
PACIFIC JOURNAL OF MATHEMATICS
Vol. 32, No. 3, 1970

DYNAMICAL SYSTEMS OF CHARACTERISTIC 0+

SHAIR AHMAD

The main purpose of this paper is to classify the dynamical
systems on the plane which satisfy a certain type of stability
criterion. Such flows are referred to as dynamical systems of
characteristic 0+. The classification is based on the considera-
tion of three mutually exclusive and exhaustive cases: Dynam-
ical systems of characteristic 0+ which have no critical points.
Those whose critical points form nonempty compact sets, and
those whose critical points do not form compact sets.

Dynamical systems of characteristic 0+ are those dynamical systems
in which all closed positively invariant sets are positively .D-stable,
i.e., stable in Ura's sense (see [11]). If the phase space of a flow is
regular, then a closed positively invariant set, which is positively
stable in Liapunov's sense, is also positively D-stable. Thus, some
simple examples of flows of characteristic 0+ are those where the phase
spaces are regular and all closed invariant sets are positively stable
in Liapunov's sense.

In § 2 we give some of the basic definitions and notations that are
used throughout the paper. In § 3 we prove some results of a more
general nature which are later applied to flows of characteristic 0+ on
the plane. It is proved that if the phase space X of a flow is normal
and connected and a closed invariant set F is globally + asympto-
tically stable, then F is connected. Further, if the phase space X of
a flow of characteristic 0+ is connected and locally compact, then a
compact subset M of X is a positive attractor implies that M is glob-
ally + asymptotically stable.

In § 4 we discuss flows of characteristic 0+ on the plane. It is
shown that if the set of critical points S of such a flow is empty,
then the flow is parallelizable. If S is compact, then it either con-
sists of a single point which is a Poincare center, or it is globally +
asymptotically stable. If S is not compact, then either R2 — S, or S
is + asymptotically stable; S and the region of positive attraction
A+(S) of S each has a countable number of components. Further,
each component of A+(S) is homeomorphic to R2. At the end of this
section, we summarize all the results of this section in the form of a
complete classification of such flows.

In § 5 we discuss flows of characteristic 0* on the plane, i.e., those
in which every closed invariant set is positively and negatively stable
in Ura's sense. We prove that such a flow is either parallelizable, or
it has a single critical point which is a global Poincare center, or all
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points are critical points.

2* Notations and definitions* Let R, R+, and R~ denote the
sets of real numbers, nonnegative, and nonpositive real numbers, re-
spectively. Given a topological space X and a mapping π of the prod-
uct space X x R into X, we say (X, π) defines a dynamical system
or flow on the phase space X if the following conditions are satisfied.

1. Identity axiom: π(x, 0) = x.
2. Homomorphism axiom: π(π(x, t), s) = π(x, s + t).
3. Continuity axiom: π is continuous on X x R.
For brevity, we denote π(x, t) by xt. For each xe X, we let C(x)

denote the trajectory or orbit through x, i.e., C(&) = xR. Similarly,
the positive and negative semi-trajectories through x are represented
by C+(x) and C~(x), respectively, i.e., C+(x) = xR+ and C~(x) = xR~.
We let L+(x) denote the positive (or ω~) limit set of x, i.e., Z/+(#) =
Π{ C+(xt): t eR}. Similarly, L~(x) denotes the negative (or a-) limit
set of x. A point x is called a critical or rβaί point if aλβ = #. A
subset M of X is said to be invariant if C(M) = Λf, and positively
(negatively) invariant if C+(ilί) = Λf(C"~(Af) = If). A closed invariant
set M is minimal if it has no proper subset which is closed and in-
variant.

Throughout this paper, we use dM and M to represent the bound-
ary and closure of M. Given a Jordan curve C on the plane i?2, we
let int (C) denote the bounded component of R2- C. Let (R2)* =R2U {ω}
be the one point compactification of the plane.

