ON ALTERNATIVE RINGS AND THEIR ATTACHED JORDAN RINGS

MICHAEL RICH

Let A be an alternative ring and A^q its attached quadratic Jordan ring. We show that if A is finitely generated by n generators then A^q is finitely generated by the monomials in A of degree $\leq n+1$. It follows that if A is finitely generated then A is nilpotent if and only if A^q is solvable, and for arbitrary A the Levitzki radical of A coincides with the Levitzki radical of A^q . Finally, if A has an involution * and H(A, *) denotes the *-symmetric elements of A then several results known for associative rings connecting properties of H(A, *) to those of A apply.

The Levitzki radical L(R) of a ring R (associative, Jordan, alternative) is known to be the maximal locally nilpotent ideal of R and has the properties that L(R) contains all locally nilpotent ideals of R and that L(R/L(R)) = 0. In [9,11] it is shown that if R is an associative or alternative algebra over a commutative ring Φ such that $1/2 \in \Phi$ then $L(R) = L(R^+)$ where R^+ denotes the attached linear Jordan algebra. In $\S 1$ we extend this by considering an alternative ring A of arbitrary characteristic and its attached quadratic Jordan ring A^{q} . Recall that A^{q} is defined to be the additive group of A together with the quadratic operators x^2 and U_x : $a \mapsto xax$ for all x in A. The operators attached to these are $x \cdot y = xy + yx$ U_{xy} : $a \mapsto (xa)y + (ya)x = x(ay) + y(ax)$. The key result we prove is that if A is generated by x_1, x_2, \dots, x_n then $A^{n+2} \subseteq AU_A$ and that A^q is finitely generated by all monomials in A of degree $\leq n+1$. enables us to conclude that $L(A) = L(A^q)$ and that if A is finitely generated then A is nilpotent if and only if A^q is solvable.

In §2, we assume that A is a ring with involution * and note that several known results for associative rings in which A inherits properties of H(A,*) apply to alternative rings. In particular, if A is alternative and if the quadratic Jordan ring H(A,*) is nilpotent of index n then n is nil of index n index n is an algebra over a field with at least n elements and if n is nil of bounded index n, then n is nil of bounded index n is nil of bounded index n is nil of

1. Throughout we shall make use of the Moufang laws

$$(1) (xax)y = x[a(xy)]$$

$$(2) y(xax) = [(yx)a]x$$

$$(3) (xy)(ax) = x(ya)x$$

It is known that if B, C are ideals of A then BU_c is an ideal of A. For if $b \in B$, $c \in C$, $a \in A$ then

$$(cbc)a = c(b(ca)) + (ca)(bc) - c(ab)c$$

by (1) and (3). But $c(b(ca))+(ca)(bc)=bU_{c,ca} \in BU_C$ and $c(ab)c=(ab)U_c \in BU_C$. Thus $(BU_C)A \subseteq BU_C$. Similarly $A(BU_C) \subseteq BU_C$. In particular AU_A is an ideal of A.

LEMMA. If u is a monomial in A of degree ≥ 2 in x and $u \ne x^2$ then either $u \equiv 0 \mod AU_A$ or $u \equiv x^2y \mod AU_A$ for some y in A.

Proof. First note that $x^2y + yx^2 = xU_{x,y} \in AU_A$ so that terms of the form yx^2 are covered by the Lemma. Now in view of the fact that AU_A is an ideal of A and that $(ab)c \equiv -(cb)a \mod AU_A$, it follows that $(x^2a)b \equiv -(ba)x^2 \mod AU_A$ and $(ax^2)b \equiv -(x^2a)b \equiv (ba)x^2 \mod AU_A$. Similarly for their left-right duals: $b(ax^2) \equiv -x^2(ab) \mod AU_A$ and $b(x^2a) \equiv x^2(ab) \mod AU_A$. Thus, if we let $T_a = R_a$ or $T_a = L_a$, an easy induction on s shows that if $u = x^2T_{a_1}T_{a_2}\cdots T_{a_s}$ then $u \equiv x^2y \mod AU_A$ for some $y \in A$. It follows that if a factor of u satisfies the results of the Lemma then so does u itself.

