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PRIME IDEAL DECOMPOSITION IN F(n1/p)

WILLIAM YSLAS VELEZ

Let F be a finite extension of the field of rational numbers,
3P a prime ideal in the ring of algebraic integers in F, and xm - /JL
irreducible over F. If m is a prime and £m E F, then the ideal
decomposition of 3> in F(/jL1/m) has been described by
Hensel. If m = V, I a prime and (/, 0>) = 1, then the decom-
position of 8P in F(fi1/lt) was obtained by Mann and Velez, with
no restriction on roots of unity. In this paper we describe the
decomposition of & in the fields F(£p) and F(/x1/p), where

I. Notation and introduction. Let 3, denote the rational
numbers and F a finite extension of 3, where the degree of an extension
is denoted by [F: 3L\. By a prime ideal ^ in F we shall mean a prime,
integral ideal in the ring of algebraic integers in F. For an ideal 0>, we
have N(3P) = pf, p a prime, where N denotes the absolute norm and
(p) = 9>asd, (SP, s&) = 1, where (a, b) denotes the greatest common divisor
of a and b. If p — 11 a, then we set a = spk~x(p — 1), (5,/?) = 1. By F&
we shall mean the ^-adic completion of F, [x] denotes the largest integer
less than or equal to x, a/b + c shall mean a/(b + c), and & denotes a
primitive p'-root of unity.

If A is an abelian group, then we say that {a,}ieI, is a basis for A if
A = 0 l G J (a,), where (a,) denotes the group generated by a, in A.

We say pc \\b if p c \ b , pc+1 X b.
This paper is devoted to a generalization of what is called in the

literature, "Kummer's Theorem." This theorem deals with the ideal
decomposition of prime ideals in F when considered as ideals in F(/x1/p).

Hilbert [12, pg. 254-257] proved the following theorem:

THEOREM 1.1. If'xp - fiis irreducible over2L{£p\ (/UL,3P) = 1, then in
) we have

(1) the ideal ® splits into p factors iff n = £p (mod &>p+1),
(2) the ideal & remains prime iff fi^^p (mod0>p+1), fi=^p

(3) the ideal 3P becomes the pth-power of a prime ideal i

Later Hensel [9,10] generalized these theorems to the situation
where £p E F&. Hensel calls these theorems "Kummer's Theorem," but
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he references Hilbert, and Hilbert gives no reference for these theorems.
In §4 we describe the decomposition rules for the extensions F(ii1/p)

and F(£p) over F, for those prime ideals which divide p. Sections 2 and 3
develop some machinery to tackle this problem. This machinery will
hopefully be used to describe the decomposition rules for the case
F(fi1/pC), c > 1, in a subsequent paper.

We point out that decomposition rules for the ideal 9 in the
extension F(/JL1/IC), I a prime different from /?, have already been worked
out. We refer the reader to the paper by Mann and Velez.

This paper is based on my Ph.D. thesis at the University of
Arizona. I wish to express my deep appreciation to Professor Henry B.
Mann for his advice and encouragement during that venture.

II. Preliminaries. We say that a is a principal unit if a = 1
(mod^).

Let ^m be the multiplicative group of units modulo 8Pm. Then
| »m | = <i>(0>m) = {pf - l)pf{m~l\ where $ is the Euler function. Clearly
^m is abelian. It can be shown that fp/_i G F& and that ^m = (£p'_i) 0 Gm,
where Gm is the multiplicative group of principal units modulo 0>m, and
\Gm\ = p^-1\

There have been several papers devoted to the study of Gm, e.g.,
Wolf [25], Tagenouchi [18], Hensel [5,6,7,8,11] and Mann [14]. We
state some results which we shall need later. We first determine the
rank of Gm, denoted by R(Gm% as a p-group [see Fuchs 3, pg. 85].

THEOREM 2.1.
Ifm^ ap/p - 1, thenR(Gm) = (m - 1 - [(m - l)/p])f.
Ifm^ ap/p -\Aj>£ F» then R(Gm) = af.
Ifm= ap/p - 1, £p G F» then R(Gm) = af.
Ifm > ap/p - 1 , £PEF^, then R(Gm)= af+1.

