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ABSOLUTE BOREL AND SOUSLIN SETS

ZDENEK FROLIK

The theory of analytic, Borelian and absolutely Baire
spaces is applied to the theory of absolutely Souslin and Borel
Sets with respect to the class of all metrizable spaces.
Several intrinsic characterizations of absolutely Souslin and
Borel sets are given.

The basic idea is that if there is given a class Sf of
respectable sets in a separable theory, then the corresponding
class ^ in the associated nonseparable theory consists of all
spaces P such that P = A n G in βP where A e S/ and G is
a Gs set in βP. If the elements of S/ are characterized by
existence of a complete structure of certain type, then the
elements of & are characterized by the existence of a com-
plete bi-structure <cr, β) where a is closely related to the
structure defining S/> and β is closely related to the struc-
ture characterizing absolute Gs spaces. This approach to the
nonseparable theory is discussed for analytic, Borelian and
bi-analytic spaces. The theory is applied to absolutely Borel
and Souslin sets in the class of all metrizable spaces.

Call a space P an absolute Borel space (an absolute Souslin space)
if P is metrizable, and a Borel (Souslin) set in every metrizable
QZD P. By a Souslin set in a space Q we mean a Souslin set derived
from the closed sets of Q; a full definition is given below. Since
every closed set in a metrizable space is a ft, a set P is Borel
(Souslin) in Qz) P if and only if P is Borel (Souslin) in the closure
of P in Q. A set X in a metrizable space Q is a Borel set (Souslin
set) if (and only if) X is Borel (Souslin) in the closure of X in Q, or
in any Borel set Γ D I , YCZQ.

There is a rather extensive and deep theory of separable absolute
Borel and Souslin sets. The basic facts from the separable theory
were generalized to more general spaces by several authors, and a
closed separable theory in the class of all uniformizable spaces is
developed in [2], [3], [4]; for a survey see [5]1. On the other hand
the nonseparable theory is still waiting for new ideas. The best
information can be found in A. H. Stone's papers. The results in
nonseparable theory strongly resemble the separable theory although
more careful proofs are needed. The purpose of this paper is to
describe internal characterizations of absolute Borel and Souslin sets

1 For an up-to-date survey we refer to the author's A survey of descriptive
theory of sets and spaces, to appear in the first issue of Czech. Math. J., 1970. All
the results needed are discussed in this paper.

663



664 ZDENEK FROLIK

by means, in fact, of the space Σ of irrational numbers and
topologically complete spaces, and to indicate, by external charac-
terizations meaningful for uniformizable spaces, that the nonseparable
theory is more complicated, and the role of compactness nondirect and
more delicate. First we recall a few simple results we need.

THEOREM 1. If P is a Borel (Souslίn) set in an absolute Borel
(absolute Souslin) space Q, in particular, if P is an absolute Borel
(absolute Souslin) set in a completely metrizable space Q, then P is
an absolute Borel (absolute Souslin) space.

The proof follows immediately from the following result due to
Lavrentiev (cf. [8], p. 135).

If Pi czQi (i = 1, 2), ζ) s are completely metrizable, and if / is a
homeomorphism of P1 onto P2, then there exist Gδ sets G{ in Q{ and
a homeomorphism of Gλ onto G2 which is an extension of /.

In what follows all the spaces are assumed to be uniformizable
and separated. The general terminology and notation is standard.

By a correspondence of P into Q we mean a triple /: P-+Q such
that / is a subset of P x Q; here P and Q are sets (possibly endowed
with some structures, e.g., with topologies). The image of a set
XczP under / is denoted by f[X], if xeP then f(x) or fx stands
for / [(x)] where (x) is a singleton. The letter Σ stands for the set
of all sequences of natural numbers; with the topology of point-wise
convergence Σ is known to be the space of irrational numbers. Next,
S denotes the set of all finite sequences of natural numbers, Sn the
set of all s's in S of length n; if σ e Σ then s < σ means that s e S
and s is a restriction (called section) of σ. Also if teS then s < t
means that seS and s is a section of t. The section of σ of length
n is denoted by σn. For s in S denote by Σ(s) the set of all σeΣ
with s < σ. Clearly {Σ(s) | s e S} is an open base for the space Σ of
irrational numbers.

A determining system of subsets of P is a mapping M of S into
exp P such that M(s) c M(t) if t is a section of s. The symbol S(M)
denotes the set

\J{Γi{M(s)\s< σ\σeΣ} .

The Souslin sets in a space are of the form S(F), where F is a
determining system whose range consists of closed sets. We denote
by M(σ) the set Γl {M(s) \s<σ}. Clearly S(M) - U {M(σ)}. If N is

a mapping of S into expP, and if we set

= Γ\{Nt\t<s] ,

we get a determining system M with S(M) ~ S(N).
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DEFINITION. Let ax and a2 be two structures on a space P for
which the concept of α -̂Cauchy filter is defined. We say that aγ is
complete if every αrCauchy filter has a cluster point; we say (aιy α2)>
is complete if a filter ^€ on P has a cluster point provided ^ί€ is
an αrCauchy filter, i — 1, 2. The reader is certainly familiar with
the definition of Cauchy filters for uniformities or metrics. If M is
a determining system then a filter ^ is said to be a Cauchy filter
if M(s) e ^€ for all s < σ, for some σ in 21. If α̂  is a family {^C}
of collections of sets then a filter ^ is a Cauchy filter if ^£ n ^*C ^
0 for all α.

Recall the following two results which are due to the author.
A space is Gδ in each of its compactifications (i.e., is topologically

complete in the sense of E. Cech) if and only if there exists a com-
plete sequence of open coverings of P (see, e.g., [3, §3]).

