FOURIER TRANSFORMS AND THEIR
 LIPSCHITZ CLASSES

G. Sampson and H. Tuy

Abstract

We define a class of functions A_{α} for each $\alpha>0$. We show that the Fourier transform of every function of A_{α} exists and is Lipschitz of order α. We construct examples to show that the converse is not true in general. However, we show that for a certain class of function k (e.g., $k \in L_{2}$) if its Fourier transform \hat{k} is Lipschitz of order α then $k \in A_{\beta}$ for all $\beta<\alpha$.

Boas ([1] and [2]) studied this problem in the case where the function k is nonnegative and gave a complete solution in this case. In connection with this question several authors (e.g. Hirschman [5]; Liang Shin Hahn [4], Drobot, Naparstek and Sampson [3]) have proved mapping properties of convolution operators with kernel k, by studying the behavior of \hat{k}. To be more precise, they have proved mapping theorems when $\hat{k} \in \operatorname{Lip}(\alpha)$ with additional conditions on k. In our applications we prove a similar result (see §3, Theorem 4).

Notations and Definitions.
$L_{\text {loc }}$ shall denote the set of all Lebesgue measurable functions integrable over all finite intervals. In this paper, the functions $f, g, k, \cdots \in L_{\text {loc }}$.

For $0<\alpha \leqq 1$, a function f is Lipschitz of order $\alpha(f \in \operatorname{Lip}(\alpha))$ if there is a positive constant A such that

$$
\sup _{x \in \mathbb{R}}|f(x+h)-f(x)| \leqq A|h|^{\alpha} .
$$

For $\alpha>1$, we say that a function f is Lipschitz of order α if
(i) $f^{(m)} \in L_{\infty}$ for all $m<[\alpha]$ and
(ii) $f^{(\alpha \alpha)} \in \operatorname{Lip}(\alpha-[\alpha])$.

When we use the symbol

$$
\int_{a}^{b} g(t, x) d t \quad \text { for } \quad-\infty \leqq a<b \leqq \infty .
$$

We are assuming that $g(t, x) \in L_{\text {loc }}$ as a function of t for each x and moreover the integral exists in the following sense:

$$
\begin{equation*}
\int_{a}^{b} g(t, x) d t=\lim _{\substack{\alpha \rightarrow a \\ \beta \rightarrow b \\ s 19}} \int_{\alpha}^{\beta} g(t, x) d t . \tag{0}
\end{equation*}
$$

We write $h\left(x_{1}, x_{2}, \cdots, x_{n}, y\right)=O\left(y^{a}\right)$ to mean that there exists a positive number C independent of $x_{1}, x_{2}, \cdots, x_{n}, y$ so that

$$
\sup _{\substack{x \in \mathbb{R} \\ 1 \leq 1 \leq n}}\left|h\left(x_{1}, x_{2}, \cdots, x_{n}, y\right)\right| \leqq C|y|^{a} .
$$

In particular, we say $h\left(x_{1}, x_{2}, \cdots, x_{n}\right)=O(1)$ to mean that there exists a C independent of $x_{1}, x_{2}, \cdots, x_{n}$ so that

$$
\sup _{\substack{x_{i} \in \mathbb{R} \\ 1 \equiv t}}\left|h\left(x_{1}, x_{2}, \cdots, x_{n}\right)\right| \leqq C .
$$

We number each section independently.

1. Sufficient conditions.

Lemma 1. Let a and b be numbers so that $0<a<b$. Then for each $y>0$

$$
\begin{equation*}
\int_{0}^{y} t^{b} f(t, x) d t=O\left(y^{a}\right) \Leftrightarrow \int_{y}^{\infty} f(t, x) d t=O\left(y^{a-b}\right) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\int_{-y}^{0}|t|^{b} f(t, x) d t=O\left(y^{a}\right) \Leftrightarrow \int_{-\infty}^{-y} f(t, x) d t=O\left(y^{a-b}\right) \tag{2}
\end{equation*}
$$

Proof. A similar lemma can be found in Boas's paper [1]. Thus we will be brief. We will prove (1); the argument for (2) is similar.
\Rightarrow : Let $F(x, y)=\int_{0}^{y} t^{b} f(t, x) d t$, then we get

$$
\int_{y}^{\infty} f(t, x) d t=\left.t^{-b} F(x, t)\right|_{y} ^{\infty}+b \int_{y}^{\infty} t^{-b-1} F(x, t) d t
$$

Since $F(x, y)=O\left(y^{a}\right)$ and also $a<b$ then we are through.
\Leftarrow : Let $F(x, y)=\int_{y}^{\infty} f(t, x) d t$, then we get

$$
\int_{0}^{y} t^{b} f(t, x) d t=-\left.t^{b} F(x, t)\right|_{0} ^{y}+b \int_{0}^{y} t^{b-1} F(x, t) d t .
$$

Since $F(x, y)=O\left(y^{a-b}\right)$, then we are through.
Lemma 2. Let $\boldsymbol{h}>0$.
(3)

$$
\text { If } \int_{1 / h}^{\infty} f(t, x) d t=O\left(h^{\alpha}\right), \text { then }
$$

$$
\begin{equation*}
\int_{0}^{1 / h} f(t, x) \sin t h d t=O\left(h^{\alpha}\right) \text { for } \quad 0<\alpha<1 \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{1 / h} f(t, x)(1-\cos t h) d t=O\left(h^{\alpha}\right) \quad \text { for } \quad 0<\alpha<2 \tag{5}
\end{equation*}
$$

We get a similar result for $\int_{-\infty}^{-1 / h} f(t, x) d t$.
Proof. From Lemma 1 we get,
(6) $\int_{1 / h}^{\infty} f(t, x)=O\left(h^{\alpha}\right) \Leftrightarrow \int_{0}^{1 / h} t f(t, x) d t=O\left(h^{\alpha-1}\right)$ for $0<\alpha<1$.

$$
\begin{equation*}
\Leftrightarrow \int_{0}^{1 / h} t^{2} f(t, x) d t=O\left(h^{\alpha-2}\right) \quad \text { for } \quad 0<\alpha<2 \tag{7}
\end{equation*}
$$

To see this, it suffices to take $y=1 / h, a=b-\alpha$ where $b=1$ for (6) and $b=2$ for (7).