Proof. See Mann [14, pg. 3, pg. 9], Tagenouchi [18, pg. 22], Hensel
[6, §§3 and 4], Velez [19, pg. 10].

We now construct a basis for Gm, for m not too large. The residue
system modulo 9 forms a finite, commutative field of degree / over its
prime field. Hence, there exist algebraic integers {gl5 • • •, gf} such that
every element modulo 9 can be written uniquely as

The set {gl5 • • -,gf} will be called an additive basis.
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From the collection of positive integers choose the smallest a of
them which are relatively prime to p and call them fci<fc2<---<
ka. Let 77 be an algebraic integer such that 91| IT.

Set

(2.1) T ^ l + g.TT*'.

T H E O R E M 2 .2 . (1) If m ^ ap/p - 1 and q = m - 1 - [ ( m - l ) / p ] ,
ffren {rjiy | i = 1, •-- , / ; / = 1, - • •,<?} is a fcasis / o r G m .

(2) I / f , £ F9 a n d m ^ a p / p - 1, f/ien {rjiy | i = 1, ••- , / ; / = 1, •••, a}
is a basis for Gm.

Proof See Mann [14, pg. 8], Hensel [6, pgs. 204, 205], Velez
[19, pg. 26].

Now, let £p E Fg>. Then clearly p -11 a, so ap/p -1 is an
integer. Since l?(Gm) = a/ + 1, when m > ap/p - 1, we need an extra
element.

LEMMA 2.1. Let - p ^ T T V 1 (mod^a+1), then there is a gr such
that xp - gp~lx — g' has no solution modulo 8P.

Proof See Mann [14, pg. 10], Hensel [6, Section 3], Velez
[19, pg. 29].

With g' defined as in Lemma 2.1, set

Note that spk = a+(a/p- 1).

LEMMA 2.2. Let £p E F& and m ^ ap/p — 1, then 17' is not a pth-
power in Gm.

Proof See Mann [14, pg. 10,11], Hensel [6, §4], Velez [19, pg. 29].

THEOREM 2.3. If £p E F9 and m = (ap/p - 1)+ 1 = spk + 1,

{77', TJ,, |i = 1, • • • , / ; / = 1, • • -,a} /orrns a basis for Gm. If m > spk + 1,
f/ien {17', rjy 11 = 1, • • • , / ; / = 1, • • •, a} is a generating set for Gm, though it
is not necessarily a basis.

Proof See Mann [14, pgs. 12-14], Hensel [6, §4], Velez [19, pg. 29].

III. Analysis in F^. Let A={at} be a complete residue
system modulo 8P. That is, if /3 is an integer in F, then there exists a
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unique i such that jS^a, (mod^). Let 0*||ir, then every element
yEft . can be written uniquely as

IEZ, anSA.

We say that y is an integer if / ^ 0.
If

00

l

yn is an integer for all n and y/# 0 (mod ^ ) , then we set v»{x) = /. Let
i>(x) = MP(JC) if there is no danger of ambiguity.

It is clear that v(x) is well-defined. Moreover, v(x)=l iff
&11| x. It can also be shown that the series S;=o /3n, /3n E F^, converges in
F9 iff limn_ i/(j8n) = oo in a.

Fact 1. The domain of convergence of the exponential series
E{x) = lTn=Qxnln\, is the set of all x for which v(x)>N, where N =
[alp - 1]. The domain of convergence of the logarithmic series log(l +
Jc) = S:=i(-l)""1JCn/n, is the set of all x for which v(x)^l.

Let /(y) = S;=oany
n and g(x) = S;=16mxm. If we substitute g(x)

for y in /(y) and carry out the formal multiplications, we obtain a power
series in x, which we call G(x).

Facf 2. (On Substitution of Series in Series). Let the series
/(y) = S:=o any

n converge for all y which satisfy v(y) ^ /, / G Z. If the
series g(x) = 2^=1 fcmxm converges for some x EF& and i/(6mxm)^ /, for
all m ^ 1, then the series G(x) also converges (for this value of x) and

We note two properties of these power series: E{x)n = E(nx), for
n e Z, and E (log (1 + x)) = 1 + x, for */ (xn In) > N. We refer the reader
to Borevich and Shafarevich [Chapter 4] for proofs of the above
statements.