A space P is analytic (i.e., Souslin in every space) if and only
if there exists a complete determining system M on P such that
S(M) = P (see, e.g., [2]).

A space P is called analytic if there exists an usco-compact
(upper semi-continuous compact-valued) correspondence of Σ onto P.
We refer to [2] for all the properties needed. Recall that P is
analytic if and only if P is Souslin in every space Qz)P. We refer
to [3] for a development of the theory of complete families of
coverings.

]_• Souslin spaces. First, an equivalence of four conditions on
a uniformizable space will be proved. Then these conditions will be
shown to characterize absolute Souslin sets in the class of all metri-
zable spaces. A tight extension of a space P is a space containing
P as a dense subspace.

THEOREM 2. The following conditions on a space P are
equivalent:

(a), (a') There exist a sequence {^n} of open coverings of P and
a determining system M: S —* exp P with S(M) = P such that
<{^»}, My is complete (and all M(s) are closed).

(b) P is the intersection of a Gδ with an analytic set in βP.
(c) P is the intersection of a Gδ with an analytic set in some

compactification of P.
(d) P is the intersection of a Gδ with a Souslin set in every

tight extension of P.

Proof. Clearly (a) and (a') are equivalent, and (d) implies (c) as
well as (b); it follows from the next Lemma 1 that (a) implies each
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of the conditions (b) through (d). Finally, it follows from Lemma 2
that each of the conditions (b) or (c) implies (a).

LEMMA 1. Assume that Q is a tight extension of a space P,
{^n} is a sequence of open covers of P, and M:S-+expP is a
determining system with S(M) = P. Let Un be the union of all
open subsets V in Q with F Π P e % put G = f){Un}. Define
F: S—>expζ) by F(s) = cl M(s) (the closure is taken in Q), and put
A = S(F). If a = <{^ς}, My is complete (on P) then G C) A = P,
and so P is the intersection of a Gδ with a Souslin set in Q.

Proof. Evidently G Π A Z) P is independent of the completeness
of a. Let x e G Π A. There exists an σ in Σ such that x e F(s) for
all s < σ. Let ^ be the neighborhood system at x; consider the
filter y = ̂  nP( = E{Uf]P\ Ue^}). Because xeG, y ς\<2S%Φ <Z>
for each n. Then collection Λί consisting of all V e 5̂ ~ and all
M(s), s < σ, is a filter sub-base on P, and the smallest filter ^ x z> ^
is a α-Cauchy filter. Hence there exists a cluster point y of ^ C in
P. But ^ converges to a; in Q, and hence x = y because Q is a
separated (that is, Hausdorff) space, and ̂  dominates ^_.

LEMMA 2. Assume that P = G Π A where G is a Gδ in a com-
pactίfication K of P, and A is an analytic subset of K. Choose
open Un with G = Γ\{Un}, and an F: S-+expK with S(F) — A such
that each F(s) is closed (thence compact). Let <%fn be the collection
of all open sets V in P such that the closure of V (taken in K) is
contained in Un. Define M: S —>expP by M(s) = P n F(s). Then
a — <{^}, My is complete.

Proof. Let ^y£ be an α-Cauchy filter on P. The space K is
compact and so ^£ has a cluster point x in K. We shall prove that
xe P. There exists a σ such that M(s) e ̂  for all s < σ, and so
x e Π {F(s) I s < σ] a A. It remains to show that x e G, i.e., xe Un for
all n. If On e ̂ £ n ^», then x e cl Ona Un.

REMARK. Assume that R is the closure of P in a space Q, and
assume that P = G Π A with G and Gδ in R and A a Souslin (analytic)
set in R. Then P = G' Π A where G' is a Gδ in Q, and A is Souslin
(analytic) in Q. Indeed, choose a ft G' in Q such that G1 Π R = G.
Then clearly P = G Π A. It follows that the conditions in Theorem
2 are equivalent to condition c with "some compactification of P"
replaced by a compact space that contains P, and also to condition c
with tight delected.
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THEOREM 3. Each of the conditions (a) through (d) in Theorem
2 is necessary and sufficient for a metrizable space P to be an
absolute Souslin space.

Proof. By Theorem 2 each of the equivalent conditions (a)
through (d) is sufficient. Conversely, if P is an absolute Souslin space
then condition (a) is fulfilled by the next lemma (take a completion
Q of P for some metric; 5^ is, e.g., the collection of all open sets
of diameter less than 1/n.

LEMMA 3. Let { 5^} be a complete sequence of open coverings of
a space Q and let P — S(F) where F is a determining system con-
sisting of closed sets of Q. Put ^ f t = P f l [ % ] , M = P Π [F] (i.e.,
M(s) = P n F(s)). Then <{^Λ}, M> is complete.

Proof. Evident.

COROLLARY. The following condition on P is equivalent to each
of conditions (a) through (d) in Theorem 2:

(e) P is the intersection of Gδ with a Souslin set in some
topologically complete (in the sense of E. Cech) space.

THEOREM 4. Every absolute Souslin space is the intersection of
a Gδ with a Souslin set derived from the zero sets in some com-
pactification of P.

Proof. Let K be the Stone-Cech compactification of a completion
Q of P. By Cech's theorem Q is a Gδ in K. Let P - S(F) where
F is a determining system consisting of closed sets in ζ), thence zero
sets in Q because Q is metrizable. For each s choose any zero set
Z(s) in K with Q Π Z(s) = F(s). Put A = S(Z). Clearly Q n S(Z) =
S(F) = P.

