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ON ALTERNATIVE RINGS AND THEIR
ATTACHED JORDAN RINGS

MicHAEL RicH

Let A be an alternative ring and A“ its attached quadratic
Jordan ring. We show that if A is finitely generated by n
generators then A“ is finitely generated by the monomials in A
of degree =n + 1. It follows that if A is finitely generated then
A is nilpotent if and only if A“ is solvable, and for arbitrary A
the Levitzki radical of A coincides with the Levitzki radical of
A“ Finally, if A has an invelution * and H (A, *) denotes the
*.symmetric elements of A then several results known for
associative rings connecting properties of H (A, *) to those of A
apply.

The Levitzki radical L (R) of a ring R (associative, Jordan, alterna-
tive) is known to be the maximal locally nilpotent ideal of R and has the
properties that L(R) contains all locally nilpotent ideals of R and that
L(R/L(R))=0. In [9,11] it is shown that if R is an associative or
alternative algebra over a commutative ring ® such that 1/2€ ® then
L(R)=L(R*) where R* denotes the attached linear Jordan
algebra. In §1 we extend this by considering an alternative ring A of
arbitrary characteristic and its attached quadratic Jordan ring
A Recall that A? is defined to be the additive group of A together
with the quadratic operators x*> and U,: a » xax for all x in A. The
bilinear operators attached to these are x-y=xy+yx and
U,,: ab (xa)y + (ya)x = x(ay)+ y(ax). The key result we prove is
that if A is generated by x,, x5, - -, x, then A"*>C AU, and that A? is
finitely generated by all monomials in A of degree =n+1. This
enables us to conclude that L(A)=L(A“) and that if A is finitely
generated then A is nilpotent if and only if A? is solvable.

In §2, we assume that A is a ring with involution * and note that
several known results for associative rings in which A inherits properties
of H(A, *) apply to alternative rings. In particular, if A is alternative
and if the quadratic Jordan ring H(A, *) is nilpotent of index n then A is
nil of index =2n. Finally, if A is an algebra over a field with at least n
elements and if H(A,*) is nil of bounded index n, then A is nil of
bounded index =2n.

1. Throughout we shall make use of the Moufang laws

1) (xax)y = x[a(xy)]
511



512 MICHAEL RICH

@ y(xax) = [(yx)a]x
3 (xy)(ax) = x(ya)x

It is known that if B, C are ideals of A then BU, is an ideal of
A. ForifbeEB, cEC a€c€ A then

(cbc)a = c(b(ca))+ (ca)(bc)—- c(ab)c

by (1) and (3). But c(b(ca))+(ca)(bc)= bU,., € BU. and c(ab)c =
(ab)U,. € BU.. Thus (BU:)A C BU.. Similarly A(BU:)C BU;. In
particular AU, is an ideal of A.

LEMMA. Ifu is a monomial in A of degree =2 inx and u# x* then
either u =0 mod AU, or u =x’y mod AU, for some y in A.

Proof. First note that x*y + yx?= xU,, € AU, so that terms of the
form yx? are covered by the Lemma. Now in view of the fact that AU,
is an ideal of A and that (ab)c = — (ch)a mod AU,, it follows that
(x*a)b = — (ba)x* mod AU, and (ax?)b = — (x’a)b = (ba)x* mod AU.,.
Similarly for their left-right duals: b(ax?)= — x*(ab) mod AU, and
b(x*a)=x*(ab) mod AU,. Thus, if welet T, =R, or T, = L,, an easy
induction on s shows that if u = x*T,,T,,--- T,, then u =x’y mod AU,
forsome y € A. It follows that if a factor of u satisfies the results of the
Lemma then so does u itself.

We may assume now that u has a factor u’ which takes one of the
forms:

O uw=xT,T, - T,T,
or

(ll) u'= (XTm Ta2 te T“"l) (XTbl sz te Tbuz)
for some a, b, € A.