THEOREM 3.1. The series f(x)=l + ZZ=i( £ ) xn converges in F9 if

v(x)> ta + N. Furthermore 1 + x = (j{x)f for v(x)>ta + N.

Proof The series

VI) » = l+2 (zjnl)(x/p%
i

In
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where zn = (1 ~p')(l - 2p') • • • (1 - (n - l)p')- Note that (zn,p) = 1, so
î (zn) = 0. But v(x/pt)=v(x)-v(p')>ta + N-ta=N. But, from
Fact 1, 5£=1(l/n!)(jc//?')" converges, which implies that

in <2.

Hence 1 + S:=1 f
1^7) xn converges if *>(*)> ta + N.

Consider the series (l/p')log(l + x) = S:=1 ( - l)n-lxnlnp\ for */(*) >
fa + N. Then we can show that v(xn/npt)>N for all n. Hence we can
substitute this series in the series E(x), and formally carry out the
multiplications. But since this is formal multiplication, we can perform
these computations in ^[x], where % is the field of complex
numbers. So we have

E((l/p')k>g(l+ *)) = /(*),

and by Fact 2, these two series converge in F9 to the same value. But
then,

(f(x)Y = E((l/p')k>g(l + x)Y = J5(log(l + x)) = 1 + x.

THEOREM 3.2. If a=r\pt (mod0>'fl+N+1), then there exists peF9

such that a = fipt in F9.

Proof. lia=7)pt (mod0>'fl+N+1), then a/rjpl = 1 + x, where v(x)>
ta + N. Hence, (1 + x)1/pt E F9. Let j3 = (1 + x)1/p% then a = j8pl.

IV. The Decomposition of SP in F(£p) and
F(jit1/p). Let X be a finite extension of F of degree n. We are
interested in the prime ideal decomposition of 0* in K. Assume that 0*
factors into g, ideals of relative degree /, and relative multiplicity eh that
is, n = S.gf/.e,. Then we define the counting function

For example, if K is a normal extension, then F^K^)- g[d]% which
means 9* factors into g ideals, each of relative degree d and relative
multiplicity e. In certain cases, these counting functions have some
interesting properties. We refer the reader to the paper by Mann and
Velez.

LEMMA 4.1. If (a,b)= d, where a,b EZ, then there exists anx E Z
such that (a, x) = 1 and bx + ay = d.
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Proof. Mann and Velez, pg. 2.

Let «2P denote the p-adic completion of ,2; 9, 9C, and S£ are finite
extensions of «2P, and e(2F\3,p) = e1 denotes the ramification degree of 9
over %.

LEMMA 4.2. IfXis an unramified extension of 9, then JC is a normal
extension. Furthermore, if &' D 9, then 3if • 9' is unramified over 9\
where % • 9' denotes the smallest field containing both JC and 9'.

Proof We refer the reader to Weiss [22, pgs. 83-85].

THEOREM 4.1. Let £ n 9 = 2\ and e(S£'\%) = lu {SB: SB'] =
e(SB\SB') = /, (/,/?) = 1, and (e'/ll91) = d. Then £ = <e'(7r1/l), where TT is
some prime element in SB' and e{9{irlll)\9) = I Id. Furthermore, if 3if is
an unramified extension of 9, that is, e(X\9) = 1, then e(3C(>irm)\yC) =
lid.

Proof. We refer the reader to the paper by Velez entitled "A
Characterization of Completely Regular Fields."

The following corollary, though not new (see the paper by Ishida), is
an interesting application of Theorem 4.1.

COROLLARY 1. Let a be an integer in «S with (a,p)= 1, and p an
odd prime, then&{{ap)llp~l, £p) is an abelain extension of 2L((ap)Vp~l) with
relative discriminant 1.