REMARK. The proof works for any compactification K of any
completion Q of P with the following property: each zero set in Q
is a trace of a zero set in K. It is clear that every absolute Souslin
space P is the intersection of a Gδ with a Souslin set derived from
zero sets in βP (because βP maps onto any compactification of P),
this is not true for every compactifications, and I don't know whether
it is true for compactification with "enough" zero sets.

By Theorem 1 in [4] if A is an analytic subspace of a space P
and X is a Souslin set disjoint from A, then AcBaP — X for
some Baire set in P. I believe that a similar statement for absolute
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Souslin A is false. It might be interesting to describe reasonably
the spaces with this property in the class of metrizable P's. More
precisely, call a space A a Lusin space if A is metrizable and the
following condition is fulfilled: if P is metrizable, A c P , and if X is
•a Souslin set in P disjoint from A, then A c B c P — X for some
Baire set in P. By a Baire set in P we mean an element of the
smallest σ-algebra containing the zero sets in P. By Theorem 1 in
[4] every analytic metrizable space is a Lusin space, and trivially,
every absolute Borel set is a Lusin space (every absolute Borel set is
a Baire set in every metrizable space in which it is embedded). A
similar problem can be posed by replacing the class of all metrizable
spaces by the class of all completely regular spaces.

It would be useful to find an extent class of reasonable mappings
preserving absolute Souslin sets in the class of metrizable spaces.
Analytic spaces are preserved by continuous mappings; on the other
hand, every metrizable space is a one-to-one continuous image of a
discrete space. A rather small class is described in the next theorem.

THEOREM 5. Let f: P —>Q be a proper surjective mapping of
metrizable spaces. If one is an absolute Souslin space then so is
the other one.

Proof. If Q is an absolute Souslin space then, clearly, so is P
by Theorem 2, condition (b), because / extends to a proper map g
of βP onto βQ and the preimage under a proper mapping of a Gδ

(a Souslin set) if obviously a Gδ (a Souslin set). Conversely, assume
P = G Π A where G = Π{Un}, Un open, and A = S(F), F(s) closed
in P. Put Kn = βP- Un, Vn = βQ- g[Kn], E(s) = g[F(s)]y A' -
S(E), G'= Γi{Vn). Clearly G' is a Gδ and A' is Souslin in βQ.
Evidently, A ' Π G ' D Q . If xe A! n G', then g~ιxcG and g~ιx Ϊ\AΦ

0 . If y eg~γx Π A, then yeP because G Π A = P, and so x = gy e Q.

The next theorem of this section follows from Theorems 2 and 4,
and Theorems in [5].

THEOREM 6. A space P is the intersection of a Gδ with a
Souslin set derived from the zero sets of βP if and only if there
exists a continuous mapping F of Σ into C(P) and a sequence {In}
of closed free ideals in C(P) such that any maximal ideal I is fixed
if and only if I contains some F{σ) but no In.

It is clear that absolute Souslin sets in a metrizable space are
preserved by the Souslin operation. The next theorem states that
the same is true in any space for Souslin sets satisfying the equivalent
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conditions in Theorem 2. Thus these sets seem to form a reasonable
generalization of the absolute Souslin sets to nonmetrizable spaces,,
without any restriction of separability.

THEOREM 7. Let P be a space and let Jzf be the collection of
all Souslin sets X in P satisfying the equivalent conditions (a)—(d)
in Theorem 2 with X instead of P. Then S(<S$f) =

Proof. Take a compactification K of P. Observe that Xessf if
and only if X — Ax Γ) Gx with Ax analytic (in K) and Gx a Gδ in K,
PdGx. Now, if M is a mapping of S into s*f, and if F($) is A^.,,
for each s, then

S(M) = G n S(F)

where G is the intersection of all GM(S). Thus S(M) e s/ because G
is a Gri and S(F) is analytic.

REMARK. The collection j y in Theorem 7 need not contain all
subspaces satisfying the equivalent conditions in Theorem 2.

The next lemma tells something about the relation to Souslin.
sets derived from the open sets.

LEMMA 4. Let K be a compactification of P, and let F be a
determining system of closed sets in P such that S(F) — P. There
exists a Gδ set G in K such that

( * ) GO S(dκ[F]) = P

if and only if there exists a determining system U of open sets in
K such that U(s) a F(s) for all s in S, and

S(U) = P.

Proof. Assume (*), take open Un in K with Γ\{Un} = G, and
consider the collection ^ ς , neN, of all open sets in K with the
closure contained in Un. Let U(s) be the star of F(s) in <%s% where
n is the length of s. It is routine to check the relation S(U) = P.
Conversely, let ^(s) be the collection of all open sets in P whose
closures (taken in K) are contained either in U(s) or in the comple-
ment of F(s). The struct <({^(s) | s e S}, Fy is complete, and Lemma
1 applies.

REMARK. It should be remarked that a similar result can bê
easily formulated without any reference to K, see Theorem 16.
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2* Absolute Borel spaces* The condition in the next theorem
is an analog of a characterization of Borelian spaces, see [2, Th. 7]
I don't know whether this condition is necessary (see Theorem 11).
This result will not be used in the sequel.

THEOREM 8. The following condition is sufficient for a metri-
zable space P to be an absolute Borel space: there exists a metric d
for P and a proximal dusco correspondence of Σ onto <ΊP, d} such
that the values are complete.

The phrase "proximal dusco" means that fa is distant to fτ for
<J Φ τ (proximal disjointness—d in dusco), and for every proximal
neighborhood U of any fa (i.e., U contains a sphere about fa) there
exists a neighborhood V of σ with fτ c U for τ in V (proximal usco).