For case (i) we induct on k and note that the result is trivial for
k =1. Assume then that the result holds for any w = xT, T, - T, T,
withd, €A andn <k. NowifforsomeiT, =R, and T,., = R, ., then

u'=xT,T, - - T,T. =(((xT,,- - T..)a)a)T,., - T,T,
== [(a,+1a,)(xTa, T, Ta-—:)] T...- T, T, modAU,

so that u'=xT,--- T, L,T,., -+ T.T, mod AU, for b= — a,.,a. By
the induction hypothesis on the number of T’s we have our
result. Similarly if T, =L, and T,,,=L,,, for some i. Thus T, ,,=
R... ad T, =L, or T,.=L,. and T, =R, for all
m. Therefore, if k =2 we have the cases ((ax)b)x, (a(xb))x, x((ax)b),
and x(a(xb)). But
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((ax)b)x = — (xb)(ax)= — x(ba)x =0mod AU, by (3)
and
(a(xb))x = — (x(xb))a = — (x*b)a = (ab)x*mod AU,

and similarly for the last two cases. Thus the result holds for k = 2.
Suppose now that k>2 and that T,..=R,., and T, =
R,. Then

u' = [(axxa;))a;) T, - - T,T.

Since A is alternative we have a,(xa,) = (a,x)a, + (a.a,)x — a,(a,x) so
that '

u'= xLa:zR;nRas Ta4 tte Taka + xLazazRaa Taa U Tﬂk Tx + meLazRas Tm' v Tﬂk T;:-

Since the the first term has two consecutive right multiplications, the last
term has two consecutive left multiplications, and the middle term fewer
than k T’s, we have u’'=x?, or u'=0mod AU,, or u'=x*y mod AU,
for some y by the induction hypothesis. If T,,.. =L, and T, =
L, we get the same result using the fact that (ax)a,=
a,(xa,) — (xa,)a, + x(a,a,). Thus we have disposed of case (i).

For case (ii) we induct on k = min(k;, k,) and note that k = 0 is case
(@). Itk,=k,weletw=xT,---T,,v=xT, T, and c = b, and
we have one of the two cases:

u'=w(vc)=—c(ow)mod AU,
(*) or
u'=w(v)=—v(cw)mod AU,.

Now if k, = k = 1 then vw and v(cw) are of the form of case (i) so that u’
satisfies the results of the Lemma. If k >1 then both vw and v(cw)
have a lower value of k, so by the induction hypothesis they satisfy the
desired conclusion. Hence so does u’. The case k; = k, follows from
the left-right dual of (*). Thus, in all cases we get u =0mod AU, or
u=x*ymod AU, for some y € A.

THEOREM 1. If A is generated by n elements then A"*C AU,.

Proof. Let u € A™*’. Then since A has n generators it follows
that either there is at least one generator, say x, such that the degree of u
in x is = 3 or there are at least two generators, say w and z, such that the
degree of u in w is =2 and the degree of u in z is = 2. If the latter
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holds then by the lemma if u#0 mod AU, we have u=z%
mod AU,. Since y is of degree at least two in w we get y = w? or
y =w?a mod AU, for some a € A. Thus, either u =z?w? mod AU,
or u=z*w?a) modAU, But z’w?=-wz’w=0 modAU, and
z}(w?a)= — a(w?2’)=0mod AU,. Thusin thiscase u =0 mod AU,.
If the former holds then u =x?y mod AU, where y contains a
factor x. Thus u =x*(xT,T,---T,)mod AU, forsome a, €E A. Thus
u =0 mod AU, by induction on k. Forif k =1 then we get u = x’q, =
0 mod AU, or u=x%*ax)=0 modAU,. As in the lemma we may
assume that no two consecutive T’s represent R or L so that the case
k =2 reduces to x*(axxa;)) or =x*(ax)a;). But x?*ax(xa,))=
x[x(axxa;))] = x[(xa.x)a,] =0 mod AU, and x¥((ax)a,) =
— ax((a;x)x?) =0 mod AU,. The inductive step is obtained precisely as
in case (i) of the lemma. Thus u € AU, and the theorem is proven.

REMARK. The advance in Theorem 1 is not the fact that a power of
A is contained in AU, but rather in the precise value n +2. For, as
noted by Professor McCrimmon in a private communication, if A is
finitely generated then A = A/AU, is finitely generated and nil satisfy-
ing the polynomial identity x>=0. This, by an earlier result of his [6,
Theorem 3] implies that A is nilpotent so there is an integer k such that
A*CAU,.

THEOREM 2. If A is generated by x,, X, * -, X, then the Jordan ring
A is finitely generated by all monomials of degree <n +2.