Proof. It is clear that £((ap)1/p~1,fp) is an abelian extension of
H(<*P)llp~% and (p) = SP'-\ where Jp = {(ap)llp-\p).

Let 9 = % ((ap )1/p"1), SB = % (£,), and SB' = 9 n SB. Then

e{9\St,) = [9: 2,] = e(SB\2L,) = [SB: 2tP]=P~ 1-

Let l' = [SB':^p] = e(SB'\^p)9 then [SB: SB'] = e(SB\SB') = (p-l)/l' and
(p-l)IV = ((p-l)IV, (p-lW), so e(%((apr>-\
Hence £((ap)llp-\£p) over ^(ap)1""1) is unramified.

As before, let ^ be a prime ideal in F with N(3P) = pf and
{p)=9>ad, where (0>,,rf)=l. Let F f i a ( & ) = a w , where ^! =
[F n «2(^p): 21] and S(ei) is the unique subfield of Q.(Q of degree ex over
S. Hence [F(&): F] = (p - l)/elB Let ^ c a w , ^ D (p), and (p) =
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&\\ Also since 3>a ||(p), we have that a =ta1e1 and 0>fl|||0\. Let f(x)
denote the irreducible polynomial for £p over F.

THEOREM 4.2. Let f(x) = Uf=1f(x) (mod &***-1**), and

d = (a/e1g,(p-l)/elg),

then if K = F(£p), we have that

V ]% where e = (p - l)lge,d.

Proof. The discriminant of f(x) over ^(ei) is g>^-^-\ Since
9ax\&u a1 = fl/^i, we have that the discriminant of f(x) over F is exactly
divisible by 0><««<p-iy.>-«.. If

where the /,(x) are irreducible modulo gn->fp-w<>*\ then

(4.1) f(x) = flf.(x)
J = 1

in F?, [24, pg. 90], where fx(x) is irreducible in F& and deg/j(jt) =
(p - 1)1 exg, for all i. Set <£' = F? n .2P(£P). Since deg /;(*) =
(p - l)/eig, we have that [££': Sp] = eig. Furthermore, e(i2p(£p)|.2p) =
p - 1 , hence e(X'\^p) = elg and e(Sp(fp)|.2") = (p - 1)1 exg. Since
((p - l)/^ig,p)= 1, we can apply Theorem 4.1 and we obtain that

(4.2) e(F3>(£p)|F3>) = (p - l)lexgd.

On putting (4.1) and (4.2) together, we have that ^ factors in F(£p)
into g distinct prime ideals of relative degree d, and relative multiplicity
e = (p - l)leigd. That is; we have

LEMMA 4.3. Letxp - ft be irreducible overF, fi an integer, /JL = 3>vC€,
(&,c€)=l. If p X v, then 3> becomes the pth-power of a prime ideal in
F(/JL 1/p). Ifp | v, then we can find an integer ̂ x such that (/JLU &>)=1 and

Proof We first find a p G F such that p has ideal denominator
>. To find p we first determine an ideal d so that &CX = (a). Next
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determine an ideal C2 so that dC2 = (P) and (C2 ,3>)=1 [15, 1955,
Theorem 5.11]. Then p = j8/a has the desired property.

If p )( v, then we can write vx - py = 1. Set /û  = JUL xpjf\ Then jti is
an integer, F(fiVp) = F(fi\/p), and 0*11^. Hence (0>, V / x ^ = 0>, so 0>
becomes the pth-power of a prime ideal in F(/JL1/P).

If p\v, set fjLi = npv. Then /Lti is an integer prime to 0> and
( 1 / ) l'

Because of Lemma 4.3 we may assume that (/A, 3P) = 1.

LEMMA 4.4. Lef xp - fi be irreducible over F, (/x,, &>)= 1. Then the
ideal & has more than one factor in F(IJL

 llp) iffn=i;p (mod 0>fl+N+1), where

Proof. From Theorem 3.2 we have that //, = ap in F^ iff /x, =gp

(mod^a+N+1). But the number of relatively prime factors of ^ in
F(fi1/p) is equal to the number of distinct prime factors of xp — fi in F ,̂
and xp — n is reducible in F& iff fi = ap in F?. Hence ^ has at least two
factors iff fi s f (mod^fl+N+1).