The function $\varphi(t)=(t h)^{-1} \sin t h$ is decreasing and nonnegative for $t \in(0,1 / h)$. By the second-mean-value theorem for integrals we get,

$$
\int_{0}^{1 / h} t f(t, x) \varphi(t) d t=\int_{0}^{\xi} t f(t, x) d t \quad \text { for some } \quad \xi \in(0,1 / h)
$$

Hence by hypothesis and (6) we conclude

$$
\int_{0}^{1 / h} t f(t, x) \varphi(t) d t=O\left(\xi^{1-\alpha}\right)=O\left(h^{\alpha-1}\right)
$$

Consequently, we have

$$
\int_{0}^{1 / h} f(t, x) \sin t h d t=O\left(h^{\alpha}\right)
$$

The proof for (5) is similar with $\varphi(t)=(t h)^{-2}(1-\cos t h)$.
Definition 3. Let α be a positive number. We say that $k \in A_{\alpha}$ if $k \in L_{\text {loc }}$ and satisfies the following two conditions:

$$
\int_{t / h}^{\infty} f(t) e^{-t t x} d t=O\left(h^{\alpha}\right) \quad \text { and }
$$

$$
\begin{equation*}
\int_{-\infty}^{-1 / h} k(t) e^{-t t x} d t=O\left(h^{\alpha}\right) \tag{8}
\end{equation*}
$$

Lemma 4. If $k \in A_{\alpha}$ then the Fourier transform $\hat{k}(x)=$ $(2 \pi)^{-1 / 2} \int_{-\infty}^{\infty} k(t) e^{-t t x} d t$ exists for all x and $\hat{k} \in L_{\infty}$.

Proof. Since $k \in L_{\text {loc }}$ by (8) we get that \hat{k} exists for each x. It also follows that $\hat{k} \in L_{\infty}$.

Lemma 5. Let $0<\alpha<1$. If $k \in A_{\alpha}$ then $\hat{k} \in \operatorname{Lip} \alpha \cap L_{\infty}$.
Proof. By Lemma 4, \hat{k} exists for each x and $\hat{k} \in L_{\infty}$.
Now we show that $\hat{k} \in \operatorname{Lip} \alpha$. Let $h>0$,

$$
\begin{aligned}
\hat{k}(x+h)-\hat{k}(x) & =(2 \pi)^{-1 / 2} \int_{-\infty}^{\infty} k(t) e^{-u x}\left(e^{-u h}-1\right) d t \\
& =(2 \pi)^{-1 / 2}\left\{\int_{-\infty}^{-1 / h}+\int_{-1 / h}^{1 / h}+\int_{1 / h}^{\infty}\right\} \\
\int_{-1 / h}^{0}+\int_{0}^{1 / h} & =O\left(h^{\alpha}\right) \text { by Lemma } 2 .
\end{aligned}
$$

By hypothesis we get,

$$
\int_{-\infty}^{-1 / h}+\int_{1 / h}^{\infty}=O\left(h^{\alpha}\right)
$$

Therefore, $\hat{k}(x+h)-\hat{k}(x)=O\left(h^{\alpha}\right)$.
We are going to show that the above lemma can be extended to $\alpha>1$ and $\alpha \notin \mathbf{N}^{+}\left(\mathbf{N}^{+}\right.$: set of positive integers). For $\alpha \in \mathbf{N}^{+}$we will give another sufficient condition. We are able also to give a sufficient condition on k so that \hat{k} is differentiable.

Lemma 6. If \boldsymbol{k} satisfies
(9) $\left|\int_{0}^{\infty} t k(t) e^{-t t x} d t\right|<\infty \quad$ for each x, then

$$
\lim _{h \rightarrow 0^{+}} \int_{0}^{1 / h} k(t) e^{-t t x} \frac{e^{-u h}-1}{h} d t=-i \int_{0}^{\infty} t k(t) e^{-t x} d t \quad \text { for each } x
$$

For the negative side we get a similar result.
Proof. It suffices to show

$$
\begin{equation*}
\lim _{h \rightarrow 0^{+}} \int_{0}^{1 / h} t k(t) e^{-t t x} \frac{\sin t h}{t h} d t=\int_{0}^{\infty} t k(t) e^{-t t x} d t \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{h \rightarrow 0^{+}} \int_{0}^{1 / h} t k(t) e^{-t x} \frac{1-\cos t h}{t h} d t=0 \tag{11}
\end{equation*}
$$

Let $\epsilon>0$ be given and let x be such that (9) is true. Here, we keep x fixed throughout the entire argument.

From (9), we conclude that there exists an $N>0$ and $0<h_{0}<1 / N$ such that for all h satisfying $0<h<h_{0}$

$$
\begin{equation*}
\left|\int_{N}^{1 / h} t k(t) e^{-u t x} d t\right|<\epsilon \tag{12}
\end{equation*}
$$

Since the function $(1-\cos t h)(t h)^{-1}$ is monotonic and nonnegative in ($N, 1 / h$) there exists a $\xi \in(N, 1 / h)$ so that

$$
\begin{equation*}
\left|\int_{N}^{1 / h} t k(t) e^{-i t x} \frac{\cos t h-1}{t h}\right| \leqq\left|\int_{\xi}^{1 / h} t k(t) e^{-t t x} d t\right| \tag{13}
\end{equation*}
$$

It follows from (12) and (13) that

$$
\begin{equation*}
\left|\int_{N}^{1 / h} t k(t) e^{-u t x} \frac{\cos t h-1}{t h} d t\right|<\epsilon . \tag{14}
\end{equation*}
$$

On the other hand, since $t k(t) \in L_{\mathrm{loc}}$, by the Lebesque dominated convergence theorem (for N fixed),

$$
\lim _{h \rightarrow 0^{+}} \int_{0}^{N} t k(t) e^{-i t x} \frac{\cos t h-1}{t h} d t=0
$$

Thus we get (11).
Now to show (10).
From (9), there exists N_{0} such that for all N

$$
\begin{equation*}
N>N_{0} \Rightarrow\left|\int_{0}^{\infty} t k(t) e^{-i t x} d t-\int_{0}^{N} t k(t) e^{-i x x} d t\right|<\epsilon \tag{15}
\end{equation*}
$$