We may assume now that u has a factor u' which takes one of the forms:

(i)
$$u' = xT_{a_1}T_{a_2}\cdots T_{a_k}T_x$$

or

(ii)
$$u' = (xT_{a_1}T_{a_2}\cdots T_{a_{k_1}})(xT_{b_1}T_{b_2}\cdots T_{b_{k_2}})$$

for some $a_i, b_i \in A$.

For case (i) we induct on k and note that the result is trivial for k = 1. Assume then that the result holds for any $w = xT_{d_1}T_{d_2}\cdots T_{d_n}T_x$ with $d_i \in A$ and n < k. Now if for some $iT_{a_i} = R_{a_i}$ and $T_{a_{i+1}} = R_{a_{i+1}}$ then

$$u' = xT_{a_1}T_{a_2}\cdots T_{a_k}T_x = (((xT_{a_1}\cdots T_{a_{i-1}})a_i)a_{i+1})T_{a_{i+2}}\cdots T_{a_k}T_x$$

$$\equiv -[(a_{i+1}a_i)(xT_{a_1}T_{a_2}\cdots T_{a_{i-1}})]T_{a_{i+2}}\cdots T_{a_k}T_x \mod AU_A$$

so that $u' = xT_{a_1} \cdots T_{a_{i-1}}L_bT_{a_{i+2}} \cdots T_{a_k}T_x \mod AU_A$ for $b = -a_{i+1}a_i$. By the induction hypothesis on the number of T's we have our result. Similarly if $T_{a_i} = L_{a_i}$ and $T_{a_{i+1}} = L_{a_{i+1}}$ for some i. Thus $T_{a_{2m+1}} = R_{a_{2m+1}}$ and $T_{a_{2m}} = L_{a_{2m}}$ for all m. Therefore, if k = 2 we have the cases ((ax)b)x, (a(xb))x, x((ax)b), and x(a(xb)). But

$$((ax)b)x \equiv -(xb)(ax) \equiv -x(ba)x \equiv 0 \mod AU_A \quad \text{by} \quad (3)$$

and

$$(a(xb))x \equiv -(x(xb))a \equiv -(x^2b)a \equiv (ab)x^2 \operatorname{mod} AU_A$$

and similarly for the last two cases. Thus the result holds for k=2. Suppose now that k>2 and that $T_{a_{2m+1}}=R_{a_{2m+1}}$ and $T_{a_{2m}}=R_{a_{2m}}$. Then

$$u' = [(a_2(xa_1))a_3]T_{a_1}\cdots T_{a_k}T_x.$$

Since A is alternative we have $a_2(xa_1) = (a_2x)a_1 + (a_2a_1)x - a_2(a_1x)$ so that

$$u' = xL_{a_2}R'_{a_1}R_{a_3}T_{a_4}\cdots T_{a_k}T_x + xL_{a_2a_1}R_{a_3}T_{a_4}\cdots T_{a_k}T_x + xL_{a_1}L_{a_2}R_{a_3}T_{a_4}\cdots T_{a_k}T_x.$$

Since the first term has two consecutive right multiplications, the last term has two consecutive left multiplications, and the middle term fewer than k T's, we have $u' = x^2$, or $u' \equiv 0 \mod A U_A$, or $u' \equiv x^2 y \mod A U_A$ for some y by the induction hypothesis. If $T_{a_{2m+1}} = L_{a_{2m+1}}$ and $T_{a_{2m}} = L_{a_{2m}}$ we get the same result using the fact that $(a_1x)a_2 = a_1(xa_2) - (xa_1)a_2 + x(a_1a_2)$. Thus we have disposed of case (i).