A closed positively invariant set M is said to be positively
Liapunov stable, or more simply, positively stable, if for every neigh-
borhood U of My there exists a neighborhood V of M such that
C+(V) aU. M is said to be a positive attractor if there exists a
neighborhood U of M such that φ Φ L(x) c M for all x in 17. The
largest such neighborhood U is called the region of positive
attraction of M and will be denoted by A+(M). M is said to be +
asymptotically stable if it is both positively stable and a positive attrac-
tor. It is said to be globally + asymptotically stable if it is + asymp-
totically stable and A+(M) = X.

For each xeX, the (first) positive (negative) prolongation D+(x)
(D~(x)) of x is given by

D+(X)= n (cW)} Φ-(*)= n {ϋ=(N)}),
Neη{x) Neη(x)

where r](x) is the neighborhood filter of x.
The (first) positive (negative) prolongational limit set of x is given

by
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j+(x) = n {D+(χt)} (j-(x) = n {D-(χt)}).
teR teR

It is known and easy to verify that L+(x) c J+(x). Further, if X
is a Hausdorff space, then D+(x) = C+(x) U J+(x).

A closed positively invariant set M is said to be positively D-stable
if D+(M) = M.1

It is easy to verify that if X is regular and a closed positively
invariant set M is positively stable (i.e., stable in Liapunov's sense as
defined above), it is also positively D-stable. The converse is false.

The following theorem, which we use several times in this paper,
is due to Ura [11].

THEOREM {Ura). Let (X,π) be a dynamical system on a locally
compact space X, and let M be a compact subset of X. Then M is
positively stable if and only if it is positively D-stable.

REMARK. The statement "X is locally compact" is used in the
Bourbaki sense throughout this paser, i.e., X is assumed to be a
Hausdorff space.

3* Flows of characteristic 0+* Before discussing flows of char-
acteristic 0+, we prove a lemma and a proposition concerning flows in
general.

LEMMA 1. Let (X, π) be any dynamical system. If xeX and
ylfy2eL+(x)y then y.eD+iy,) and y2eD+(y1).

Proof. We note that

D+(yd= Π {C+(N)}f
Neη(yx)

where Ύ](y^) denotes the neighborhood filter of yx. Since yx, y2 e L+(x),
for each NeηiyJ and Meη(y2), there exist tlyt2eR+ with xtxeN and
(χty)t2 = x(t, + t2) e M. Hence y2 e C+(N), and consequently, y2 e D+(yx).

Similarly, yteD+{y2).

PROPOSITION 3.1. Let (X, π) be a dynamical system on a normal
(and Hausdorff) connected topological space X. If a closed invariant
subset F of X is globally + asymptotically stable, then F is connected.

Proof. Suppose F is not connected. Then there exist two non-

1 The theory of prolongation and D-stability is due to Ura (see [11], [12], and [13]).
Ura [11] refers to D-stability as stability and to Liapunov stability as Li-stability,
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empty disjoint closed sets F1 and F2 such that F — Ft U F2. Since X
is normal, there exist two disjoint open neighborhoods Uι and U2 of
Fx and F2, respectively. On the other hand, since F is positively stable,
corresponding to the neighborhood U — U1 U U2 of F, there is an open
neighborhood V of F such that C+{V)a U. Therefore, if we let V{ =
V f] Ui, i = 1, 2, then for each xe Vif C+(x)(Z Ui since C+(x) is con-
nected. Thus, L+(x) c Fi i.e., Vt c A+ί^) since lϊi^Fj = 0 , ί =£ i .
Hence, we have shown that 2^ and i 2̂ are positive attractors; conse-
quently A+(FX) and A+(F2) are open, since the boundary of each is
closed and invariant. But this contradicts the assumption that X is
connected, since X = A+{F) = A+{F,) U A+(F2), where A+(Fj) and A+(F2)
are clearly nonempty disjoint open sets. This completes the proof of
Proposition 3.1.

DEFINITION 3.1. A dynamical system (X, π) is said to have char-
acteristic 0+ if and only if D+(x) — C+(x) for all xeX.

The above definition is equivalent to saying that (X, π) has char-
acteristic 0+ if and only if every closed positively invariant subset of
X is positively D-stable.

It follows that if the phase space X of a flow of characteristic 0+

is a Hausdorff space, then D+(x) = C+(x) U L+(x), for all xeX.