If p̂ G F̂> then a = spk~x{p - 1) and - p = gp~l7ra (mod ̂ a + 1 ) . As
before, we set Tj'=l + g'7r*\ where g' is chosen so that h(x) =
xp — gp~lx — gr has no solution modulo ^. Furthermore xp — gp~*x - g'
is irreducible modulo ^ and so h{x) is irreducible in F. We also point
out that a + N = a+ {alp - 1) = spk.

LEMMA 4.5. The ideal & remains prime in F((TJ')1 /P).

Proof. By Lemma 2.2, T J ' ^ £ P (mod0>a+N+1), so 0> has only one
factor in F((TJ')1/P)-

Let a be a root of h(x) and consider F(a). The different of a is
(pa9'1 - gp"1), which is prime to 0* since g is prime to ^. Hence ^ is not
ramified in F(a). However, we have that

(1 + a7rspk~y = 1 + pa7r5pkl + apirspk = 1 + (ap - g^a)*""

s 1 + g V ^ s T,'(mod

If 5)3 is any prime divisor of 9> in F(a) , then $ a | | (p) and

(1 + aTT^'y s TJ ' (mod 5pfl+N+1).

Hence (TJ')1/P G F(a)^ = F9(a\ which implies that
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is an unramified extension, so 9* remains prime in F((7j')1/p).

From the proof we also have the following result.

LEMMA 4.6. The field F9{a) = Fg>((r\')llp) is an unramified exten-
sion of Fg>, where a is a root of xp - gp~lx — g'.

LEMMA 4.7. Ifxp-fiis irreducible overFand £p & F&, then $P never
remains a prime ideal in F(/x1/p).

Proof If y||/Lt, (^,p)=l , then 0> = S£p in F(^1/p). If (v,p)~p
then we may assume that (/x, 0>) = 1.

Assume that 8P remains prime in F(//,1/p), then xp — fi is irreducible
over F& and F^(/JL1/P) is a normal, unramified extension of F9 by Lemma
4.2. Hence (pEFy(/i1/p). But this implies that [F<?(£p): F^]\p, since
p = [Fp(ti1/P): F9\. However ([F,tf,): F^],p)= 1, so [F,tfp): F#] = 1,
which implies that £p E F^, and this contradicts the assumption that
£p £ F̂ ». Hence ^ does not remain prime.

LEMMA 4.8. Let [F(fi1/p): F]= p, then F(/x1/p) = F(^l/p) iff fit =
j3p/x*, (x,p)=l, j8 EF.

Proo/. See the paper by Schinzel, pg. 163.

THEOREM 4.3. Lef &a \\(p) in F, F n £(£p) = £(ei\ xp - fi irreduci-
ble over F, (/x, &) = 1, and N = [a/p- 1].

(1) 1/ M s f p (mod ^f l

Furthermore, if %$ is a factor of degree d, then F(/x1/p)^ = Fg>(£p).
(2) Ifa+N> 1, (1) is nor solvable, and n=£p (mod0>fl+N), f/ien

(3) Ifa+N>l,fLj££
(4) If a + AT = 1, /x # ^p (mod

Proof Since (^, ^ ) = 1 , we have that ju,pM = l (mod^) where
= pf. Since ( p / - l , p ) = l , we have that F(/JLUP) =

Hence, we may assume that /x =1 (mod^).
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(1) If fju = £p (mod 0>a+N+1), we have that fi = ap in F& by Theorem
3.2. Hence xp - (JL = xp - ap = (x - a). U'AfXx) in ¥& where
deg/»(x) = (p - l)/elg, each /,(x) is irreducible in F* and £]

p
(l)

a, (/(0>P) =
1, is a root of /,(*), for each i. By Theorem 4.2, we have that
e(F9{£^a)\F9) = e, where e = (p - l)/geid, d = (a/elg, (p - l)/elg).