Since $(\sin t h)(t h)^{-1}$ is nonnegative and monotonic in $(N, 1 / h)$, then by a similar argument, there exists a fixed $N>N_{0}, h_{0}$ and $h_{1}<(1 / N)$ such that

$$
\begin{align*}
& \left|\int_{N}^{1 / h} t k(t) e^{-u t x} \frac{\sin t h}{t h} d t\right|<\epsilon \text { for all } 0<h<h_{0} \tag{16}\\
& \left|\int_{0}^{N} t k(t) e^{-u t x} \frac{\sin t h}{t h} d t-\int_{0}^{N} t k(t) e^{-u t x} d t\right|<\epsilon \tag{17}\\
& \text { for all } h \text { satisfying } 0<h<h_{1} .
\end{align*}
$$

From (15), (16) and (17) we conclude that

$$
\begin{aligned}
\left|\int_{0}^{\infty} t k(t) e^{t+x} d t-\int_{0}^{1 / h} t k(t) e^{-t u x} \frac{\sin t h}{t h} d t\right|<3 \epsilon \\
\quad \text { for all } h \text { satisfying } 0<h<\min \left(h_{0}, h_{1}\right) .
\end{aligned}
$$

Therefore we get (10) and we are through.
Theorem 7. Let $\alpha>1, m<\alpha$ and $m \in \mathbf{N}^{+}$. If $k \in A_{\alpha}$ then \hat{k} is m times differentiable at each x and $\hat{k}^{(m)} \in L_{\alpha}$. In fact

$$
\hat{k}^{(m)}(x)=(2 \pi)^{-1 / 2}(-i)^{m} \int_{-\infty}^{\infty} t^{m} k(t) e^{-u x} d t .
$$

Proof. By Lemma 1,

$$
\begin{equation*}
\int_{1 / h}^{\infty} k(t) e^{-4 t x} d t=O\left(h^{\alpha}\right) \Rightarrow \int_{0}^{1 / h} t^{\alpha+1} k(t) e^{-u t x} d t=O\left(h^{-1}\right) \tag{18}
\end{equation*}
$$

Hence by Lemma 1 again, for all $m<\boldsymbol{\alpha}$

$$
\begin{equation*}
\int_{1 / h}^{\infty} t^{m} k(t) e^{-t x x} d t=O\left(h^{\alpha-m}\right) \tag{19}
\end{equation*}
$$

Thus $t^{m} k(t) \in A_{\alpha-m}$.
It follows from Lemma 4 that

$$
\begin{equation*}
f_{m}(x)=(2 \pi)^{-1 / 2}(-i)^{m} \int_{-\infty}^{\infty} t^{m} k(t) e^{-i t x} d t \tag{20}
\end{equation*}
$$

exists for each x and $f_{m} \in L_{\infty}$.

To prove the theorem, we first show that $\hat{k}^{\prime}(x)$ exists for each x. Since $k \in A_{\alpha}$, by Lemma $4 \hat{k}$ exists and we have,

$$
\begin{aligned}
& \frac{\hat{k}(x+h)-\hat{k}(x)}{h} \\
& \quad=(2 \pi)^{-1 / 2} h^{-1}\left\{\int_{-\infty}^{-1 / h} k(t) e^{-u x}\left(e^{-u h h}-1\right) d t+\int_{-1 / h}^{0}+\int_{0}^{1 / h}+\int_{1 / h}^{\infty}\right\} .
\end{aligned}
$$

Since $k \in A_{\alpha}(\alpha>1)$ by (8) we have $\lim _{h \rightarrow 0} h^{-1}\left(\int_{1 / h}^{\infty}+\int_{-\infty}^{-1 / h}\right)=0 . \quad$ By (19) and Lemma 6 with $m=1$, it follows that $\hat{k}^{\prime}(x)=f_{1}(x)$.

The theorem is then true for $m=1$. Now we suppose that the theorem is true up to $m-1$, i.e. $\hat{k}^{(m-1)}(x)=f_{m-1}(x)$.

$$
\frac{\hat{k}^{(m-1)}(x+h)-\hat{k}^{(m-1)}(x)}{h}=(-1)^{m-1} \frac{\hat{\mathrm{~g}}(x+h)-\hat{\mathrm{g}}(x)}{h}
$$

where $g(t)=t^{m-1} k(t)$.
Since $\alpha-m+1>1$, the above argument starting with (19) can be applied to $g(t)$ and we get,

$$
\lim _{h \rightarrow 0^{+}} \frac{\hat{g}(x+h)-\hat{g}(x)}{h}=-i(2 \pi)^{-1 / 2} \int_{-\infty}^{\infty} \operatorname{tg}(t) e^{-i x x} d t .
$$

Thus $\hat{k}^{(m)}(x)=f_{m}(x)$.
Theorem 8. Let $\alpha>0$ and $\alpha \notin \mathbf{N}^{+}$.
If $k \in A_{\alpha}$ then $\hat{k} \in \operatorname{Lip} \alpha \cap L_{\infty}$.
Proof. For $0<\alpha<1$, this is Lemma 5.
Now look at the case where $\alpha>1$. By Lemma 4, \hat{k} exists for each x and $\hat{k} \in L_{\alpha}$. Due to Theorem 7 we can conclude that for all $m \leqq[\alpha]$, $\hat{\boldsymbol{k}}^{(m)}$ exists and $\hat{k}^{(m)} \in L_{\alpha} . \quad$ Moreover

$$
\begin{equation*}
\hat{k}^{[\alpha])}(x)=(-i)^{[a]}(2 \pi)^{-1 / 2} \int_{-\infty}^{\infty} t^{[a]} k(t) e^{-i x} d t . \tag{21}
\end{equation*}
$$

From (19) we get

$$
\int_{1 / h}^{\infty} t^{[\alpha]} k(t) e^{-i x} d t=O\left(h^{\alpha-[\alpha]}\right) .
$$