LEMMA 2. Let (X, π) be a flow of characteristic 0 + . If xeX

such that L~(x) Φ 0 , then xeL~(x).

Proof. Suppose L~(x) Φ 0 and let yeL~~(x). Then, yeD~(x),

and hence xe D+(y) = C+(y). On the other hand, yeL~(x) implies
that C+(y) cL"(»), since Σr(x) is a closed invariant set. Therefore,
x e L~(x).

PROPOSITION 3.2. Let (X, π) be a flow of characteristic 0+ on a
connected locally compact space X. If M is a compact positively
invariant subset of X and M is a positive attractor, then M is glob-
ally + asymptotically stable.

Proof. Since I is a closed positively invariant set, we have
D+(M) = M. Therefore, M is positively stable by Ura's theorem. It
is sufficient to show that dA+(M) = 0 . Suppose that dA+(M) Φ 0 ,
and let x e dA+(M). Let ηA(x) be the trace of the neighborhood filter
7]{x) of x on A = A+(M). Then, for each NA e 7jA(x), 0 Φ L+(NA) c M.
Since M is compact, the cluster set of the filter base {L+(NA) \ NA e yjΛ(x)}
is a nonempty subset of M; hence J+(x) Π M Φ 0 . However, this
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contradicts the assumption that (X, π) has characteristic 0+, since
dA+(M) is a closed invariant set disjoint with M. Therefore, dA+(M) = 0
and the proof of Proposition 3.2 is complete.

4* Flows of characteristic 0+ on the plane* Throughout this
section, we assume the phase space to be the plane R2 and (R\ π) to
be a fixed flow of characteristic 0+. We let S denote the set of rest
points of this flow.

LEMMA 3. For each xeX, if L+(x) Φ 0 , then L+(x) is either a
periodic orbit or it consists of a single rest point.

Proof. If L+(x) contains a rest point s09 then L+(x) — {s0}. For,
yeL+(x) implies that y eD+(s0) = {sQ}, by Lemma 1. Suppose that
L+(x) consists of regular points only. Then, to complete the proof of
the lemma, it is sufficient to prove that L+(x) is compact. We note
that if yeL+(x), then C+(y) = L+(x). For, zeL+(x) implies that
z e D+(y) = C+(y). Also, C+(y) c L+(x) since L+(x) is a closed invariant
set, and hence C+(y) — L+(x). Since C+(y) a C(y) a L+(x), we have
C(y) = L+(x). Therefore, L+(x) is a minimal set. We recall that if M
is a minimal subset of R2 which is not compact, then for each
meilf, L^m) = 0 (c.f. p. 37 of [6]). Suppose that L+(x) is not
compact, and let y1 and y2 be two distinct points in L+(x). Then,
y.eD+iyz) = C+(y2) and y2eD+fa) - C+fa). But, if tλ and t2 are
positive numbers such that y1 = y2tL and y2 = yγt2, then yγ = yγ{tγ + t2);
showing that C+(y1) is a periodic orbit. Hence, L+(x) is a periodic orbit,
since L+(x) — C+(y1)1 as it is a minimal set; thus contradicting the as-
sumption that L+(x) is not compact.

For a proof of the following theorem see [5].

THEOREM (Bhatia). A flow F on a 'metric space X is dispersive
if and only if for each x e X, D+(x) = C+(x) and there are no rest
points or periodic orbits.

THEOREM 4.1. // S — 0 , then the flow (R2, π) is parallelizable.

Proof. We note that for each x e R2, L+(x) = 0, and hence
D+(x) = C+(x) = C+(x). For, if L+(x) Φ 0 , then by Lemma 3, it must
be a periodic orbit since it consists of regular points only. But this
is impossible since the bounded component of a periodic orbit contains
a rest point. Thus, the proof of our assertion follows from Bhatia's
Theorem, stated above (c.f. Auslander [2]) and the fact that the notions
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of parallelizability and dispersiveness are equivalent for a flow on the
plane (see Antosiewicz and Dugundji [1]).