For case (ii) we induct on $k = \min(k_1, k_2)$ and note that k = 0 is case (i). If $k_2 \le k_1$, we let $w = xT_{a_1} \cdots T_{a_{k_1}}$, $v = xT_{b_1} \cdots T_{b_{k_2-1}}$ and $c = b_{k_2}$ and we have one of the two cases:

$$u' = w(vc) \equiv -c(vw) \operatorname{mod} A U_A$$
(*) or
$$u' = w(cv) \equiv -v(cw) \operatorname{mod} A U_A.$$

Now if $k_2 = k = 1$ then vw and v(cw) are of the form of case (i) so that u' satisfies the results of the Lemma. If k > 1 then both vw and v(cw) have a lower value of k, so by the induction hypothesis they satisfy the desired conclusion. Hence so does u'. The case $k_1 \le k_2$ follows from the left-right dual of (*). Thus, in all cases we get $u \equiv 0 \mod AU_A$ or $u \equiv x^2y \mod AU_A$ for some $y \in A$.

THEOREM 1. If A is generated by n elements then $A^{n+2} \subseteq AU_A$.

Proof. Let $u \in A^{n+2}$. Then since A has n generators it follows that either there is at least one generator, say x, such that the degree of u in x is ≥ 3 or there are at least two generators, say w and z, such that the degree of u in w is ≥ 2 and the degree of u in z is ≥ 2 . If the latter

holds then by the lemma if $u \not\equiv 0 \mod AU_A$ we have $u \equiv z^2y \mod AU_A$. Since y is of degree at least two in w we get $y = w^2$ or $y \equiv w^2a \mod AU_A$ for some $a \in A$. Thus, either $u \equiv z^2w^2 \mod AU_A$ or $u \equiv z^2(w^2a) \mod AU_A$. But $z^2w^2 \equiv -wz^2w \equiv 0 \mod AU_A$ and $z^2(w^2a) \equiv -a(w^2z^2) \equiv 0 \mod AU_A$. Thus in this case $u \equiv 0 \mod AU_A$.

If the former holds then $u \equiv x^2y \mod AU_A$ where y contains a factor x. Thus $u \equiv x^2(xT_{a_1}T_{a_2}\cdots T_{a_k}) \mod AU_A$ for some $a_i \in A$. Thus $u \equiv 0 \mod AU_A$ by induction on k. For if k = 1 then we get $u \equiv x^3a_1 \equiv 0 \mod AU_A$ or $u \equiv x^2(ax) \equiv 0 \mod AU_A$. As in the lemma we may assume that no two consecutive T's represent R or L so that the case k = 2 reduces to $x^2(a_2(xa_1))$ or $x^2((a_1x)a_2)$. But $x^2(a_2(xa_1)) = x[x(a_2(xa_1))] = x[(xa_2x)a_1] \equiv 0 \mod AU_A$ and $x^2((a_1x)a_2) \equiv -a_2((a_1x)x^2) \equiv 0 \mod AU_A$. The inductive step is obtained precisely as in case (i) of the lemma. Thus $u \in AU_A$ and the theorem is proven.

REMARK. The advance in Theorem 1 is not the fact that a power of A is contained in AU_A but rather in the precise value n+2. For, as noted by Professor McCrimmon in a private communication, if A is finitely generated then $\overline{A} = A/AU_A$ is finitely generated and nil satisfying the polynomial identity $x^3 = 0$. This, by an earlier result of his [6, Theorem 3] implies that A is nilpotent so there is an integer k such that $A^k \subset AU_A$.

THEOREM 2. If A is generated by x_1, x_2, \dots, x_n then the Jordan ring A^q is finitely generated by all monomials of degree < n + 2.