Hence $t^{[\alpha]} k(t) \in A_{\alpha-[\alpha]}$. It follows from Lemma 5 that

$$
\widehat{t^{\alpha \alpha} k(t)} \in \operatorname{Lip}(\alpha-[\alpha]) .
$$

Hence by (21) we get our result.
Theorem 9. Let $\alpha \in \mathbf{N}^{+}$. If $k \in L_{\text {loc }}$ and satisfies

$$
\begin{equation*}
\int_{0}^{\infty} t^{a} k(\pm t) e^{\mp u x} d t=O(1) \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{1 / h}^{\infty} k(\pm t) e^{e^{7 t / x}} d t=o\left(h^{\alpha}\right) \tag{23}
\end{equation*}
$$

then $\hat{k} \in \operatorname{Lip} \alpha \cap L_{x}$.
Proof. First assume $\alpha=1$. By (23), $k \in A_{1}$. By Lemma 4, \hat{k} exists for each x and $\hat{k} \in L_{\infty}$. In (23) we are using the little "oo" notation. We note

$$
\begin{equation*}
\frac{\hat{k}(x+h)-\hat{k}(x)}{h}=(2 \pi)^{-1 / 2} h^{-1}\left\{\int_{-\infty}^{-1 / h}+\int_{-1 / h}^{1 / h}+\int_{1 / h}^{\infty}\right\} . \tag{24}
\end{equation*}
$$

Hence by Lemma 6 and (23) we get

$$
\hat{k}^{\prime}(x)=-i(2 \pi)^{-1 / 2} \int_{-\infty}^{\infty} t k(t) e^{-i t x} d t .
$$

From (22) we conclude that \hat{k} is absolutely continuous. Hence $\hat{k} \in$ Lip (1).

For the case $\alpha>1$, we use induction. The argument is similar to that given in Theorem 7 and will be omitted here.
2. Necessary conditions. We know that for each α ($0 \leqq$ $\alpha<1$) there exists a function g such that $\hat{\mathrm{g}} \in \operatorname{Lip}(\alpha)$ but $g \notin A_{\alpha}$. We give this example in §4. However, we have succeeded in showing that $\hat{k} \in \operatorname{Lip}(\alpha)$ implies $k \in A_{\beta}$ for all $\beta<\alpha$ with some other conditions placed on k. One of the conditions that k must satisfy is the following:
(1) $\int_{v / 2}^{0} k(w) e^{-u w} d w=i(2 \pi)^{-1 / 2} \int_{-\infty}^{\infty} \frac{\hat{k}(2 x+t)-\hat{k}(x+t)}{x} e^{w x} d x$.

Condition (1) is merely Parseval's identity, however we have only been able to show (1) holds for a certain class of functions. This result appears in Lemma 3. In the case where $k \in L_{p}(1 \leqq p \leqq 2)$ and \hat{k} is continuous, we can show (1) holds (the argument is similar to that given in Lemma 3).

Another condition that appears is,
Definition 1. Let $\epsilon \geqq 0$. We say that $f \in V_{e}$ if there exists some constant A such that

$$
\begin{equation*}
\int_{|x| \equiv A} \frac{|f(2 x+t)-f(x+t)|}{|x|^{1-\epsilon}} d x=O(1) \tag{2}
\end{equation*}
$$

It is obvious that if $f \in L_{p}$ then $f \in V_{\epsilon}$ for $\epsilon<1 / p$. Furthermore, all constant functions belong to V_{ϵ} for all $\epsilon \geqq 0$.

Theorem 2. If some $0<\epsilon<1, \hat{k} \in \operatorname{Lip} \alpha \cap V_{\epsilon}(0<\alpha \leqq 1)$ and k satisfies (1) then $k \in A_{\beta}$ for all $0<\beta<\alpha$.

Corollary. Let $k \in L_{p}$ for some $1<p \leqq 2$. If $\hat{k} \in \operatorname{Lip}(\alpha)$, then $k \in A_{\beta}$ for all $0<\beta<\alpha$.

Remark. In the above corollary \hat{k} is defined as usual in the L_{q} sense $(1 / p+1 / q=1)$. We note that for $0<n \leqq v \leqq 2^{\prime} n$ $\int_{n}^{v} k(w) e^{-u v} d w=\int_{n}^{2^{2} n}+\cdots+\int_{c v}^{v}$ where $1 / 2 \leqq c \leqq 1$. Next we note that a formula similar to (1) holds for the term

$$
\int_{c v}^{v} k(w) e^{-u w} d w, \quad 1 / 2 \leqq c \leqq 1
$$

And now the Corollary follows.

Proof of Theorem 2. Let

$$
\varphi(x, t)=\frac{\hat{k}(2 x+t)-\hat{k}(x+t)}{x} .
$$

From (1) it follows for $v>1$ (note $k \in L_{\text {loc }}$)

$$
\begin{aligned}
& 2 \int_{v / 2}^{v} k(w) e^{-t w v} d w \\
& \quad=\left(\int_{-\infty}^{-2 \pi / v}+\int_{-2 \pi / v}^{\pi / v}+\int_{\pi / v}^{\infty}\right)(\varphi(x, t)-\varphi(x+\pi / v, t)) e^{w x} d x
\end{aligned}
$$

For the middle term on the right hand side of (3) we note that there is some constant C such that,

$$
|\varphi(x, t)| \leqq C|x|^{\alpha-1} \quad \text { and } \quad|\varphi(x+(\pi / v))| \leqq C|x+(\pi / v)|^{\alpha-1}
$$

It fóllows that

$$
\begin{equation*}
\int_{-2 \pi / v}^{\pi / v}=O\left(v^{-\alpha}\right) \tag{4}
\end{equation*}
$$

For the remaining terms we write,
(5) $\varphi(x, t)-\varphi(x+\pi / v, t)=\psi(x, v, t)+\pi / v\left(\frac{\hat{k}(2 x+t)-\hat{k}(x+t)}{x(x+\pi / v)}\right)$
where

$$
\psi(x, v, t)=\frac{\hat{k}(2 x+t)-\hat{k}(x+t)-\hat{k}(2 x+(2 \pi / v)+t)+\hat{k}(x+(\pi / v)+t)}{x+(\pi / v)} .
$$

To complete our argument we need to show that

$$
\left(\int_{-\infty}^{-2 \pi / v}+\int_{\pi / v}^{\infty}\right) \psi(x, v, t) e^{i v x} d x=O\left(v^{-\beta}\right) \forall \beta<\alpha .
$$

