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A MEAN VALUE THEOREM FOR BINARY DIGETS

ALAN H. STEIN AND IVAN E. STUX

This paper continues the investigation of the dyadically
additive function a defined by a(n) = the number of l's in the
binary expansion of n.

Previously, Bellman and Shapiro (cf. "On a problem in
additive number theory." Annals of Mathematics, 49 (1948)
333-340) showed that 2J.ia(fc)~ x Iogjc/21og2. They then
considered the iterates of a defined by aq = aq-i°a and ob-
served that Ar(x) = 2I=i ar(k) is not asymptotic to any elemen-
tary function for r ̂  2.

In this paper the function A2(x) will be examined more
closely. Defining c(x) by A2(x) = c(x)x log log x/2 log 2, we will prove
the following theorems.

THEOREM 1. As x ranges over the positive integers, c(x) ranges
densely over [1/2,3/2]. Furthermore, given any c E [1/2,3/2], there is an
explicit way to construct a sequence of integers x for which c(x)-*c as

THEOREM 2.

1/2 + O(log log log x/log log x) =S c(x)
(1.1)

£ 3/2 + O (log log log x /log log x ).

THEOREM 3.

(1.2) liminfc(jc)= 1/2, limsupc(x) = 3/2.

Note. Theorem 3 is an immediate consequence of Theorems 1
and 2.

2. The proof of Theorem 1 is obtained by considering a special set
of integers.

Let M = {x: x = 2M - 1, M even, M/2 = 2;=12
fl- - 1, a, > a2> • • • >

ar positive integers, and aT\ax^ 1/2 + log log log x /log log x}.

LEMMA 1. If x E.M, then
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(2-1)

Proof. ItxEM, then (cf. [1])

(2.2) A2(x) =

We can then write

(2-3) /

where Si is the sum over {n: | M/2 — n | < 2ar} and 22 is the sum over
{n: | M / 2 - n | ^ 2 a r } .

Chebyshev's inequality yields

a{n)<2MM-2-2a-\ogM

(2-4)
< 2 M ' M '2~aiil+2logloglogx/loglogx)\o0M

which implies

(2.5) 5

(Here and further on, inequalities such as M = O(logjc), ax =
O(logM), a(n) = O(log n) and r = O(logM) will be used without
comment).

We will use the symmetry of the binomial coefficients to estimate 2i.

(2.6)

Writing t = S;=12\ we obtain

(2.7)
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and

(2.8)

so that

(2.9) a ( y + *) + a (j- f) = 2r - 2+ ar + bw

We can now rewrite (2.6), obtaining

(2.10)

Chebyshev's inequality implies that

as in the analysis of 22. Since

M/ M \
\M/2J ( r + arl2) = O ( X l 0 g l o g

we obtain

Thus it remains only to show that each remaining term is O(x). We
have already seen that

(2-12)

and easily obtain

We estimate the remaining term by observing that bw = bw(t) is the
largest exponent such that 2K \ t Thus we can write
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fe M/2 + ̂  °w = £ W/2 + t) ~ k h \MI2 +
2.|<

(2.14)

This completes the proof of Lemma 1.

Lemma 1 implies that

(2.15) c(x) = , , ;^ o + o(l)w Ioglogx/21og2 v '

Since ax = log log jc/21og2+ O(l), we obtain

(2.16) C(JC) = ^

We now complete the proof of Theorem 1 by showing that if 6 > 0
then there exist arbitrarily large q such that if (1/2 4- e)q < z < (3/2 - e)q
is an integer, then there exists x EM such that ax = q and r + ar/2 = z.

Suppose we choose (1/2 + e)q - 4 ^ 5 < (1/2 + e)q — 2, 5 even. As f
takes on all possible integer values between 2 and q - s, t + s/2 certainly
takes on all integer values between (1/2 + e)q and (3/2- e)q.

If g is large enough, it is certainly possible to find x G i such that
at = q, r = t and ar = s, completing the proof of Theorem 1.

3 . We carry out the proof of Theorem 2 in a series of steps.
Let Ml = {x: x = 2M - 1, M even, M/2 = S;=12

a> - 1, a2 > a2 > • • • >
ar integers and arlax^ (1/2) log log log JC/(log log x +loglog 2)}.

We begin by proving the conclusion of Theorem 2 holds for element
of M\

LEMMA 2. If xEM1 then

2(3.i) + o W y )< c(*)<|+ o ( ^ ^

2 \ loglogx / v ^ 2 \ loglogjc

Proof. We begin as in Lemma 1, writing
(3.2) A2(x)=Z
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except where Si is the sum over {n: \M/2- n | <2(l+e)fl1} and S2

is the sum over {n:\ M/2 - n | ̂  2(1/2+e)fl1}, where e = € (JC ) =
log log log x /(log log x + log log 2).

The second term can be estimated as the corresponding term was in
Lemma 1, yielding

(3.3) X(Z a(n)=O(x).

We estimate the first sum by considering two cases.

Case 1. ar ^ (1/2 + e)ai. We can treat this case as we treated

Lemma 1, obtaining 2 M ) a(n) = (r + ar/2)x + O(x) and hence

(3.4) A2(JC) = (r + ar/2)x + O(JC).