THEOREM 4.2. If R2 contains a periodic point, then S is a sin-
gleton. Further, if S — {s0}, then one of the following holds.

1. s0 is a global Poincare center.2

2. s0 is a local Poincare center. The neighborhood N of s0, con-
sisting of s0 and periodic orbits surrounding s0, is a globally +
asymptotically stable simply connected continuum. Further, if x £ N,
then L+(x) = dN.

Proof. Let x0 be any periodic point, and let So — int (C+(x0)) Π S.
We note that int(C+(α?0)) Φ So since S is closed; and for each regular
point x in int (C+(^o)), C+(x) is a periodic orbit, by virtue of Lemma
2.3 Let (Ba)aeI be the family of all periodic orbits such that for each
a el, int (Ba) C)S = So. Let B = \JaeI int (Ba). If dB = 0 , then B =
R2. Suppose that dB Φ 0 . Then 3B is a closed invariant set since
B is invariant. Further, dB f] S — 0 . For, if bQedBf)S, then one
can choose a simple closed curve C such that int(C) Π So — 0 , since
So c int (C+($o)) c JS and So is closed. Clearly, there is no neighborhood
W of b0 with C + (l^) c int (C), since a; e TΓ Π 5 - So would imply that
a? is a periodic point, by Lemma 2, and int (C+(x)) Π So Φ 0 . But this
contradicts the fact that {bQ} is positively stable, as D+(bQ) = {&0}; thus
showing that dB Π S = 0 . This also shows that dB is not a singleton
since it is invariant and consists of regular points.

We note that if x e B and x g SQ, then $ is a periodic point, by
Lemma 2, with C+(x) c I? and int (C+(α;)) f l S 0 ^ 0 . For, α? belongs to
int (Ba) for some a el. Thus, a g S since int (Ba) f] S = So. Further
£,-(#) ^ 0 and C%τ)c:i? since »τ is surrounded by the periodic orbit
Ba. Thus, x is a periodic point with int (C+(x)) Π So Φ 0 since
C+(.τ) c int (J5α) and int (Ba) f] S == So. Now we wish to show that 3JB
is a periodic orbit. In order to accomplish this, we consider two cases.

Case 1. Suppose dB f] C+(x0) Φ 0 . Then, since dB is invariant,
we must have C+(x0) ddB. On the other hand, dBaC+(x0). For, as-
sume dBς£.C+(xQ), and let bedB - C+(x0). Then, b$ int (C+(xQ)) since
int (C+(xQ)) dB. Thus, one can choose a neighborhood U oϊ b such
that Z7ΓΊ int (C+(.τ0)) = 0 since δ ί int (C+(.τ0)), as b £ C+(xQ) and

2 So is a global Poincare center if for each x Φ so, C(x) is a periodic orbit surround-
ing so. It is a local Poincare center if it has a neighborhood M such that for each
xSM— {so}, C(x) is a periodic orbit surrounding so.

3 It is a known fact about flows on the plane that a point is positively (or nega-
tively) Poisson stable if and only if it is either a rest point or a periodic point (see
[10]).
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b£int(C+(xQ)). Let xeUΠB. Then, xgS0 since S o c int (C+(x0)).
Thus C+(x) is a periodic orbit. Since int (C+(x0)) is connected,

int (C+(x)) Π int (C+(x0) Φ 0 , as int (C+(£)) Π *S0 ^ 0 and

3 int (C+(x)) Π int (C%τ0) = C+(x) Γ\ int (C+(^o)) - 0 ,

it follows that mt(C+(x0))czmt(C+(x)). But, C+(x0) c i n t (C+(&)) c 5
contradicts the assumption that 3B f] C+(x0) Φ 0, as B is open; hence
δB = C+(x0).