The second term on the right hand side of (5) can be handled in a straightforward manner. We will give the argument for $\int_{-\infty}^{-2 \pi / v} \psi e^{i v x} d x$; the proof for $\int_{\pi / v}^{\infty} \psi e^{w x} d x$ is similar. First let $\mu=\alpha / \epsilon$ and $s=$ $-v^{\mu}$. We get

$$
\begin{equation*}
\left|\int_{-\infty}^{-2 \pi / v} \psi(x, v, t) e^{w x} d x\right| \leqq\left(\int_{-\infty}^{s}+\int_{s}^{-2 \pi / v}\right)|\psi(x, v, t)| d x . \tag{6}
\end{equation*}
$$

Since $\hat{k} \in \operatorname{Lip} \alpha$ we have

$$
|\psi(x, v, t)| \leqq C v^{-\alpha}|x+(\pi / v)|^{-1}
$$

for some constant C independent of x, v, and t. It follows that
(7) $\int_{s}^{-2 \pi / v}|\psi(x, v, t)| d x \leqq C v^{-\alpha} \int_{s}^{-2 \pi / v} \frac{d x}{|x+(\pi / v)|}=O\left(v^{-\beta}\right) \forall \beta<\alpha$.

For the other term we have,

$$
\begin{aligned}
\int_{-\infty}^{s}|\psi(x, v, t)| d x \leqq & \int_{-\infty}^{s} \frac{|\hat{k}(2 x+t)-\hat{k}(x+t)|}{|x+(\pi / v)|^{1-\epsilon}|x+(\pi / v)|^{\epsilon}} d x \\
& +\int_{-\infty}^{s} \frac{|\hat{k}(2 x+(2 \pi / v)+t)-\hat{k}(x+(\pi / v)+t)|}{|x+(\pi / v)|^{1-\epsilon}|x+(\pi / v)|^{\epsilon}} d x .
\end{aligned}
$$

Since $\hat{k} \in V_{\epsilon}$ by the second mean value theorem for integrals we conclude that

$$
\begin{equation*}
\int_{-\infty}^{s}|\psi(x, v, t)| d x=O\left(v^{-\alpha}\right) . \tag{8}
\end{equation*}
$$

Hence the proof is complete.
Lemma 3. If k is a real valued function such that:

$$
\begin{equation*}
\hat{k} \text { is continuous at } t, \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\int_{|u| \equiv A}\left|\frac{\hat{k}(u)}{u}\right| d u<\infty \quad \text { for some } \quad A>0 . \tag{10}
\end{equation*}
$$

Then

$$
\int_{v / 2}^{0} k(w) e^{-t w w} d w=i(2 \pi)^{-1 / 2} \lim _{\epsilon \rightarrow 0^{+}} \int_{|x| \sum \epsilon} \frac{\hat{k}(2 x+t)-\hat{k}(x+t)}{x} e^{t x x} d x .
$$

Proof. From (10) it follows that,

$$
\begin{equation*}
\int_{\underline{a}}^{b} k(w) d w=O(1) \quad \text { and } \quad \hat{k} \in L_{x} . \tag{12}
\end{equation*}
$$

We will assume $v>0$, the proof for $v<0$ is similar. Let $P_{\delta}(u)=$ $\delta /\left(\delta^{2}+u^{2}\right)$ which is the well-known Poisson kernel. We begin by showing that
(13) $\int_{v / 2}^{0} k(u) e^{-t u t} d u=\lim _{\delta \rightarrow 0^{+}} 1 / \pi \int_{v / 2}^{0} e^{-u w} \int_{-\infty}^{\infty} k(u) P_{\delta}(w-u) d u d w$.

Using (12) we note that

$$
\lim _{\delta \rightarrow 0^{+}} \int_{v / 2}^{v} e^{a w}\left(\int_{-\infty}^{v / 4}+\int_{2 v}^{\infty}\right) k(u) P_{\delta}(w-u) d u d w=0 .
$$

Hence since $k \in L_{\text {loc }}$ we get

[^0]\[

$$
\begin{aligned}
& \lim _{\delta \rightarrow 0^{+}} \int_{v / 2}^{v} e^{-u w} \int_{v / 4}^{2 v} k(u) P_{\delta}(w-u) d u d w \\
&=\lim _{\delta \rightarrow 0^{+}} 1 / \pi \int_{v / 4}^{2 v} k(u) \int_{v / 2}^{v} e^{-t w} P_{\delta}(w-u) d w d u
\end{aligned}
$$
\]

Now (13) follows immediately.
By (10) and the second mean value theorem for integrals we get

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-\delta|u|} \hat{k}(u) e^{i w u} d u=2(2 \pi)^{-1 / 2} \int_{-\infty}^{\infty} k(u) P_{\delta}(w-u) d u \tag{14}
\end{equation*}
$$

From (13) and (14) and using the fact that $\hat{k} \in L_{\infty}$ we get
(15) $\int_{v / 2}^{v} k(w) e^{u t w} d w=\lim _{\delta \rightarrow 0^{+}}(2 \pi)^{-1 / 2} \int_{v / 2}^{v} e^{-t \mid w} \int_{-\infty}^{\infty} e^{-\delta|u|} \hat{k}(u) e^{i w u} d u d w$

$$
=\lim _{\delta \rightarrow 0^{+}}\left(\int_{|u-t| \leq \epsilon}+\int_{|u-t| \geqq \epsilon}\right) e^{-\delta|u|} \hat{k}(u) \rho(u-t, v) d u
$$

where $\rho(u, v)=(2 \pi)^{-1 / 2}(i u)^{-1}\left(e^{i u v}-e^{i u v / 2}\right)$.
We note that there exists some constant C independent of δ and ϵ such that

$$
\begin{equation*}
\left|\int_{|u-t| \leq \epsilon} e^{-\delta|u|} \hat{k}(u) \rho(u-t, v) d u\right| \leqq C \epsilon \tag{16}
\end{equation*}
$$

By (11) we can conclude that,

$$
\lim _{\delta \rightarrow 0^{+}} \int_{|u-t| \sum \epsilon} e^{-\delta|u|} \hat{k}(u) \rho(u-t, v) d u=\int_{|u-t| \geq \epsilon} \hat{k}(u) \rho(u-t, v) d u .
$$