Proof of Theorem 8. Let <Q, D> be a completion of <P, d).
We shall prove that P is a Borel set in Q. There exists a mapping
B of S into the Borel sets in Q such that each collection {B(s) \seSn}
is disjoint and B(s) z> f[Σ(s)] for all s. Indeed, if it were not true
then we would construct distinct σ and τ in Σ such that no pair
f[Σ(an)], f[Σ(τn)] would admit a "separation" by a Borel set in Q.
Since / is proximally dusco there exists an n such that the above
sets are distant in P, and so in ζ), thence they are separated in Q.
The remainder is clear. Define F by setting F(s) = B(s) Π clQf[Σ(s)].
Without any lost of generality we may and shall assume that F is
a determining system. It follows from the proximal upper semi-
continuity of / that

S({clQf[Σ(s)]) = P,

hence S(F) = P. The collections {F(s) \ s e Sn} are disjoint, and hence

P = S(F) = Γt{\J{F(s)\8eS%}\neN} .

The sets F(s) are Borel sets in Q, and hence P is a Borel set in Q.
Now the absolute Borel sets will be investigated by means of

methods similar to those used in § 1. For convenience we introduce
a name for the structure corresponding to the determining system
in §1.

DEFINITION. A Borel structure on a space P is defined to be a
determining system M: S —> exp P such that each {M(s) \ s e Sn} is a
disjoint covering of P, and for every two distinct points σ and τ in
Σ there exists an n in N such that

(*) the sets M(an) and M(τn) are functionally separated,
A Borel structure on a proximity space P (in particular, on a uniform
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space or a metric space) is a Borel structure M on the underlying topolo-
gical space such that, for each distinct σ and τ in Σ, there exists
an n such that

(**) the sets M(σn) and M{τn) are distant.

Self-evidently (**) implies (*). It is easy to see that a Borelian
structure on a topological space P (cf. [2, Definition 4, p. 163]) is
essentially a Borel structure on any proximity space inducing the
topology of P.

Recall that a Borelian structure on a space P is a complete
sequence {^C} of countable disjoint coverings of P such that ^ C + 1

refines ^ n , and

nίciJtf.}nnίcii^}= 0

whenever ΛfΛ, i\Γw e ̂ fn> Mn D Λfn+1, iV% ID JV»+1, and ΛfΛ Φ Nk for some
Jfc. It follows that Π {d Mn) = Π {-M*} *s a compact set and each
neighborhood of this compact set contains cl Mn for large enough n.
Thence, given a proximity on P, Mn and Nn must be distant for
large enough n. A Borelian structure is a sequence of coverings with
some properties, and a Borel structure is a determining system with
some properties, and hence no Borelian structure is a Borel structure.
On the other hand, given a Borelian structure {^C}, it is easy to
construct a determining system M such that each element of
{Ms I s e Sn] either belongs to ^£n of is empty. Now it is easy to
prove that M is a Borel structure on P, and this is the meaning of
the sentence that a Borelian structure is essentially a Borel struture
on any proximity space inducing the topology of P. In addition,
obviously I is a complete Borel structure on P. Conversely, if M
is a complete Borel structure on a space P, then {{Ms\seSn}\neN]
is a Borelian structure on P. In what follows by a Borelian structure
on P we shall mean a complete Borel structure on P. Before going
on we must review a few results from [2] and [3].

Recall that a set with a disjoint Souslin representation in a
space P, shortly a d-Souslin set in P, is a set of the form S(F)
with all Fs closed, and {F(σ) \ σ e Σ} disjoint. Now, P is Borelian if
and only if P is a c?-Souslin set in some and then any compact space
Q 3 P. If ^y£ is a collection of sets then Bd{^£) denotes the smallest
collection of sets containing ^/f and closed under countable intersec-
tions and countable disjoint unions. Now, P is Borelian if and only
if Pe Bd (Lindelδf locally compact sets of Q) for some and then any
compact space QZD P. It is easy to see that Lindelof locally compact
sets in a compact space Q are just the intersections of cozero sets in
Q with closed sets in Q. The elements of
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Bd (cozero sets in Q)

are called Baire sets in Q. In metrizable, more generally in perfectly
normal spaces, open sets and cozero sets coincide, and so any
Borelian space is a Baire set in any metrizable space containing it.
Moreover, every Borelian space is analytic, hence Lindelof, and hence
every metrizable Borelian space is a separable absolute Borel set.

REMARK. If P belongs to Bd (closed set in Q) for some compact
space Q then P is Borelian. On the other hand, the open interval
(0, 1) does not belong to Bd (closed set in [0, 1]) where [0, 1] denotes
the closed interval.

THEOREM 9. The following condition (a)—(c) on a space P are
equivalent:

(a) P is the intersection of a Gδ with a Borelian subspace of

βP)
(b) P is the intersection of a G§ with a Borelian subspace in

some tight extension K of P.
(c) There exists a sequence {^n} of open coverings of P and a

Borel structure M on P such that <({^w}, My is complete.

Proof. Evidently (a) implies (b), We derive (c) from (b). Let
P — Q n B where G is a Gδ and B is a Borelian subspace in some
tight extension K of P. Choose open sets Un in K with G = Π {&%}>
and a Borelian structure F on B. Put M(s) = Pfl F(s) for s in S,
and for each natural n, let f!S% denote the set of all open sets V in
P with clκ VaUn. Clearly I is a Borel structure on P, and it is
easy to show that <{^J, My is complete.