Case 2. Suppose 3Bf]C+(xQ) — 0 , and let bL,b2edB. First we
show that b2 e D+φ^ and bx e D+(b2). In order to show that δ2 G -D+(δχ),
it is sufficient to show that if d and C2 are any simple closed curves
with &i G int (d) and δ2 e int (C2), then there exist â  e int (d) and ίx e R+

such that ajiίx e int (d)- Let ^ e int (d) C\ B — mt(C+(x0)), so that y1 is a
periodic point with int (C+(yι)) Π S = So Since 5 is open and δx, δ2 G 35,
there exists a point y2 e int (C2) Γ) B Γ) (R2 — int (C+(?/1))). Then, τ/2 is
a periodic point with C+(y2)aR2 — int (C+(2/i)) and int (C+(y2)) ΓΪS0Φ 0 ,
Since int (C+(τ/2)) Π int (C+d/O) ̂  0 , int (C+d/O) is connected and
3 int (C+(i/2)) Π int (C+(!/!)) = 0 , we must have int (C+iy,)) c int (C+(τ/2)).
This implies that int (d) Π int (C+(y2)) Φ 0 . It is also clear that
int (d) Π (R2 - int (C+(y2)) Φ 0 since bx e BB and B is open. Therefore,
C+(y2) Π int (d) Φ 0 since int (d) is connected. Certainly, for each
^ G C+(y2) Π int (d), there exists ^eR+ such that a ^ e i n t i d ) since
C+ίίCi) = C+(y2) and /̂2 is a periodic point. This shows that ^eD^φ^).
Similarly, b1eD+(b2). If L+{b^ Φ 0 , then it is a periodic orbit, by
Lemma 3, since dB Π S = 0 and L+φJ c 35. That L+ίfeJ c 3JB follows
from the fact that dB is a closed invariant set, as B is invariant.
Further, J B c L + f t ) , since 6e3J5 and yeL+φJ implies & e D+(ί/) =
C+(τ/) = L+ίδi), as L+(δi) is a periodic orbit contained in dB. There-
fore dB = L+Cδi) is a periodic orbit. Similarly, if L+(b2) Φ 0 , then dB
is a periodic orbit. Suppose L+(&i) = L+(b2) = 0 . Then we must have
δ^C^δg) and δ2GC+(δ!), which again implies that C+(δx) is a periodic
orbit containing δ2 (see proof of Lemma 3). Thus, we conclude that
3JS is a periodic orbit.

Let N = dB U int (35). We wish to show that N = B. Since S is
closed, one can choose a simple closed curve C such that Ndint (C)
and (int (C) — N) Π S = 0 . We note the N is positively stable since
D+(N) = iV. Thus, there exists a neighborhood V oΐ N such that
C + ( F ) c i n t ( C ) . It follows that (V-N)f) 5 = 0 . For, if a? e ( V - N ) n 5,
then a? is a periodic point, by Lemma 2, since # is surrounded by some
periodic orbit 5 α . Therefore, we must have dB c int (C+(x)), since
C+(x) c int(C) and (int (C) - iV) Π S = 0 . But, it is impossible to have
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35 c int (C+(x)) since int (C+(x)) c B. Thus, we have established that
(V - N) Π B = 0, and hence int (55) f l 5 # 0 , since dB f] B = 0, as
5 is open. We note that B is connected since it is the union of the
family of connected sets (int (Ba))aeI with 0 Φ So c f|«s/ int (5α). There-
fore, B e int (dB) since 5 n 9(int (95)) = B Γ) dB = 0 . Now, suppose
int (9J5) ̂  5. Then, clearly, int (35) Π B is a nonempty open set. Also,
int (dB) — B is a nonempty open set. For, # e int (dB) — B implies that
xgdB and x£B; hence xgB. Let V be a neighborhood of x such
that Fί l B = 0 . Then Ϊ7 = Fί l int (35) is a neighborhood of x and
t / c int (35) — B. Hence, int (dB) is disconnected; a contradiction to
the Jordan Curve Theorem. We have thus shown that N = dB U 5.

iV is a simply connected continuum, by Schoenflie's Theorem. We
wish to show that N is globally + asymptotically stable. In view of
Proposition 3.2, it is sufficient to show that N is a positive attractor.
Since N is compact and S is closed, we can choose a compact neigh-
borhood UQ of N such that Z70 Π (S - So) = 0. Then, there exists a
neighborhood Vo of JV such that C+(VQ)cz Uo. For each xeV0 — N,
L+(x) Φ 0 and L+(x) π S = 0 . Hence, I/+(#) is a periodic orbit and
So <z int (L+(x)). Similarly, if y e int (L+(x)) - N, then So c int (L+(y)).
It follows from the way N was constructed that L+(x) = 9iSΓ.