Proof. Let F be the free alternative ring generated by x_1, x_2, \dots, x_n . Then if u is an element of minimal degree in A^q not generated by the monomials of degree $\leq n+1$ then deg $u \geq n+2$ so that $u \in F^{n+2} \subseteq FU_F$. Thus, $u = \sum_i a_i U_{b_i} + \sum_i p_i U_{q_{a_i} h}$ for monomials a_i, b_i, p_i, q_i, r_i in F. Therefore a_i, b_i, p_i, q_i, r_i have lower degree than u and are generated in F^q by the monomials of degree < n+2. Thus u is generated by these monomials also and we have the result for F. Now $A^q \cong F^{\frac{q}{2}}/K$ for some ideal K of A^q . Therefore A^q is also generated by the monomials of degree < n+2.

Recall that if J is a Jordan algebra then $D(J) = JU_J$ is a quadratic ideal of J, and the derived series of J is given by

$$J = D^{0}(J) \supset D(J) \supset D^{2}(J) \supset \cdots \supset D^{n}(J) \supset \cdots$$

where $D^{+1}(J) = D(D^+(J))$. J is solvable if $D^n(J) = 0$ for some n. The degree of an element is defined by $\deg(aU_b) = 2 \deg b + \deg a$, $\deg(aU_{b,c}) = \deg a + \deg b + \deg c$, $\deg a^2 = 2 \deg a$, and $\deg a \cdot b = \deg a + \deg b$. J is nilpotent if there is an n such that all monomials of

degree $\ge n$ are zero. McCrimmon has shown that if J is finitely generated then J is solvable iff J is nilpotent [4]. In our situation we write D'(A) to denote $D'(A^q)$.

COROLLARY. If A is finitely generated then for each t there is a k such that $A^k \subseteq D'(A)$. Also D'(A) is finitely generated for every t.

Proof. The second statement follows immediately from Theorem 2, since it is known that if a Jordan algebra J is finitely generated then so is D'(J) for all t [4]. Thus, by Theorem 2, D'(A) is finitely generated as a Jordan ring and hence, as an alternative ring. The first statement is arrived at by induction on t. The case t = 1 is the statement of Theorem 1. Assume true for t. Since D'(A) is a finitely generated alternative ring then by Theorem 1 there is an integer m such that $(D'(A))^m \subseteq D(D'(A)) = D^{t+1}(A)$. Thus $(A^k)^m \subseteq (D'(A))^m \subseteq D^{t+1}(A)$. By a result of Zwier [12] there is an integer r such that $A' \subseteq (A^k)^m$. Thus $A' \subseteq D^{t+1}(A)$.

The following theorem extends a result of Shirshov for alternative algebras over a field of characteristic $\neq 2$.

THEOREM 3. If A is a finitely generated alternative ring then A is nilpotent iff A^q is solvable iff A^q is nilpotent.

Proof. Clearly, A nilpotent implies A^q solvable. The equivalence of A^q solvable and A^q nilpotent is the result of McCrimmon mentioned earlier. Since to each t there is a k such that $A^k \subseteq D^r(A)$ we conclude that A^q solvable implies A nilpotent.

THEOREM 4. If A is an alternative ring then $L(A) = L(A^q)$.

Proof. Clearly L(A) is an ideal of A^q and since it is locally nilpotent in A, it is also locally nilpotent in A^q . Thus $L(A) \subseteq L(A^q)$.

For the converse it is sufficient to prove that L(A) = 0 implies that $L(A^q) = 0$. For under this assumption if $L(A) \neq 0$ then, since L(A/L(A)) = 0, we get $L(A^q/L(A)) = 0$. Since the homomorphic image of a locally nilpotent ideal is locally nilpotent we get $L(A^q)/L(A) \subseteq L(A^q/L(A)) = 0$. Thus $L(A^q) \subseteq L(A)$.