Proof. Let F be the free alternative ring generated by
X1, X3, X, Then if u is an element of minimal degree in A? not
generated by the monomials of degree = n + 1 then deg u = n + 2 so that
u € F*?C FUr. Thus, u =2,a,U, +2,p,U,, for monomials a, b, p, g,
r. in F. Therefore a,b,p,q,r. have lower degree than u and are
generated in F? by the monomials of degree <n+2. Thus u is
generated by these monomials also and we, have the result for F. Now
A% =Fi[K for some ideal K of A% Therefore A“ is also generated by
the monomials of degree <n +2.

Recall that if J is a Jordan algebra then D(J)= JU, is a quadratic
ideal of J, and the derived series of J is given by

J=D'J)DD(J)DD*J)D---DD"(J)D -

where D*'(J)= D(D*'(J)). Jissolvableif D"(J)=0 for some n. The
degree of an element is defined by deg(alU,)=2degb +dega,
deg(aU, . )=dega +deghb +degc, dega’=2dega, and dega-b =
deg a +degb. J is nilpotent if there is an n such that all monomials of
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degree = n are zero. McCrimmon has shown that if J is finitely
generated then J is solvable iff J is nilpotent [4]. In our situation we
write D’(A) to denote D'(A?).

CoroLLARY. If A is finitely generated then for each t there is a k
such that A* C D'(A). Also D'(A) is finitely generated for every t.

Proof. The second statement follows immediately from Theorem 2,
since it is known that if a Jordan algebra J is finitely generated then so is
D‘(J)forall t [4]. Thus, by Theorem 2, D*(A)is finitely generated as a
Jordan ring and hence, as an alternative ring. The first statement is
arrived at by induction on . The case ¢ = 1 is the statement of Theorem
1. Assume true for . Since D‘(A) is a finitely generated alternative
ring then by Theorem 1 there is an integer m such that (D‘(A))" C
D(D'(A))= D"Y(A). Thus (A*)" C(D‘(A))"CD"'(A). By a re-
sult of Zwier [12] there is an integer r such that A" C(A*)". Thus
A'CD"™(A).

The following theorem extends a result of Shirshov for alternative
algebras over a field of characteristic # 2.

THEOREM 3. If A is a finitely generated alternative ring then A is
nilpotent iff A is solvable iff A? is nilpotent.

Proof. Clearly, A nilpotent implies A? solvable. The equivalence
of A7 solvable and A ¢ nilpotent is the result of McCrimmon mentioned
earlier. Since to each ¢ there is a k such that A* C D'(A) we conclude
that A¢ solvable implies A nilpotent.

THEOREM 4. If A is an alternative ring then L(A)= L(AY).

Proof. Clearly L(A) is an ideal of A7 and since it is locally
nilpotent in A, it is also locally nilpotentin A% Thus L(A)C L(AY).

For the converse it is sufficient to prove that L(A) = 0 implies that
L(A?)=0. For under this assumption if L(A)#0 then, since
L(A/L(A))=0, we get L(A9/L(A))=0. Since the homomorphic
image of a locally nilpotent ideal is locally nilpotent we get
L(A%)/L(A)CL(A?/L(A))=0. Thus L(A?)C L(A).

Recall that if B is an ideal of A? then KerB ={b € B|bA +
Ab C B} is an ideal of A. It is shown in [5] that AU C Ker B and that
L(A)=0implies that A is strongly semiprime in the sense that AU, =0
implies that a = 0. Assume now that L(A) =0 and that L(A?)#0. If
Ker L(A%) =0 then AU, = 0 contradicting the fact that A is strongly
semiprime. Thus L(A?) contains a nonzero alternative ideal K =
Ker L(A%). Weshow that K C L(A) to obtain a contradiction. For if
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R is a finitely generated alternative subring of K then by Theorem 2 R*
is a finitely generated quadratic Jordan algebra. Since R C L(AY) it
follows that R“ is nilpotent. Then, by Theorem 3, R is a nilpotent
ring. Thus K is a locally nilpotent ideal of A and K C L(A) for the
desired contradiction. It follows that L (A) =0 implies that L(A?)=0
and the proof is complete.

ReEMARK. Note that the proof of Theorem 4 can be used equally
well to show that the locally finite dimensional radical of A coincides
with the locally finite dimensional radical of A“.