We note that if 5 = R\ then S = So. Also, if 5 ^ β2, then S = So

since ΛΓ Π (S — So) = 0 and JV is a globally + asymptotically stable
neighborhood of SQ. In particular, since x0 was an arbitrary periodic
point, it follows that S is contained in the interior of every periodic
orbit. Now, we wish to show that S is a singleton. This will com-
plete the proof of the theorem, since B = R2 will then imply the first
and B Φ R2 the second assertion of the theorem. Let D = f}aei int (Ba).
Then, we have S c D. Suppose that D contains a regular point d.
Then, L~(d) Φ 0 since d is surrounded by periodic orbits, and hence
C+(d) is a periodic orbit (see footnote 3). But this would imply that
deint(C+(d)), which is impossible. For, as we pointed out above,
S = So and SQ is contained in the interior of every periodic orbit. Hence
every periodic orbit belongs to the family (Ba)aeI and, consequently, D
is contained in the interior of every periodic orbit. Therefore, D = S.
Let d1 e dD, and suppose that D contains a point d2 distinct from dλ.
Let Cί be a simple closed curve such that dx e int (d) and d2gmt(CL).
Since {dj is positively stable, there exists a neighborhood Wι of d1

with C+(W1)czint ( Q . But, if a; is a regular point in WλΓ\B, then
we must have D c int (C+(x)), and in particular, d2 e int (C+(x)), which
is impossible. This completes the proof of Theorem 4.2.

For flows of characteristic 0+, the following theorem is a rather
strong generalization of Bendixson's theorem (see [4]), which states
that for every isolated critical point s on the plane, either there exists
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a point y Φ s such that L+(y) = {s} or L~(y) = {s}, or every neighbor-
hood of s contains a periodic orbit surrounding s.

THEOREM 4.3. If S has a compact component So which is isolated
from S — So, then one of the following holds.4

(1) S is a singleton and one of the two assertions of Theorem
4.2 holds.

(2) So is globally + asymptotically stable, and consequently,

Proof. Let V be a compact neighborhood of So such that
V Π (S - So) - 0 . Since D+(S0) = SQ, So is positively stable. Let U
be a neighborhood of SQ such that C+(U)dV. Then, for each x e U,
L+(x) Φ 0 . If a periodic orbit exists, then the proof follows from
Theorem 4.2. If there are no periodic orbits, then for each xe U,
L+(x) consists of a single rest point, by Lemma 3. Further, L+(x) c S
since L+(x) c V. Therefore, So is globally + asymptotically stable, by
Proposition 3.2, and hence SQ = S.

o

COROLLARY. If S contains a point s0 which is isolated from
S — {s0}, then S = {s0}.

THEOREM 4.4. If S is compact, then either S is a singleton and
one of the two assertions of Theorem 4.2 holds, or S is globally +
asymptotically stable.

Proof. Let C be a simple closed curve such that Sc int(C) .
Since S is positively stable, as D+(S) = S, there exists a neighborhood
V of S such that C+(F)cint(C). Therefore, for each x e V, L+(x) Φ 0.
If a periodic orbit exists, then the proof follows from Theorem 4.2.
If there are no periodic orbits, then L+(x) consists of a single rest
point, by Lemma 3. Hence, S is globally + asymptotically stable,
by Proposition 3.2.

REMARK. If S is + asymptotically stable, then for each sedS,
there is a regular point y with L+(y) — {s}. For, if x is a regular
point, then it follows from Lemma 2 and Theorem 4.2 that C~(x) is
unbounded. Thus, if C is a simple closed curve surrounding s, then
one can choose sequences {xn} and {tn} in R2 and R~, respectively, such
that {xn} converges to s and {xntn} converges to some point xQ e C.
But this would imply that x0 e D~(s) or s e D+(x0), and hence L+(x0) — {s}.