Recall that if B is an ideal of A^q then $\operatorname{Ker} B = \{b \in B \mid bA + Ab \subseteq B\}$ is an ideal of A. It is shown in [5] that $AU_B \subseteq \operatorname{Ker} B$ and that L(A) = 0 implies that A is strongly semiprime in the sense that $AU_a = 0$ implies that a = 0. Assume now that L(A) = 0 and that $L(A^q) \neq 0$. If $\operatorname{Ker} L(A^q) = 0$ then $AU_{L(A^q)} = 0$ contradicting the fact that A is strongly semiprime. Thus $L(A^q)$ contains a nonzero alternative ideal $K = \operatorname{Ker} L(A^q)$. We show that $K \subseteq L(A)$ to obtain a contradiction. For if

R is a finitely generated alternative subring of K then by Theorem 2 R^q is a finitely generated quadratic Jordan algebra. Since $R^q \subseteq L(A^q)$ it follows that R^q is nilpotent. Then, by Theorem 3, R is a nilpotent ring. Thus K is a locally nilpotent ideal of A and $K \subseteq L(A)$ for the desired contradiction. It follows that L(A) = 0 implies that $L(A^q) = 0$ and the proof is complete.

REMARK. Note that the proof of Theorem 4 can be used equally well to show that the locally finite dimensional radical of A coincides with the locally finite dimensional radical of A^q .

2. In the following let A be an alternative ring with involution * and let H(A, *) denote the Jordan ring of *-symmetric elements of A. In [3] McCrimmon asked the question: If B is an associative algebra with involution * such that all *-symmetric elements are nilpotent, does it follow that B is itself necessarily nil? Osborn [8] answered the question in the affirmative if B is an algebra over an uncountable field Φ . In an analogous result Montgomery has shown that if B is an associative algebra with involution over an uncountable field and if the symmetric elements of B are algebraic then B is algebraic [7]. We note that both of these results apply to an alternative algebra A with involution. For if $a \in A$ then by Artin's theorem $A_0 = \Phi[a, a^*]$ is an associative algebra. Since the symmetric elements of A_0 are nil (algebraic) it follows that A_0 is nil (algebraic). Thus the elements of A are nilpotent (algebraic).

The key result needed by Osborn is the result of Amitsur that if A is an associative algebra over a field Φ such that the cardinality of Φ exceeds the dimension of A over Φ then the Jacobson radical of A is nil ideal. We note that the proof of Amitsur's theorem as presented in [2, pp. 19-20] carries over verbatim to the alternative case once the following two observations are made. (1): the proof in [2] that the elements in the radical are either nilpotent or transcendental uses associativity but can be easily adjusted. For if $a \in \text{Rad } A$ is algebraic then $\Phi[a]$ is finite dimensional. From the power-associativity of A we know that $\Phi[a]$ is nil or contains an idempotent e [10, p. 32]. The latter implies that $e \in \text{Rad } A$ which is impossible. Thus e is nilpotent. (2): the proof of Proposition 2 in [2] requires the fact that e and e for all e and e

Some other results which relate nilpotency in H(R,*) with nilpotency in R for an associative ring R are given in [9] under the assumption that 2x = a is solvable for all a in R. We note that these results also apply to an alternative ring A with involution and do not require any characteristic assumptions. For the key result needed is that if $\alpha \beta(0,0) = 1$ and $\alpha \beta(n,k)$ denotes the sum of all monomials of degree n

in α and degree k in β , then for any $x \in R$ we get

(4)
$$x^{2n} = \left[\sum_{k=0}^{n-1} \widehat{\alpha\beta}(2n-2k-1,k)\right] x + \left[\sum_{k=0}^{n-1} \widehat{\alpha\beta}(2k,n-k-1)\right] \beta$$

for $\alpha = x + x^*$ and $\beta = -x^*x$. Since all of the computations take place in the subring generated by x and x^* , by Artin's theorem this identity holds for an alternative ring A. Thus we get:

THEOREM. If A is an alternative ring with involution * and if the quadratic Jordan ring H(A, *) is nilpotent of index n, then A is nil of index $\leq 2n$.