After substitution we have,

$$
\begin{equation*}
i \int_{|u-t| \geq \epsilon} \hat{k}(u) \rho(u-t, v) d u \tag{17}
\end{equation*}
$$

$$
=(2 \pi)^{-1 / 2}\left\{\int_{|x| \geq \epsilon} \frac{\hat{k}(x+t)-\hat{k}(2 x+t)}{x} e^{r u x} d x-\int_{\epsilon|2 \leq|x| \leq \epsilon} \frac{\hat{k}(2 x+t)}{x} e^{i u x} d x\right\}
$$

We have,

$$
\begin{aligned}
& \left|\int_{\epsilon|2 \leq|x| \leq \epsilon} \frac{\hat{k}(2 x+t)}{x} e^{i x x} d x \cdot\right| \\
& \quad \leqq \int_{\epsilon|2 \leq|x| \leq \epsilon} \frac{|\hat{k}(2 x+t)-\hat{k}(t)|}{|x|} d x+\left|\hat{k}(t) \int_{\epsilon|2 \leqq|x| \leq \epsilon} \frac{e^{i v x}}{x} d x\right|
\end{aligned}
$$

Since $\hat{k} \in L_{\infty}$ and \hat{k} is continuous at t,

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0^{+}} \int_{\epsilon / 2 \leq|x| \leq \epsilon} \frac{\hat{k}(2 x+t)}{x} e^{w x} d x=0 \tag{18}
\end{equation*}
$$

The conclusion follows from (15), (16), (17) and (18).

3. Applications.

1. If $k(t)=e^{i|t|^{a}} /\left(|t|^{b}+1\right)$ where $a(a-1) \neq 0$ and $b+a / 2-1>0$, then $\hat{k} \in \operatorname{Lip}(b+a / 2-1)$. This follows immediately from Theorem 8 of $\S 1$, and van der Corput's Lemma (see [6]).
2. We adopt the following definitions:

Definition 1. We say that $k \in L_{p}^{p}$ if for all $f \in L_{0}^{\infty}$ (set of L_{∞} functions with compact support)

$$
\int|k * f|^{p} \leqq C \int|f|^{p}
$$

where C is independent of f.
Definition 2. We say that $k \in L_{2}^{*}$ if for all $f \in L_{0}^{\infty}$, there is a constant C such that

$$
\left|\left\{x:\left|\int_{0}^{\infty} k(\pm t) f(x \pm t) d t\right|>y\right\}\right| \leqq \frac{C}{y^{2}}\|f\|_{2}^{2}, \quad \text { for all } \quad y>0
$$

Here, C is independent of f and y.
Lemma 3. (Jurkat and Sampson). If $k \in L_{2}^{*}$ and $\int_{s}^{2 s}|k(t)| d t=$ $O(1)$ for all s, then $\int_{a}^{b} k(t) e^{-t t x} d t=O(1)$.

Proof. Let f be the characteristic function of $[0,2 b]$ with $b>$ 0 . For all $u \in[0, b]$ we have, for fixed x,

$$
\begin{equation*}
\int_{0}^{\infty} f(u+t) k(t) e^{-i t x} d t=\left(\int_{0}^{b}+\int_{b}^{2 b-u}\right) k(t) e^{-i x t} d t \tag{1}
\end{equation*}
$$

But

$$
\left|\int_{b}^{2 b-u} k(t) e^{-i \mathrm{ix} t} d t\right| \leqq \sup _{s \in R}\left|\int_{s}^{2 s}\right| k(t)|d t|=M
$$

Therefore if $\left|\int_{0}^{b} k(t) e^{-v x} d t\right| \leqq 2 M$ the proof is over. Now suppose that $\left|\int_{0}^{b} k(t) e^{-i x t} d t\right|>2 M$. In this case, from (1) it follows that

$$
\begin{equation*}
\left|\left\{u:\left|\int_{0}^{\infty} k(t) e^{-u x t} f(u+t) d t\right|>\frac{1}{2}\left|\int_{0}^{b} k(t) e^{-x x} d t\right|\right\}\right| \geqq b \tag{2}
\end{equation*}
$$

Since $k \in L_{2}^{*}$, there exists some constant C independent of x and b such that

$$
\left|\left\{u:\left|\int_{0}^{\infty} k(t) e^{-i x(t+u)} f(u+t)\right|>\frac{1}{2}\left|\int_{0}^{b} k(t) e^{-x x t} d t\right|\right\}\right|
$$

$$
\begin{equation*}
\leqq \frac{C}{\left|\int_{0}^{b} k(t) e^{-u x} d t\right|^{2}} \int_{0}^{\infty}|f(t)|^{2} d t . \tag{3}
\end{equation*}
$$

From (2) and (3) it follows that $\left|\int_{0}^{b .} k(t) e^{-x t} d t\right| \leqq \sqrt{C}$ where C is independent of b and x. A similar argument works for $b<0$ and hence we get our result.

Theorem 4. If k is real-valued and satisfies the following conditions:

$$
\begin{equation*}
\int_{s}^{2 s}|k(t)| d t=O(1) \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\hat{k} \in \operatorname{Lip} \alpha \quad \text { for some } \quad 0<\alpha<1 \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
|x|^{\lambda} \hat{k}(x)=O(1) \text { for some } \quad \lambda>0, \quad \text { and } \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
k \in L_{2}^{*} \tag{7}
\end{equation*}
$$

Then $k \in L_{p}^{p}$ for $1<p<\infty$.
Proof. By Lemma 3, (4) and (7) imply that $\int_{a}^{b} k(t) e^{-i x t} d t=O(1)$. By Lemma 3 in $\S 2$ we can conclude that (1) in $\S 2$ holds. Furthermore (6) implies that $\hat{k} \in V_{\epsilon}$ for some $\epsilon>0$. Hence due to Theorem 2 in $\S 2$, $k \in A_{\beta} \forall \beta<\alpha$. The conclusion follows from [3, Theorem 1.17].