2. In the following let A be an alternative ring with involution *
and let H(A,*) denote the Jordan ring of *-symmetric elements of
A. In[3] McCrimmon asked the question: If B is an associative algebra
with involution * such that all *-symmetric elements are nilpotent, does it
follow that B is itself necessarily nil? Osborn [8] answered the question
in the affirmative if B is an algebra over an uncountable field ®. In an
analogous result Montgomery has shown that if B is an associative
algebra with involution over an uncountable field and if the symmetric
elements of B are algebraic then B is algebraic [7]. We note that both
of these results apply to an alternative algebra A with involution. For if
a€ A then by Artin’s theorem A,=®[a,a*] is an associative
algebra. Since the symmetric elements of A, are nil (algebraic) it
follows that A, is nil (algebraic). Thus the elements of A are nilpotent
(algebraic).

The key result needed by Osborn is the result of Amitsur that if A is
an associative algebra over a field ® such that the cardinality of @
exceeds the dimension of A over @ then the Jacobson radical of A is nil
ideal. We note that the proof of Amitsur’s theorem as presented in
[2,pp. 19-20] carries over verbatim to the alternative case once the
following two observations are made. (1): the proof in [2] that the
elements in the radical are either nilpotent or transcendental uses
associativity but can be easily adjusted. For if a € Rad A is algebraic
then ®[a] is finite dimensional. From the power-associativity of A we
know that ®[a] is nil or contains an idempotent e [10, p. 32]. The latter
implies that e € Rad A which is impossible. Thus a is nilpotent. (2):
the proof of Proposition 2 in [2] requires the fact that (ab)b™' = a for all
a,b € A. This is also true in alternative rings [9, p. 38].

Some other results which relate nilpotency in H(R, *) with nilpo-
tency in R for an associative ring R are given in [9] under the assumption
that 2x = a is solvable for all a in R. We note that these results also
apply to an alternative ring A with involution and do not require any
characteristic assymptions. For the key result needed is that if
aB(0,0)=1 and aB(n, k) denotes the sum of all monomials of degree n
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in @ and degree k in B, then for any x € R we get

@ x= [21 a’b(zn—zk—1,k)]x+ [kE; Bk, n —k ~1)]3

k=0

fora =x +x*and B = —x*x. -Since all of the computations take place
in the subring generated by x and x*, by Artin’s theorem this identity
holds for an alternative ring A. Thus we get:

THEOREM. If A is an alternative ring with involution * and if the
quadratic Jordan ring H(A, *) is nilpotent of index n, then A is nil of index
=2n.

Proof. Asin[8),ifx€A leta=x+x* B=—x*x. Thenif K,
denotes the quadratic Jordan subring of H(A, *) generated by « and B
then K, is nilpotent of index =n. If K; denotes the set of all sums of
monomials in K, of degree =t then the progf of [9, Lemma 6] shows
(without any characteristic assumptions) that aB(m,t) € K™** for all m, ¢
such that m +t=1. Thus, by (4) x*" =0.

CoroLLARY. If H(A,*) is solvable then A is a nil ring.

Proof. The proof of the previous theorem shows that if x € A and
K, is nilpotent of index n then x> = 0. Now since H(A, *) is solvable it
follows that K, is solvable. Since K, is finitely generated it is nilpotent
of index ¢ for some . Therefore x* = 0.

With our previous remarks the following theorem of [9] carries over
to the alternative case with no changes.

THEOREM. Let A be an alternative algebra with involution * over a
field ® with at least n elements. Then if H(A,*) is nil with bounded
nilindex n, A is nil with bounded nilindex =2n.

REMARK. In [9, theorem 3] it is shown that if A is an associative
algebra over a field F of characteristic #2 with involution then
L(H(A,*))= H(A,*)NL(A). We note that the same result holds for
the locally finite dimensional radical £. For, as in [9], the proof reduces
to showing that if U is a nonzero ideal of A and UNH(A,*)C
Z(H(A,*))then U C £(A). Assume then that B is a finitely generated
subalgebra of U. Then by the result of Osborn mentioned in [9],
H(B, #) is finitely generated and thus finite dimensional of dimension n
for some n. But then H(B,*) is algebraic and satisfies a polynomial
identity. Then, by a result of Baxter and Martindale [1], B is finite
dimensional. Thus, U is a locally finite ideal of A so that U C Z(A).
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