Therefore, corresponding to the linear factor x — a we have an ideal
factor of 9 in F(/x1/p) of relative degree and multiplicity 1. Correspond-
ing to each of the elg polynomials /,(*), 9 has an ideal factor of relative
degree d and multiplicity e. Hence

Furthermore, if ?$ is any prime factor of 9 in F(/x1/p) of relative degree d,
then 5JS corresponds to one of the /«(x). But a root of /,(*) is £}

p
il)a,

0'(0>P)=1- Hence F , ( f t« a ) = Flp(fp). So F(/x1/p)^ = F,tfp).
(2) We first show that if £p £ F ^ and /x = £ ' (mod^ f l + N) , a+N>

1, then iu,=£p (mod^a+N+1)- By Theorem 2.2, {ijv |i = 1, • • • , / ; / =
1, • • •, a} is a basis for Gm, m g a + JV > 1. But if ^ = ^p (mod 0>a+N),
then fi^Uri'"(mod 0>a+N) and p |bl}, for all i,/. If fi s n T ? J(mod^ f l+N+1),
then ft,'; = fey -f pcI7, hence p | b!j and /x = f ? (mod SPa+N+1).

Assume that a + J V > l , (1) is not solvable, and / x = £ p

(mod 9a+N). Then ^ G F&. Furthermore, by Lemma 4.4, 9 has only
one factor in F{fxllp).

By Theorems 2.2 and 2.3, we have that {7\l} \ i = 1, • • • , / , / = 1, • • •, a}
is a basis for Ga+N, and {r)l} | i = 1, • •• , / , / = 1, •••, a, 17'} is a basis for
Ga+N+i. Hence,

(4.3)

and

So p I fey, for all i, j , and (fe,p) = 1. We can rewrite (4.3) as

so fi=ap-ri"' in F^. Hence Fy(ju,1/p) = Fg.(i7'1/p) is an unramified
extension of F9 by Lemma 4.5. So ^ remains prime in F(/A 1/p), that is
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(3) If a + N> 1, and ^ £ p (mod^fl+N), then 0> either remains
prime or becomes the pth power of a prime ideal.

Assume 3> remains prime. Then £p E F& by Lemma 4.7, and
F^(/X1/P) = F^((TJ')1/P). But this implies that /z = £Vft, (kp)=h by
Lemma 4.8. Recall that r]1 =\ +g'irspk and spk = a + N, so 17' = 1
(mod^fl+N), hence we have that fi=i;p (mod^fl+N), contrary to
assumption. Hence, ^ becomes the pth power of a prime ideal in

(4) If a = 1 andJV = 0, then a + N + 1 = 2 and £p £ E*.
(mod^2), then 0> either remains prime or becomes the pth power of a
prime ideal. But since £p&zFp, & cannot remain prime, so F^

REMARK. Theorem 4.3 could have been proven without the results
in §2. In fact, the proof in Hecke [4, pp. 148-154] generalizes to prove
this theorem. However, it is our belief that this proof gives more insight
into the theorem and shows why a + N is the natural division between
splitting and remaining prime.

We now specialize to F = ,2. Of course, the prime ideals corres-
pond to the prime numbers and CP£&P iff p/2. Furthermore a =
1. So AT = 0 if p > 2 and N = 1 if p = 2.

COROLLARY 1. Let p = 2, x2 - /JL irreducible over % (/x, 2) = 1, and

(1) Ifp^e (mod23), then FVK(2) = 2[1].
(2) If (1) is not solvable, fi^£2 (modi2), then FVK(2) = 1[2].
(3) Iffi^e (mbd 22), then FVK (2) = 1[1]2.

COROLLARY 2. Letp^ 2 and xp - /JL irreducible over3,,(/JL,P)=1.
(1) Iffi=€p (modp2), then p = &r &V, where the degree of 0>, is

1, for i = 1,2. Furthermore, Sl(fi1/pU = % and &(/uLyp)p2 = £P(£P).
(2) IfiLft? (modp2), then (p) = &p in &(fillp).

Corollary 1 is well known [15, 1955, Chapter 8]. Corollary 2 is not
so well known. Dedekind [2, page 156] proved this corollary for
p = 3. More recently we found this result in a paper by Westlund [23].
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