4. Examples.

Lemma 1. Let l, m, a and b be given numbers. Set $M=$ $\max (|l|,|m|), L=\min (|l|,|m|)$ and $V=\max (|a|,|b|)$. Then,

$$
\begin{equation*}
\left|\int_{a}^{b} \frac{\sin l u \cos m u}{u} d u\right|=O(1) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\left|\int_{-b}^{b} \frac{\sin l u e^{-m u}}{u} d u\right|=O(1) \tag{2}
\end{equation*}
$$

if M and V are sufficiently large,

$$
\begin{equation*}
\left|\int_{a}^{b} \frac{\sin l u}{u} e^{-m m u} d u\right|=O(\log V+L) \tag{3}
\end{equation*}
$$

Proof. We get (1) since $\left|\int_{c}^{d} \sin u / u d u\right| \leqq A$ where A is a positive constant independent of c and d; also, (2) follows immediately from (1). For (3) it suffices to dominate

$$
\begin{equation*}
\left|\int_{a}^{b} \frac{\sin l u}{u} \sin m u d u\right| . \tag{4}
\end{equation*}
$$

Since the expression (4) is even and symmetric in l and m we can assume w.l.o.g. that $0<l \leqq m$. Furthermore, we can assume that $0 \leqq a<b$ since the integrand is an odd function in u. Thus

$$
\begin{equation*}
\left|\int_{a}^{b} \frac{\sin l u}{u} \sin m u d u\right| \leqq l \quad \text { if } \quad 0 \leqq a<b<1, \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\left|\int_{a}^{b}\right| \leqq\left|\int_{a}^{1}\right|+\left|\int_{1}^{b}\right| \leqq l+\log b \quad \text { if } \quad 0 \leqq a \leqq 1<b, \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\int_{a}^{b}\right| \leqq \log b \text { if } 1<a<b \tag{7}
\end{equation*}
$$

Hence we get our result.
Theorem 2. For each $0<\alpha<1$ there exists a function $g \in L_{p}$ $(1 \leqq p<\infty)$ such that $\hat{\mathrm{g}} \in \operatorname{Lip} \alpha$ but $g \notin A_{a}$.

Proof. It suffices to show that there exists a $g \in L_{p}$ such that $\hat{g} \in \operatorname{Lip}(\alpha)$ and for some sequences $\left\{h_{n}\right\} \rightarrow 0,\left\{x_{n}\right\}$, and $\left\{B_{n}\right\} \rightarrow \infty$ then

$$
\begin{equation*}
\left|h_{n}^{-\alpha} \int_{1 / h_{n}}^{2 / h_{n}} g(t) e^{-u x} d t\right|>B_{n} \quad \text { for } \quad\left|x-x_{n}\right| \leqq 1 / a_{n} . \tag{8}
\end{equation*}
$$

Consider

$$
g(t)=\sum_{m=1}^{\infty} \frac{\sin \left(m\left(t-c_{m}\right)\right)}{m^{\gamma-1} a_{m}^{\alpha}\left(t-c_{m}\right)} \chi_{\left[a_{m}, b_{m}\right]}^{(t)}
$$

where γ is a fixed positive integer $\geqq 3$ and $\gamma \geqq(1-\alpha)^{-1}$. Also,

$$
a_{m}=2^{m \nu}, \quad b_{m}=2 a_{m} \quad \text { and } \quad c_{m}=3 / 2 a_{m}
$$

$$
\begin{equation*}
\text { and } \chi_{I} \text { is the characteristic function of } I \text {. } \tag{9}
\end{equation*}
$$

To show that $\hat{g}(x)$ exists for each $x \in \mathbf{R}$, it suffices to show that $g \in L_{1}$.

$$
\begin{aligned}
\int_{-\infty}^{\infty}|g(t)| d t & \leqq \sum_{m=1}^{\infty} m^{1-\gamma} a_{m}^{-\alpha} \int_{a_{m}}^{b_{m}} \frac{\left|\sin \left(m\left(t-c_{m}\right)\right)\right|}{\left|t-c_{m}\right|} d t \\
& \leqq 2 \sum_{m=1}^{\infty} \frac{1+\log \left(m a_{m}\right)}{m^{\gamma-1} a_{m}^{\alpha}}<\infty .
\end{aligned}
$$

Now we are going to show that $\hat{g} \in \operatorname{Lip} \alpha$ for $\gamma \geqq(1-\alpha)^{-1}$.
Given h such that $2|h|<1$, there exists an m so that,

$$
\begin{align*}
& 1 / a_{m+1}<|h| \leqq 1 / a_{m} \tag{10}\\
\hat{\mathrm{~g}}(x+h)-\hat{\mathrm{g}}(x)= & \sum_{l=1}^{m-1} l^{1-\gamma} a_{l}^{-\alpha} \int_{a_{l}}^{b_{l}} \frac{\sin l\left(t-c_{l}\right)}{t-c_{l}} e^{-u x x}\left(e^{-u t}-1\right) d t, \\
& +m^{1-\gamma} a_{m}^{-\alpha} \int_{a_{m}}^{b_{m}} \frac{\sin m\left(t-c_{m}\right)}{t-c_{m}} e^{-i t x}\left(e^{-u h}-1\right) d t \\
& +\left(\sum_{l=m+1}^{\infty} l^{1-\gamma} a_{l}^{-\alpha} \int_{a_{l}}^{b_{l}} \frac{\sin l\left(t-c_{l}\right)}{t-c_{l}} e^{-u(x+h)} d t\right. \\
& \left.\quad-\sum_{l=m+1}^{\infty} l^{1-\gamma} a_{l}^{-\alpha} \int_{a_{l}}^{b_{l}} \frac{\sin l\left(t-c_{l}\right)}{t-c_{l}} e^{-i t x} d t\right) \\
= & I_{1}+I_{2}+I_{3} .
\end{align*}
$$

We are going to show that each term on the right hand side of (11) is $O\left(h^{\alpha}\right)$ for $\gamma \geqq(1-\alpha)^{-1}$ separately.