Finally, to prove that (c) implies (a), assume that <{^J, My is
complete. For each natural n consider the union Un of all open sets
V in K=βP with F Π P e % and put G=f\{Un}. Next, put
B = S(F) where F = {s -* F(s)} is defined by the formula

F(s) - U ί Π {cl* AΓ(t) \t<σ)\s<σ}.

It follows by the argument used to prove Lemma 1 that P — G Π B.
It remains to show that B is a Borelian space, which we do by
showing that F is a complete Borel structure on B. Evidently F is
a determining system on B. The condition that {F(s) \ s e Sn} are dis-
joint follows from the definition and the property (*) that will be
verified below. If ^f is a Cauchy filter on <ΊB, Fy then F(s) e Λt
for all s < <τ, where σ is a certain element of Σ, and hence every
cluster point of ^ in K is contained in each c\Mκ(s), s < σ, and
so in B which proves that ^t has a cluster point in B. To prove
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the property (*) (for F) in the definition of Borel structure, consider
two distinct elements σ and τ of Σ; for some natural n the sets
M(σn) and M(τn) are functionally separated in P, and hence in βP.
Thus F(σn)(a c\M(σn)) and F(τn) are functionally separated in βP,
and hence in B. The proof is complete.

THEOREM 10. The following two conditions (d) and (d') are
equivalent for any space P, and imply conditions (a)—(c) in Theorem
9. // P is paracompact then the conditions (a), (b), (c), (d), and
(d') are equivalent to each other.

(d) There exists a Borel structure M on P and a continuous
pseudometric d on P such that <(d, My is complete on P.

(d') Condition (d) holds, and whenever (d. My is complete for
some Borel structure M on P and a continuous pseudometric d on
P, then there exists a continuous pseudometric D on P such that
<(D, My is complete and M is a Borel structure on <(P, Dy.

Proof. Condition (d) implies (c) for any P because a filter
on P is d-Cauchy if and only if it is a Cauchy filter with respect to
{̂ %} where ^ is the 1/w-eovering of P (here the r-covering of
ζP, dy is the collection of all open r-spheres in ζP, dy). If (c) holds,
then <(d, My is complete for any continuous pseudometric d on P such
that each <%Sn is refined by some r-covering of <̂ P, dy; such a d
exists if P is paracompact. It remains to show that (d) and (d') are
equivalent for any space P. Trivially (d') implies (d). Assuming (d),
the required D is of the form d + p where p is described in the next
lemma.

LEMMA 5. If M is a Borel structure on a space P then there
exists a continuous pseudometric p on P such that M is a Borel
structure on ζP, py.

Proof. If s,te SnJ neN, choose a continuous nonnegative func-
tion f8tt <̂  1 which is zero on M(s) and one on M(t), whenever such
a function exists at all. Arrange all fSyt in a sequence {/J and put
Kx> y> = Σ{\f«x - fnV\/2n}- It follows from (*) in the definition of
Borel structure that M is Borel on <(P, py.

LEMMA 6. Let <(Q, Dy be a completion of a metric space <(P, dy.
Then P is a Borel set in Q if and only if there exists a Borel
structure M on <Ί°, dy such that ζd, My is complete.

Proof. Assume that P is a Borel set in Q, and hence a Baire
set in Q. Consider the compactification K of Q corresponding to the
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proximity structure induced by D. Clearly every Baire set in Q is the
intersection of Q with a Baire set in K. Hence P = Q f] B where B
is a Baire set in K. By the results stated before Theorem 9, B is
Borelian; let F be a Borelian structure on B. Then F is also a
Borel structure on the proximity subspace Q of K, and hence the
structure M induced by F on Q Π B = P is a Borel structure on the
metric space P. One easily checks that <(d, My is complete.

Conversely, assuming that ζd, My is complete where M is a
Borel structure on ζP, dy, we shall prove that P is a Borel set in Q.
Observe that there exists a determining system Z of Baire sets in Q
such that each collection {Z(s) \ s e Sn} is disjoint, and Z(s) ZD M(S) for
all s. Indeed, it is enough to show that for each distinct s and t in
Sn, n ~ 1, 2, , there exists a Baire set B in Q such that M(s) c j?,
B n Λf(£) = 0 (say that B separates M(s) and M{t)). If some M(s)
and M(t) were not separated, then there would exist (distinct) σ and
T in Σ such that s = σn, t = τn, and no pair M(σm), M(τm) would
admit a separation. But this would contradict (**) in the definition
of Borel structures. To conclude the proof put

B(s) = (c\QM(s))f]Z(s).

Evidently B(s) is a Baire set in Q, and S(B) = P because S(dQ[M]) =
P. Since each {B(s) \ s e Sn} is disjoint, we get

S(B) = n{\J{B(s)\seSn}\neN}

which proves that S(B) is a Baire set in Q, and concludes the proof.

LEMMA 7. Assume that P is metrίzable and ζd, My is complete
for some metric d of P, and some Borel structure M on <T, e?>.
Let D be any metric for P. Then there exists a Borel structure F
for <P, Dy such that <7), Fy is complete.

Proof.2 This is an immediate consequence of Lemma 7 and the
fact that a Borel set in a completely metrizable space is absolutely
Borel.

THEOREM 11. // P is metrίzable then each of the conditions
(a) through (d') in Theorems 9 and 10, and also each of the condi-
tions (e) through (h) listed below, is necessary and sufficient for P
to be an absolute Borel set.

(e) If d is a metric for P then there exists a Borel structure

2 One can prove Lemma 7 independently of Lemma 6. The direct proof is
interesting and instructive, but too long. The author intends to publish it elsewhere
in connection with a deeper investigation of completions of metric spaces.
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M on <(P, dy such that ζd, My is complete.
(f) If d is a metric for P, and <7?, Dy is a completion of

ζP, dy, then there exists a Baire set B in the compactification of R
corresponding to the proximity induced by D, such that B Π R = P.

