of idempotents E and F, respectively. Let N* denote the set of
positive integers and let T(A, B) denote the set of all triples (a, n, b) e A x
iV* x B such that na and nb are idempotent. For each (α, n, b) in
T(A, B), let <(α, n, by denote the corresponding element of the free
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abelian semigroup ^~ on T(A, B). Finally, define Tor (A, B) to be the
semigroup j ^ ~ subject to the relations:

<αx + α2, n, by = <αlf n, by + <α2, n, by

<α, n, bL + b2y = <α, n, b,y + <α, n, ί>2>

<(α, wm, by — ζna, m, &)>

<(α, wm, δ)> = <(α, n, mby

for α :, α2, ae A, blf b2,be B and m, ne iV* such that each of the triples
< , , > above is member of ^ " determined by a member of T(A, B).
Whenever (α, n, b) e T{A, B), [α, n, b] will denote the member of Tor {A, B)
which (as an equivalence class of ^) contains <(α, n, by.

Observe that Tor (A, B) has a universal property similar to the
one stated for (g) in Proposition 1. More precisely, if φ: T(A, B)~*C
is a function from T(A, B) into an abelian semigroup C such that ψ
"preserves" the relations which define Tor (A, B), then there exists
a unique semigroup morphism p*: Tor (A, B)—*C such that φ*([a, n, b]) —
φ((a, n, b)) for all (α, n, b) e T(A, B). This property along with many
elementary arguments similar to the ones displayed for tensor above
may be used to establish various propositions regarding the torsion
functor. We state some of these propositions below without proof as
the proofs are not particularly instructive. First we need some termi-
nology. If A is an abelian semigroup (having a nonvoid set of
idempotents) and x e Ay then there is n e iV* such that nx is idempotent
if and only if there exist distinct r and s in iV* such that rx = sx.
Each such x is said to be torsion. The least se N* such that sx — rx
for some r e N* such that r Φ s is called the index of x. The sub-
semigroup of A consisting of all the torsion elements of A will be
denoted by At.

PROPOSITION 10. Assume A and B are abelian semigroups each
of which contains idempotent elements. Then

( 1 ) Tor (A, B) = Tor (At, Bt)
( 2 ) Tor (A, B) ~ Tor (B, A)
( 3 ) Tor is a covariant bifunctor defined on the category of pairs

(A, B) where A and B are objects of £f which contain idempotents.

PROPOSITION 11. If, for each XeΛ and each μ e Ω, Aλ and Bμ are
abelian semigroups with identity, then

Tor ( Σ J Aλ1 Σ , Bμ) = Σx Έμ Tor (Aλ, Bμ) .

PROPOSITION 12. If G and H are abelian groups Tor (G, H) is a
group and is isomorphic to the usual torsion product of two groups
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(as is defined, for example, in MacLane [3]).

PROPOSITION 13. If A and B are abelian semigroups and G and
H are maximal subgroups of A and B, respectively, then Tor (G, H)
may be naturally identified with the set of elements of Tor (A, B) of
the form

for n{ G JV*, mi e N*, gι e G, and h^ell such that m^ji and mji-i are
the identities of G and H, respectively.

COROLLARY 14. The torsion product of two abelian inverse semi-
groups is an abelian inverse semigroup.

PROPOSITION 15. If E and F are semilattices, then Tor(E, F) ^
E (g) F ~ E x F where E x F denotes the direct product of E and F.

REMARK. The isomorphism E§§F ~ E x F is obtained in the
proof of Proposition 7.

PROPOSITION 16. Assume that A and B are abelian semigroups
each of which contains idempotent elements, that At and Bt are their
respective torsion subsemigroups and that EA and EB are their re-
spective idempotent subsemigroups. Let δA:At—+EA and oβ: Bt—»EB

denote the functions which associate with each x the idempotent in
the cyclic subsemigroup generated by x. Then δΛ and oB are the
natural maps of At and Bt onto their respective maximal semilattice
homomorphic images EA and EB. Moreover the maximal semilattice
homomorphic image of

Tor (A, B) = Tor {Au Bt) is Tor (EA, EB) ~EA® Eβ = EA x En

and the canonical mapping of Tor (At, Bt) onto its maximal semilattice
homomorphic image is precisely Ύov(δA, δβ).