After substituting $u=t-c_{b}$, by (2) and (10) $I_{3}=O\left(h^{\alpha}\right)$.
Since $0<h<1 / a_{m}$, by the second mean value theorem for integrals there exists $\xi_{l}\left(a_{l}<\xi_{l}<b_{l}\right)$ such that

$$
\left|I_{1}\right| \leqq \sum_{l=1}^{m-1} \frac{\sin b_{l} h}{l^{\gamma-1} a_{l}^{\alpha}}\left|\int_{\xi_{1}}^{b_{l}} \frac{\sin l\left(t-c_{l}\right)}{t-c_{l}} e^{-t x x} d t\right| .
$$

After substitution $u=t-c_{l}$, by (3), (9) and (10) it follows

$$
\left|I_{1} / h^{\alpha}\right| \leqq C \sum_{l=1}^{m-1}\left(a_{l} h\right)^{1-\alpha} l^{1-\gamma}\left(\log a_{l}+l\right)=O(1)
$$

It remains to show $I_{2}=O\left(h^{\alpha}\right)$. By (2) we have,

$$
\begin{equation*}
I_{2} / h^{\alpha}=O\left(\left(h a_{m}\right)^{-\alpha} m^{1-\gamma}\right)=O(1) \tag{12}
\end{equation*}
$$

if $\left(h a_{m}\right)^{-\alpha} m^{1-\gamma} \leqq 1$.
Since $e^{-u h}-1=(\cos t h-1)+i \sin t h$, by the second mean value theorem for integrals and (3) we get

$$
\begin{equation*}
I_{2} / h^{\alpha}=O\left(m\left(a_{m} h\right)^{1-\alpha}\right)=O(1), \quad \text { if } \quad m\left(a_{m} h\right)^{1-\alpha} \leqq 1 \tag{13}
\end{equation*}
$$

Hence by (12) and (13) we conclude that $I_{2}=O\left(h^{\alpha}\right)$ if $\gamma \geqq(1-\alpha)^{-1}$.
Now we are going to show that there exist some sequences $\left\{h_{n}\right\} \rightarrow 0$, $\left\{x_{n}\right\}$, and $\left\{B_{n}\right\} \rightarrow \infty$ such that

$$
\left|\frac{1}{h_{n}^{\alpha}} \int_{1 / h_{n}}^{2 / h_{n}} g(t) e^{-t t x} d t\right|>B_{n} \quad \text { for } \quad\left|x-x_{n}\right| \leqq 1 / a_{n}
$$

Consider $h_{m}=1 / c_{m}$ and $x_{m}=m$.

$$
h_{m}^{-\alpha} \int_{1 / h_{m}}^{2 / h_{m}} g(t) e^{-t t x} d t=J_{1}+J_{2}
$$

where

$$
J_{1}=-\frac{i e^{i c_{m} x}}{h_{m}^{\alpha} m^{\gamma-1} a_{m}^{\alpha}} \int_{0}^{1 / 2 a_{m}} \frac{\sin m v}{v} \sin x v d v
$$

and

$$
J_{2}=\frac{e^{\kappa_{m} x}}{h_{m}^{\alpha} m^{\gamma-1} a_{m}^{\alpha}} \int_{0}^{1 / 2 a_{m}} \frac{\sin m v}{v} \cos x v d v
$$

From (1) of Lemma 1 we can conclude that $J_{2}=O(1)$. Hence it suffices to show that $\left|J_{1}(x)\right| \geqq m / 2$ if $\left|x-x_{m}\right| \leqq 1 / a_{m}$.

$$
\left|J_{1}\right|=\left(\frac{3}{2}\right)^{\alpha} m^{1-\gamma}\left|\int_{0}^{1}+\int_{1}^{\frac{1}{2} a_{m}}\right| .
$$

It is clear that $(\gamma \geqq 3)$

$$
m^{1-\gamma}\left|\int_{0}^{1} \frac{\sin m v}{v} \sin x v d v\right|=O(1)
$$

On the other hand,

$$
\begin{aligned}
& 2 m^{1-\gamma} \int_{1}^{\frac{1}{2} a_{m}} \frac{\sin m v}{v} \sin x v d v \\
& \quad=m^{1-\gamma} \int_{1}^{\frac{1}{2} a_{m}}\left(\frac{\cos (m-x) v}{v}+\frac{\cos (m+x) v}{v}\right) d v
\end{aligned}
$$

We can easily see that for these x 's,

$$
m^{1-\gamma} \int_{1}^{\frac{1}{2} a_{m}} \frac{\cos (m+x) v}{v} d v=O(1)
$$

For the remaining term we note that $\cos u \geqq 1-u^{2} / 2$. Therefore for x satisfying $|x-m| \leqq 1 / a_{m}$,

$$
\begin{aligned}
m^{1-\gamma}\left|\int_{1}^{\frac{1}{2} a_{m}} \frac{\cos (m-x) v}{v} d v\right| & \geqq m^{1-\gamma} \int_{1}^{\frac{1}{2} a_{m}}\left(\frac{1}{v}-(m-x)^{2} v\right) d v . \\
& \geqq m^{1-\gamma}\left(\log a_{m} / 2-\frac{(m-x)^{2} a_{m}^{2}}{8}\right) .
\end{aligned}
$$

Since $(m-x)^{2} a_{m}^{2} \leqq 1$ we conclude that for m sufficiently large $\left|J_{1}\right| \geqq m / 2$.

The proof is then complete.

References

1. R. P. Boas, Jr., Fourier series with positive coefficients, J. Math. Analysis and Appl., 17 (1967), 463-483.
2. -, Lipschitz behavior and integrability of characteristic functions, Ann. Math. Stat., 38 PTI (1967), 32-36.
3. V. Drobot, A. Naparstek and G. Sampson, (L_{p}, L_{q}) mapping properties of convolution transforms, Studia Mathematica, LV (1975), 41-70.
4. Liang Shin Hahn, On multipliers of p integrable functions, Trans. Amer. Math. Soc., 128 (1967), 321-335.
5. I. I. Hirschman, Jr., On multiplier transformations, Duke Math. J., 26 (1959), 221-242.
6. A. Zygmund, Trigonometric series, 2nd Edit. Vol. I and II, Cambridge Univ. Press, N. Y. (1959).

Received January 12, 1976. We wish to thank the referee for his helpful comments.

SUNY-BuFfalo

Buffalo, NY 14214

[^0]: ${ }^{1}$ Refer to page 2 with $g(u, a, b)=O(1)$.