(g) For every completion R of P there exists a Baire set B in
βR such that B Π R = P.

(h) P is the intersection of a Gδ with a Baire set in βP.

Proof. Evidently (g) is necessary and sufficient, and (h) implies
(a). Condition (d') implies (e) by Lemma 7, and obviously (e) implies
(f) by Lemma 6. The implications (f) => (g) =* (h) follow by considering
the canonical mapping of βR onto K, and of βP onto βR, respectively.

REMARK. An analog of Theorem 8 does not hold. We shall
return to this question in § 3 where another generalization of absolute
Borel sets will be introduced.

The section is concluded by a formal but important, restatements
of conditions in Theorems 2, 3, 4, 9, and 11.

THEOREM 12. (a) A space P is an absolute Borel (Souslin)
space if and only if P is a closed subspace of the product R x B,
where R is a completely metrizable space (which may be taken to
be a completion of P) and B is a separable absolute Borel (Souslin)
space.

(b) A space P is the intersection of a Gδ set with an analytic
{Borelian) subspace in βP if and only if P is a closed subspace of
a product space R x B such that R is a topologically complete space
in the sense of E. Cech and B is an analytic (Borelian) space.

REMARK. Separable absolute Souslin spaces coincide with metri-
sable analytic spaces, and separable absolute Borel spaces coincide
with metrizable Borelian (equivalently, bianalytic) spaces.

Proof of Theorem 12. "If" is clear. For "only if" consider first
the simpler case (b). Assume that P = R n B, where R is a Gδ in
βP, and B is analytic (Borelian) in βP. Since βP is separated, the
diagonal P ' of R x B is closed in R x B, and clearly P ' is homeo-
morphic to P. To prove "only if" in (a), assume that P is absolutely
Souslin (Borel). By Theorem 4 (Theorem 11, condition (g)) P = Rf]B
where R is a completion of P, and B is a Souslin set derived from
the zero sets (a Baire set) in βR. Take a continuous mapping / of
βR onto a metrizable space such that f[B] Π f[βR — B] = 0 the
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existence of / for B a Baire set is given by a Halmos Theorem, and
the proof for B a Souslin set follows the same idea. The mapping /
is proper, and hence the product h of the identity mapping of R and
of the restriction of / to a mapping of B onto f[B] is also proper,
and hence the restriction h \ P' of h to the diagonal P' of R x B
(which is closed in R x B) is also proper. Since h\ Pr is one-to-one,
it is a homeomorphism. Thus the closed subspace h[Pf] of R x f[B]
is a homeomorph of P.

For the next theorem we need the following simple consequence
of the Lavrentiev Theorem.

PROPOSITION. Let f be a continuous mapping of a subset X of
a metrizable space P into an absolute Borel space Q. Then f extends
to a continuous mapping of a Borel set B Z) X in P into Q.

Proof. Let R be a completion of Q. By the Lavrentiev Theorem
/ extends to a continuous mapping F of a Gδ set G ID X in P into R.
Clearly the restriction of F to f~ι[Q] is the required extension.

THEOREM 13. A metrizable space P is absolutely Borel if and
only if for some (and then any) completion R of P there exists a
continuous mapping of P into a separable absolute Borel space B
which is nonextensible to any point of R — P.

Proof. Assume that a continuous /: P —> B is nonextensible to
any point of a completion R of P, where B is a separable absolute
Borel set. By Proposition the mapping / extends to a continuous
mapping of a Borel set CZD P in R into B. By our assumption C =
P, and hence P is a Borel set in R, hence an absolute Borel set.
Conversely, assume that P is an absolute Borel space, and let R be
a completion of P. There exists a Baire set B in βR such that
B Π R = P. Take a continuous mapping g of βR onto a compact
metrizable space Q such that B — g^lB']. Let / be the restriction
of g to a mapping of P into B'. The space Br is a separable absolute
Borel space, and / is nonextensible to any point of R — P.

It should be remarked that obvious analogs of Theorems 12 and
13 hold for absolute distinguishable sets, and Theorem 13 holds for
absolute Souslin sets. Recall that a set X in a space P is said to
be distinguishable if there exists a continuous mapping / of P into
a separable metrizable space such that f[X] Π f[P — X] = 0 . The
proofs go over.



ABSOLUTE BOREL AND SOUSLIN SETS 677

Finally, in Theorem 13 one can replace "continuous" by "uniformly
continuous" with obvious additional changes.

The last result is a restatement of the condition related to C{P).
See [5, Th. 1].

THEOREM 14. A space P is the intersection of a Gδ with a Baire
set in βP if and only if there exists a decreasing sequence {In} of
closed free ideals in C(P), and a continuous mapping F of Σ into
C(P) such that:

(a) No maximal ideal contains the intersection of two ideals
generated by the values of F at two distinct points of Σ, and

(b) A maximal ideal is fixed if and only if it contains the
ideal generated by some Fσ, σ e Σ.

Corresponding characterizations of P's which are intersections of
a Gδ with respectively a Z-Souslin or absolutely distinguishable set
are simpler because the rather complicated condition (a) is not
needed.

3* Absolute U-Borel spaces* Here another generalization of
absolute Borel sets will be treated. If ^ is a collection of sets let
B^^) denote the smallest collection containing ^ and closed under
countable intersections and countable unions. Thus B(^€) ~D Bά{^£),
and it is a classical result that the two collections coincide if ^ is
the collection of all cozero-sets in a space.