Since 0 ̂  r ^ aj - ar + 1, we obtain ar/2 ̂  r + ar/2 ^ ax - ar/2 + 1. Since
(1/2 + e)ai ^ ar ̂  a1? we obtain

(3.5)

But ai = (log log JC/log 2)+ O(l), so

which implies

(3.7)

Thus

I /log log log x\\ /slog log s\ < A f
+ O l loglogx )){ 21og2 ; = A

(3.8)
n /log log log At\\ /£JOgJogJf\

^ U \ loglogjc / A 21og2 /

which proves Lemma 2 for this case.
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Case 2. (1/2- e)a1< ar <(l/2 + e ) ^ .
As in Lemma 1, we write

(3.9)

Here, however, an overlap of the nonzero digits in the binary
representations of t and M/2 +1 forces us to use the subadditive
properties of a. Writing M/2 and t as before, we obtain

M a

(3.10)

The subadditivity of a implies a (M/2 + t) ^ a (M/2 + 1) + a (t - 1)
so that

(3.11) a (M + f W + w + t

Also, a(M/2 + t) is at least a(t) minus the overlap between the
binary expansions of M/2 and t, so that

(3.12)

Since a (M/2 - t) is no greater than the number of places available,
less a(t), plus the overlap, we obtain

(3.13) a (M- rW a, + 1 - w + 2eax.

Also, a (M/2- t) must be at least the number of l's that M/2 ends
with less a(t)9 so that

(3.14)

Combining (3.11)~(3.14) we obtain
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(3.15) ar - 2eai =i a ( y + tj + a ( y - t\m ax + r + bw + 2eai + 1.

Since ar>(l/2-e)a1 and r ^ ax- ar + 1< a 1 - ( l / 2 - e ) a 1 + 1 =
+ e)a! + l we obtain

(3.16) ( i -

Plugging the first inequality of (3.16) into (3.9) yields

Chebyshev's inequality yields

which implies

(3.17) X I ) a(n)^-: ciiX--zeciiX + O(x).
' V \n) v y 4 2 v 7

Recalling ai = (Ioglogx)/log2)+O(l) and combining (3.17) with
(3.3) yields

(3.18) /

which implies

Plugging the second inequality of (3.16) into (3.9) yields

(3.20)

/ M
\M/2
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As in (2.14) we see that

to obtain

(3.21) 2

Repeating the reasoning of (3.17)-(3.19) yields

(3.22) c ( x ) ^ 3 + /logloglogxy
v ' v ' 2 \ loglogx /

Combining (3.19) with (3.22) completes the proof of Lemma 2.
We now consider a lemma which will enable us to extend the

conclusion of Theorem 2 to all integers of the form 2" - 1.

LEMMA 3. If x =2N — 1, then there exists an even integer M ^ N
such thatM-N^ VN/logN, M/2 = 2Ui2a- - 1 with a,lalg 1/2-eand

(3.23)

where

e = £(x)= log log log ̂
^ ' log log x + log log 2"

Proof. Let N = 2;=12% a1>a2>'->al. Define n by n + 1 =
2,2** where {c;} runs over all integer values in the interval
[l ,( l /2)ai(l-2e)+ 1] not equal to any of the a,'s. If no such c's exist,
let n = 0 if N is even, n = 1 if NJs odd. Let M = N + n. Clearly
n = M-N<2ima*il-2e)<£N1/2-e <\/N/\ogN and only (3.23) requires
further analysis.

As before, A2(2
M - 1) = 2S^M (^j a(s).

We rewrite this as

(3.24)

where
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(3.25) Sl = 2" 2 (^j a (s) = 2M~NA2(2
N - 1)

(3-26)

We bound s2 from above by writing

(3.27)

But

^ 2 (") • 2? max (*) « n • 2

log N log N

so s2 < 2N+n <€ 2nx = 2M~Nx and

(3.28) A2(2
M - 1) = 2M"N {A2(x) + O (x)},

proving the lemma.

COROLLARY 1. If x = 2N - 1,

Proof. Find an M as in Lemma 3 so that

Applying Lemma 2 to 2M - 1 immediately yields this result.

LEMMA 4. Lef x = 2[=12% s2 > 52 > • • • > sr. Then
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(3.29) A2(JC) = 2 A2(2* - 1) + O(x loglogx/Vtogi).
i l

Proo/.

i = l n<2s-

Since a(Sjil 2s' + n) = a(n) + i - 1 we obtain

E 2
i - l n<2s«

Letting E, = Sn<2»,{a(a(n) + i - 1 ) - a(a(n))}, we obtain

(3.30) A2(x) = 2 ^2(2
S- - 1) + 2 Ei-

i = 2

We now must merely show that 2j=2Ei\- O(x loglogx/Vlogx).
Rewrite

Summing by parts,

Since a(/) = O(log(5, + i)) and

we obtain

(3.31)

Thus
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22
i=2 i=2

Since st ̂  Sx — i 4-1 and st + i <̂  log x, and writing 5 = su we obtain

r r

(3-32) 2 £ < loglog x 2 U-'/VT^L
i=2 i=l

Now

while

2 s

X 7 V 2 2 2 / 2
i>s/2 i>s/2 V 5

Since 2s = O(x) and 5 = logx/log2+ O(l), we obtain

(3-33) ^ Et = O(x loglogx/Vlogx),
i=2

completing the proof of Lemma 4.

We can now easily prove Theorem 2.

Proof of Theorem 2. Let x = 2[=12\ By Lemma 4,

(3.34) A2(x) = 2 A2(2*' - 1)+ O(x).

Corollary 1 implies that

A2(2*- - 1 ) ^ | 2 ' ^ ? X + O(2* logloglogx),

so that

and hence
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(3.35) A2(x ) =i | X l ^ X +O(x log log log x )

which is equivalent to

(3,6, c W

We now obtain a lower bound. Again using Corollary 1, we obtain

and hence

(3.37) Mx)^l± ^zTog0!24- O(X

Since log log 2s- = log log x + O(l) if s, ̂  S!/2, we obtain

(3.38) A2(x) 2
s.Bsi/2

But SSlgsl/22
s- = JC + O(2Sl/2) = x + O(V^) yielding

(3.39) A2{x)^\ X 2°ff2
fiX+ O(x logloglogx)

which implies

completing the proof of Theorem 2.
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