4 So is isolated from S — So if So has a neighborhood disjoint from S — So.
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LEMMA 4. If S is + asymptotically stable, then A^(S) is an open
set.

Proof. We note that 3A+(S) is a closed invariant set, since
A+(S) is invariant. Thus, for each x edAl\S), L-(x) c: dA+(S).
But, dA'r(S) Π S — 0 since S is + asymptotically stable. Therefore,
dA+(S) Π A+(S) = 0 , and hence A+(S) is open.

THEOREM 4.5. If S is unbounded, then the following hold.
(1) Either S = R2, or R2 — S is unbounded.
( 2 ) If S Φ R2, then S is + asymptotically stable.

Further, if S is disconnected, then it is not globally + asymptotically
stable.

(3) x$A+(S) implies that L^x) = 0.

Proof. The first assertion follows from the fact that there are
no periodic orbits, and consequently, if x is a regular point, then C~(x)
is unbounded. To prove (2), let sedS and let C be a simple closed
curve such that seint(C). Since {s} is positively stable, there exists
a neighborhood U of s such that C+(U) c in t (C) . Therefore, for each
x e U, L+(x) Φ 0 , and hence L+(x) c S since there are no periodic orbits.
The last assertion of (2) follows from Proposition 3.1. Statement (3)
follows from Lemma 4 and the fact that dA+(S) is positively invariant
and there are no periodic orbits.

THEOREM 4.6. If S Φ R2 and S is unbounded, then A+(S) has a
countable number of components. The boundary of each component
is constituted by a countable number of orbits C{x) such that ^(x) — 0 .

Proof. Since by Lemma 4, A+(S) is open, the first statement
follows immediately from the fact that the components of A+(S) form
a collection of mutually disjoint open subsets of R2. To prove the
second assertion, let K be any component of A+(S). We note that dK
is invariant and is thus constituted by whole trajectories. For each
xedK, L^x) = 0 , since x cannot belong to any component of A+(S)
and there are no periodic orbits. Thus, Cx = C(x) U {&)} constitutes a
simple closed curve in (R2)* and K is contained in one of the compo-
nents of (iϋ2)* — Cx. Let Kx denote the component of (R2)* — Cx which
is disjoint from K, i.e., Kx Π K — 0 . Then we must have Kx Π dK— 0 .
If y e 3K - Cx, then KXΠ Ky = 0 . For, suppose KXΠ KyΦ 0 . Then,
Kx Π dKv = Kxf]Cy = 0 since y e dK, dK Π Kx = 0 and dK is invariant.
Hence, Kx c Ky. Similarly, Ky c Kx and thus Kx — iΓ .̂ Now, ?/ g Ĉ
and y £ ί ς since Kx Π 3iΓ= 0 . Therefore, the component (i?2)* - (Kx U Cs)
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ymust be a neighborhood of y. But this is a contradiction to y e
since (R2)* — (Kx (J Cx) contains no point of Kx = Ky. This shows that
Kx Π Ky = 0 . The second assertion of Theorem 4.6 now follows from
the fact that (J?2)* is a Lindelof of space, and hence the collection
(KX)C{X)CLBK is countable.

THEOREM 4.7. // S Φ R2 and S is unbounded, then every com-
ponent of A+(S) is homeomorphic to R2.

Proof. Let Ko be any component of A+(S). Since Ko is an open
subset of R2, it is sufficient to show that Ko is simply connected. Let
Co be any simple closed curve such that Co c Kϋ. If x is a regular point
in int (Co), then L~(x) = 0 since there are no periodic orbits. There-
fore, C~(x) Π Co Φ 0 . But #0 G C~(x) Π Co implies that x0 e A+(S), and
hence xeA+(S) since I I I G C + W . This shows that int (Co) aA+(S),
since S c A + ( S ) . Since int (Co) is connected, int (Co) aKQ, i.e., Co is
retractible.

THEOREM 4.8. // S Φ R2 and S is unbounded, then S has a
countable number of components, each being simply connected. Fur-
ther, the set of critical points in each component of A+(S) form a
component of S.