DEFINITION. A set X in a space P is called Z7-Borel (F-Borel)
if X belongs to B{^£) where ^^ is the collection of all open (closed)
sets in P. A set X in P is called Z7-Souslin if X is a Souslin set
derived from the open sets in P.

In any perfectly normal space, in particular in any metrizable
space, every closed set, and also every open set in a Baire set; in
consequence, Baire sets, [7-Borel sets and jP-Borel sets coincide. Also
the iΓ-Souslin, Souslin and Z7-Souslin sets coincide in such a space.
By a Z-Souslίn set in a space we mean a Souslin set derived from
the zero sets in the space. In any space P a set X is CT-Borel if
and only if P — X is F-Borel, but a corresponding statement for
"Souslin" is not true.

It is evident that if / is a continuous mapping of P into Q, and
I c Q is F-Borel, i7~Borel, Souslin or [/-Souslin in ζ), then f~ι[X]
has the respective property in P.
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THEOREM 15.3 The following conditions on a space P are
equivalent:

(i) P is U-Borel in βP.
(j) P is U-Borel in some compactification of P.
(k) P is U-Borel in every compactification of P.
(1) P is U-Borel in every tight extension of P.

Furtherj the same holds with U-Borel replaced by U-Souslin
throughout.

DEFINITION. A space satisfying the equivalent conditions (i)
through (1) will be called an absolute £7~Borel space. If we replace
Z7-Borel by [7-Souslin we get the definition of absolute £/-Souslin
spaces.

COROLLARY. Each of the conditions (i) through (1) is necessary
and sufficient for a metrizable space to be an absolute Borel (absolute
Souslin) space.

Proof of Theorem 15 for U-Souslin sets. It is enough to prove:
if K and L are compactiίications of P, and if there exists a canonical
mapping / of K onto L, and if P is t7-Souslin in K, then P is U-
Souslin in L. Assume P = S(U) where U consists of open sets in
K; define V by setting V{s) = E{y \ y e L, jf-tyc U{B)}. Clearly V
consists of open sets in L and S(V) = P. For a simple proof for
Z7-Borel sets we need the following lemma which is of some interest
in itself.

LEMMA 8. A set X in a space P is U-Borel (equivalently
P — X is F-Boreΐ) if and only if there exist determining systems U
and F, U consists of open sets and F consists of closed sets, such
that S(U) = X, S(F) = P - X, and for each σ, τeΣ

( * ) U(σn) Π F(τJ = 0 for some n .

Proof. To prove "only if' it is enough to show that the sets
X satisfying the condition are preserved by countable unions and
countable intersections. We omit the routine details. To prove "if,
consider the determining systems L and K defined by setting

L(8) = \J{U(σ)\8<σ],

K(s) = \J{F(σ)\s<σ}.

3 The part concerning £/-Borel sets has been essentially published by S. Willard,
Absolute Borel sets in their Stone-Cech compactifications, Fund. Math. 58 (1966),
323-333. I am grateful for this reference to the referee and A. H. Stone.
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Clearly L(s) c U(s), K(s)aF(s), S(L) = X, S(K) = P - X, and

(**) L(8)= U{L({s,ί})\ίeN}

K(s)= U{K({s,i})\ieN},

where {s, i] stands for the sequence {s0, , sn, ί) with s = {sk | k ̂  n}.
If X were not a ί7~Borel set, i.e., if I c Γ c P - ( P - I ) for no
JT-Borel set Y, then, because of (**), there would exist indices %
and j0 such that

L({ίo})czYc:P-K({jo})

for no Z7-Borel set Y. Proceeding by induction, there would exist σ
and τ in Σ such that

for no Z7-Borel set Y. However, this would contradict condition (*).

Proof of Theorem 15 for U-Borel. Assume P is F-Borel in a
compactification K of P, and let / be the natural mapping onto a
compactification L of P. By Lemma 8

P = S(U), K-P = S(F)

where U(s) is open, and F(s) is closed for each s in S, and condition
(*) is fulfilled. Define U' and Ff by setting

U'(8) = E{x I / " ^ c U(s)}, F'(8) = f[F(s)] .

Lemma 8 applies.
It should be remarked that Lemma 8 is the main tool for proving

(B) and (C) in Theorem 16. Theorem 15 can be proved elementary
just by considering the mapping that assigns to each open set U in
K the open set E{x \ f~ι% c U) in L.

REMARK. In Lemma 8 it is not important that we are working
in a topological space with closed and open sets. Let P be a set,
^~ a collection of subsets of P, and let ^ consist of the comple-
ments of sets in ^ 7 Then X e B(^) if and only if there exist
mappings F\S-+J^ and U:S-+^ such that X = S(F), P - X =
S(U), and for each σ, τ e Σ there exists an n with F(σn) Π U(τn) = 0 .

I know nothing about an analog of Theorem 15 for F-Borel sets.
Anyway, it is clear that every space P which is jP-Borel in βP is
analytic, hence Lindeloίf, and hence separable if metrizable. So no
direct description of nonseparable absolute Borel sets can be given in
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this way. However, we would get a very good generalization of
absolute Borel sets if "absolute F-Boτel" sets were able to play the
role of Borelian spaces in § 2. This is shown by the following
observation:

Let K be a tight extension of a space P, and let ,̂>& be the
collection of all sets X in P such that X = G Π Y for some Gδ set G
in ϋΓ, G 3 P, and some F-Borel set Y in J5Γ. Then fi(^) c ^ C

In conclusion we give some internal characterizations of absolute
Z7-Borel (£7-Souslin) spaces, and spaces P which are .F-Borel in βP.