REMARK. AS with tensor, note that if A = \JeeEAe and B =
[JfeF^f a r e semilattice unions of groups, then

Tor (A, B) - Tor (AtJ Bt) = \J Tor ((Ae)ί5 (Bf)t) .
(e,f)eEXF

4* The Grothendieck functor. Recall that if A is an abelian
semigroup then the Grothendieck group of A is an abelian group K(A)
having the property that there is a homomorphism KA from A into
K(A) such that if G is any abelian group and φ any homomorphism
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from A into G then there exists a unique homomorphism φ* from
K(A) into G such that the diagram

A — - — * K{ A)

\

G

is commutative. Also recall that K(A) is obtained as follows. Let
jj^~ denote the free abelian group on A and H the subgroup of
generated by all elements of &~ of the form

( * ) Sa -{- ay — ζay — <α">

for at and α2 in A. Define K(A) — &~\H. One may then show that
K is actually a functor by using the universal property above. We
call this functor the Grothendieck functor.

PROPOSITION 17. If A and B are abelian semigroups, then

~ K(A) <g) K(B) .

Proof. Let ^ , ^ , and ^ A m denote the respective free abelian
groups on A, B, and i ® ΰ . Let HAf HB, and HAm denote the
subgroups defined by (*) above so that K(A) = ^AIHA, K(B) =
and K(A ®B) = ^AmjHAm. Let

7)A:^~A-»K(A),VB-&~B-*K(B), and ηAm\ άTA%B-

denote the natural mappings. Using the universal properties of free
abelian groups one obtains the existence of a bihomomorphism σ: ^ A x
&~B -> K(A <g) JB) such that σ«α>, <δ» = 574(g)jB(α <g) δ) for a e ^1 and δ e 5 .
Define σ*: iΓ(A) x ίΓ(J5) -+K(A® B) by σ*(ηΛ(x), ηB(y)) = α(a?, ») for
a? e c^I and i/ € &*B. We show that σ* is well-defined. Assume ηA{x) =

and iy5(2/) = %(?/')• Then cc = a?' + h and y = y' + k for some
^ and keHB. Thus

(a?, 3/) = <7(α?' + h,y' + k) = σ(x'y y') + σ(α?', fe) + σ(h, y' + k) .

We show that σ(h, y' + k) = 0. Since y' + ke^~B and heHA there
exist integers n4 and m, elements of A, au and α2 i and δf in 5 such that
yf + A; = Σ< ̂ i<δ<> and Λ = Σ mi[<«ϋ + «2y> - <«!,-> - <«2ί >]. Thus

/' + k)

- Σ ^ Σ ^ . [ ^ ( ^ ϋ + α2i>,
i 3

which is zero by the definition of σ. Similarly σ(x', k) = 0 and σ(x, y) =
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σ(xf, y'). Thus <7* is well-defined. The map σ* is clearly a bihomomor-
phism thus there exists a unique homomorphism ψ: K(A) (g) K(B) —>
K{A (g) B) such that ψ(x (g) y) = σ*(α;, T/) for (a?, y) e iΓ(A) x iΓCB). We
claim that ψ is an isomorphism and we prove that this is so by
constructing its inverse. Let φ\ A x B —• K(A) ® K(B) be defined by
φ(a, b) = i£^(α) (g)KB(b). Let <p* denote the homomorphism from A®B
into iΓ(A) (g) iΓ(J5) induced by 9?. Let θ denote the homomorphism for
which the diagram

A (g) B ~^^-> K(A (g) B)

K{A)®K{B)

is commutative. It is a tedious computation to show that θ and ψ*
are inverses of one another but the computation is straightforward
and thus is omitted. The proposition follows.

At this point it seems appropriate to mention the work of two
others who have done some work on the notion of tensor products of
semigroups. T. J. Head has written a series of papers on the subject
and has obtained our Proposition 4. Also Pierre Grillet has obtained
Proposition 4. There seems to be not a great deal of other overlap
among these papers. All three of us obtained our results independently
and almost simultaneously.

The author wishes to express his appreciation to the referee for
pointing out various blunders which we hope have now been corrected.
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