Proof. We note that SczA+(S), and by Theorem 4.6, A+(S) is
partitioned into a countable number of components. Therefore, in order
to prove the first assertion, it is sufficient to show that if Ko is any
component of A+(S) and So — Ko f] S, then So is a component of S.
To show that So is a component of S, it is sufficient to show that So

is connected. For, it follows from the proof of Theorem 4.6 that
dK0 n S = 0 , and consequently, the component of S containing So is
contained in Ko. However, we note that So is + asymptotically stable,
globally, in Ko. Therefore, the fact that SQ is connected follows from
Proposition 3.1.

To prove that components of S are simply connected, let SL be
any component of S and let CL be any simple closed curve such that
Ci c S l β Suppose intίC^) contains a regular point x. Then L~(x) Φ 0
since x is surrounded by the simple closed curve Cι consisting of rest
points. But this implies that x is a periodic point (see footnote on
page 10). Therefore, int (Cx) consists of rest points and is hence con-
tained in S l f since Sx is a maximal connected subset of S. This com-
pletes the proof.

It follows from Theorem 4.6 and the proof of Theorem 4.7 that
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each component of S is isolated from other points of S. Thus, using
Theorem 4.3, we have the following sharpening of Theorem 4.3.

THEOREM 4.9. If S has a compact component, then one of the
two possibilities stated in Theorem 4.3 holds.

We now summarize the results of this section.

Case 1. S = 0 and (R\ π) is parallelizable.

Case 2. S is compact implies one of the following.
( a ) S = {s0} is a singleton and sQ is a global Poincare center.
( b ) S = {sQ} is a singleton and s0 is a local Poincare center.

Further, the set N consisting of sQ and periodic orbits surrounding sQ,
is a globally + asymptotically stable simply connected continuum.

( c ) S is a globally + asymptotically simply connected continuum.

Case 3. If S is unbounded, then either (A) S = R2 or (B) the
following hold.

( a ) R2 — S is unbounded.
( b ) S is + asymptotically stable.
( c ) A+(S) has a countable number of components each being

homeomorphic to R2 and unbounded.
( d ) S has a countable number of components, each being non-

compact and simply connected. For each s e dS, there is a regular
point y with L+(y) — {s}.

( e ) A+(SQ) is a component of A+(S) if and only if SQ is a com-
ponent of S.

( f) For each x e R\ L+(x) is either empty or consists of a single
rest point. Further, L+(x) = 0 for all xξA+(S) and L~(x) = 0 for
all x e R2 - S.

The above theorems indicate that imposing characteristic 0+ on a
dynamical system on Rr is a fairly strong restriction. However, for
more general phase spaces the situation is different. By way of illust-
ration, we give the following example.

EXAMPLE 1. Consider the subspace of R3 consisting of the xy-
plane and the negative £-axis. Consider the flow in which the origin
0 is a rest point, points on the xy-jήane are periodic whose trajec-
tories surround 0 and points on the negative £-axis tend positively to
0, i.e., L+(x) = 0 for all x on the negative £-axis.

We have clearly defined a flow of characteristic 0+ which has only
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one rest point, and yet none of the conditions of Theorems 4.2 or 4.3
hold.

5* Flow of characteristic 0* on the plane*

DEFINITION 5.1. A flow (JB2, π) on the plane is of characteristic
0* if for each xeR2, D+(x) = C+(x) and D~(x) = C~(x).

The above definition is equivalent to saying that a flow is of
characteristic 0± if and only if every closed invariant subset M of R2

is positively and negatively Zλ stable (i.e., D+(M) = D~(M) = M). The
following theorem completely classifies such flows. The proof of this
theorem follows immediately from the previous section and is hence
omitted.

THEOREM 5.1. Let (R2, π) be a dynamical system of characteristic
0* on the plane. Then one of the following holds.

(1) S = 0 and the flow is parallelizable.
( 2 ) S = R2.

(3) S — {s0} is a singleton and s0 is a global Poincare center.

The author is grateful to Professor Taro Ura for suggesting this
problem. His guidance and suggestions have been invaluable. The
author also thanks the referee, particularly, for his suggestions con-
cerning the exposition of this paper.
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