For convenience, define a co-determining system to be a single-
valued relation with domain S and the range contained in the class
of all sets, such that M(t) ID M(s) whenever s is a section of t. The
operation co S, called the co-Souslin operation, assigns to each co-
determining system M the set

co S(M) = Π {{\JM(s) I s < σ) \ σ e Σ) .

A co-determining system M is on P, if M(s) c P for all s in S and
co S(M) — P. Finally, a co-determining system M on a space P is
called complete if

{{M(s) I s < σ] I σ e Σ}

is a complete family of coverings. The characterizations now read
as follows.

THEOREM 16. (A) A space P is absolute U-Souslίn if and only
if there exists an open determining system U on P and a family
{^(s)}, %f(s) being an open cover of U(s) for each s e S, such that
if ^S is a filter on P with the property that there exists σ in Σ
with ^/{s) Π ̂  Φ 0 for all s < σ, then ^£ has a cluster point
in P.

(B) A space P is absolute U-Borel if and only if there exists
U and {^(s)} with the properties in A, and a complete co-determining
system N on P consisting of open sets such that for each σ and τ
in Σ there exists an n with U{σn) c N(τn).

(C) A space P is F-Borel in βP if and only if there exist a
complete determining system L on P (which may be assumed to
consist of closed sets), and a complete co-determining system E on
P consisting of closed sets such that for each σ and τ in Σ there
exists an n with F(σn) c E(τn).

Proof of (A). Firstly assume that P is [7-Souslin in a space K;
thus P = S(V) with all the V(s) open in K. Define U by setting
U(s) ~ P [] V{s), and let f/{s) consist of all open sets G in P such
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that the closure of G in K is contained in V(s). If ^/f is a filter
on P, and if G(s) e ^ Π ̂ {s) for all s < σ with some <7 in Σ, then
each cluster point of ^t in if must be contained in the intersection
of {Vs\ s < σ}, and hence in P. Thus if K is compact, then ^£ has
a cluster point in P. This proves "only if. Conversely, assume that
U and {^(s)} with the properties in A are given, and let K be any
tight extension of P. For each open set G in P choose an open set
G' in K with G' C) P = G, and define a 7 by setting

F(β) = U {G'| GeaΌO} .

Clearly all F(s) are open in K, and S ( 7 ) D P . If xeS(V)\P, then
<c e V(o) for some # in Σ, and we can choose a family {G(s) | s < σ)
such that G(β) e ^/(s) and a; e (G(s))' for all s < <J. Consider the
neighborhood system Ψ* of a? in if, and let ^ f consist of all V f) P,
Ve 5̂ 7 Since iΓ is separated, a? is the unique cluster point of 5̂ 7
and hence of ^C, in K. On the other hand, G(s) e ^y£ D ̂ /{s) for
all s < σ. This contradicts the property of {^(s) \swS] in A, and
proves "if" in A.

Proof of (B). Assume that P is £7-Borel in a space if; by
Lemma 8 P = 5(7), and JSΓ - P = S(F) such that all U(s) are open
in ϋΓ, all F(s) are closed in K, and for each σ, τeΣ there exists an
w with F(σ n )nF(τJ = 0 . Define ί7 and {^(s)|s6S} as in the
proof of "only if" in A. Define H(s) = P\F(s). The last property of
Z7 and if in 5 is obviously fulfilled, and if K is compact then all the
properties are fulfilled by the proof of "only if" in A. Conversely,
assume that U, {^(s)}, and H with the properties in B are given,
and let K be a tight extension of P. Define V as in the proof of
"if" in A9 and define F by setting F(s) to be the complement in K
of the largest open set G(s) in L with G(s) ( 1 P = iϊ(s). By the
proof of A we have 5(F) = P, it follows from the completeness of
H that S(F) = P, and it is easy to check property (*) in Lemma 8.
By Lemma 8 P is U-Borel in K. This proves "if" in B.

Proof of (C). Assume that P is .F-Borel in a compactification K
of P. By Lemma 8 we can write

P= S(F), K-P= S(U)

with JP(S) closed and Z7(s) open in K such that property (*) is fulfilled.
Define L by setting L(s) = F(s) Π P, H by setting H(s) = P - U(s).
One can easily check all the properties required in C. Conversely,
assume that L and H with the properties in C are given, and let K
be a compactification of P. We shall apply Lemma 8 to prove that
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P is .F-Borel in K. For each s in S let F(s) be the closure in K of
L(s), and let U(s) be the complement in K of the closure M(s) of
H(s) in ϋΓ. The sets F(s) are closed, the sets U(s) are open, and it
is easy to verify property (*) in Lemma 8. To apply Lemma 8 we
need to prove that S(F) = P, and S(U) = K - P. The first relation
follows from Lemma 1 (with G = K), the second need not hold in
general. This is the place where we must assume that K is a Cech-
Stone compactification of P. The relation S( U) — K — P is equivalent
to the relation co S(M) = P, and the latter relation holds by the
following important result (Theorem 6 in [3]).

LEMMA 9. Let {j^l \ a e A} be a complete family of closed coverings
of a normal space P, and let K be a Cech-Stone compactification of
P. Then

It should be pointed out that for the proof the following property
of Cech-Stone compactifications K of normal spaces P is needed: if
JF\ and F2 are closed in P and x e K — P is in the closure of Fi9 i = 1,2,
then x is in the closure of Fx Π F2.

REMARK. Observe that the proof of Theorem 16 contains a new
proof of Theorem 15.

The author is grateful to the referee for careful (and certainly
tiring) work which made this paper partially readable.
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