Proof. As in [8], if $x \in A$ let $\alpha = x + x^*$, $\beta = -x^*x$. Then if K_x denotes the quadratic Jordan subring of H(A, *) generated by α and β then K_x is nilpotent of index $\leq n$. If K_x' denotes the set of all sums of monomials in K_x of degree $\geq t$ then the proof of [9, Lemma 6] shows (without any characteristic assumptions) that $\alpha\beta(m, t) \in K^{m+t}$ for all m, t such that $m + t \geq 1$. Thus, by (4) $x^{2n} = 0$.

COROLLARY. If H(A, *) is solvable then A is a nil ring.

Proof. The proof of the previous theorem shows that if $x \in A$ and K_x is nilpotent of index n then $x^{2n} = 0$. Now since H(A, *) is solvable it follows that K_x is solvable. Since K_x is finitely generated it is nilpotent of index t for some t. Therefore $x^{2t} = 0$.

With our previous remarks the following theorem of [9] carries over to the alternative case with no changes.

THEOREM. Let A be an alternative algebra with involution * over a field Φ with at least n elements. Then if H(A,*) is nil with bounded nilindex n, A is nil with bounded nilindex $\leq 2n$.

REMARK. In [9, theorem 3] it is shown that if A is an associative algebra over a field F of characteristic $\neq 2$ with involution then $L(H(A,*)) = H(A,*) \cap L(A)$. We note that the same result holds for the locally finite dimensional radical \mathcal{L} . For, as in [9], the proof reduces to showing that if U is a nonzero ideal of A and $U \cap H(A,*) \subseteq \mathcal{L}(H(A,*))$ then $U \subseteq \mathcal{L}(A)$. Assume then that B is a finitely generated subalgebra of U. Then by the result of Osborn mentioned in [9], H(B,*) is finitely generated and thus finite dimensional of dimension n for some n. But then H(B,*) is algebraic and satisfies a polynomial identity. Then, by a result of Baxter and Martindale [1], B is finite dimensional. Thus, U is a locally finite ideal of A so that $U \subseteq \mathcal{L}(A)$.

REFERENCES

- 1. W. E. Baxter and W. S. Martindale III, Rings with involution and polynomial identities, Canad. J. Math., 20 (1968), 465-473.
- 2. N. Jacobson, Structure of Rings, (Colloq. Publ. Vol. 37) Amer. Math. Soc., Providence (1968).
- 3. K. McCrimmon, On Herstein's theorems relating Jordan and associative algebras, J. Algebra, 13 (1969), 382-392.
- 4. —, Solvability and nilpotence for quadratic Jordan algebras, Scripta Math., 29 (1973), 467-483.
- 5. ——, Absolute zero divisors and local nilpotence in alternative algebras, Proc. Amer. Math. Soc., 47 (1975), 293-299.
- 6. —, Alternative algebras satisfying polynomial identities, J. Algebra, 24 (1973), 283-292.
- 7. S. Montgomery, Algebraic algebras with involution, Proc. Amer. Math. Soc., 31 (1972), 368–372.
- 8. J. M. Osborn, Jordan and associative rings with nilpotent and invertible elements, J. Algebra, 15 (1970), 301-308.
- 9. M. Rich, The Levitzki radical in associative and Jordan rings, J. Algebra, 40 (1976), 97-104.
- 10. R. D. Schafer, An introduction to nonassociative algebra, Pure and Appl. Math., Vol. 22, Academic Press, New York, 1966.
- 11. A. M. Slinko, Radicals of Jordan rings connected with alternative rings, Math. Notes of Acad. Sci. U.S.S.R., 16 (1974), 664-667.
- 12. P. J. Zwier, Prime ideals in a large class of nonassociative rings, Trans. Amer. Math. Soc., 158 (1971), 257-271.

Received August 16, 1976.

TEMPLE UNIVERSITY PHILADELPHIA, PA 19121