TRIANGULATIONS WITH THE FREE CELL PROPERTY

W. O. Murray and L. B. Treybig

Abstract

We show that if each of M_{1} and M_{2} is a connected, orientable, 3 -manifold having a triangulation with the free cell property, then the connected sum $M_{1} \# M_{2}$ has a natural triangulation with the free cell property. We also show that if M is a connected, orientable, 3-manifold having a triangulation with the free cell property, and a manifold N is formed from M by adding a handle, then N has a natural triangulation with the free cell property. These theorems are then applied to show that E^{3} and various other noncompact 3-manifolds have triangulations with the free cell property.

In this paper all n-manifolds are metrizable and are assumed to be orientable. If T is a triangulation of an n-manifold M with boundary, then a subset S of M is said to be saturated (or T-saturated) provided S is the union of simplexes of T. An n-simplex t is said to be free in a saturated n-cell S provided $t \cap \operatorname{Bd}(S)$ is an $n-1$-cell or $t=S$. Thus, a triangulation T of an n-manifold with boundary is said to have the free cell property provided each nontrivial saturated n-cell contains two free n-simplexes. Closely related to this idea is the concept of shelling. If the n-simplexes of a T-saturated n-cell S can be ordered $t_{1}, t_{2}, \cdots, t_{m}$ such that t_{1} is free in the n-cell $\cup_{i \leq 1} t_{j}$, then we say S can be shelled relative to T and that $t_{1}, t_{2}, \cdots, t_{m}$ is a shelling order for S. Hence, if a triangulation T has the free cell property, then every T-saturated 3-cell can be shelled relative to T. If v is a vertex of a triangulation T, then St (v, T) will denote the union of all the simplexes of T which contain v.

We are concerned with the question; which n-manifolds have triangulations with the free cell property? In [11] Sanderson showed that every triangulation of a 2 -manifold with boundary has the free cell property. R. H. Bing's "House with two rooms" in [2] and M. E. Rudin's triangulation of a tetrahedron in [10] imply that there are triangulations of 3-manifolds with boundary which do not have the free cell property. Although Sanderson showed in [11] that a triangulation of a 3 -cell has a subdivision with two free 3 -simplexes, it remains unknown whether a given triangulation has a subdivision such that every nontrivial saturated 3-cell has two free 3-simplexes. However, L. B. Treybig showed in [12] that every compact 3 -manifold M with or without boundary has a triangulation T with the free cell property. In [9] W. O.

Murray extended this result by showing that T may be made to agree with a predetermined triangulation of $\operatorname{Bd}(M)$.

For completeness we mention some of the recent results involving shelling. G. Danaraj and V. Klee have shown in [4] that several types of shelling agree in 2 -spheres and 3 -spheres, and in [5] have given an algorithm for finding a shelling order for a triangulated 2sphere. Bruggesser and Mani showed in [3] that every triangulation of every "convex" n-cell contains a shellable subdivision. They also showed that if a triangulated 3 -sphere is the boundary complex of a polytope in E^{4}, then it is shellable. Danaraj and Klee in [4] extended this result by showing that the above shelling may be required to satisfy certain conditions on the order of appearance of the simplexes. In [6] Danaraj and Klee are preparing a paper which includes a survey on the current knowledge of shellability. Also, applications of shelling are given by Bing [1], Moise [8], Sanderson [11], and Treybig [13].
2. The theorems. Both the connected sum operation and the operation of adding a handle, as we use them here, require a slight subdivision of the original triangulation before the operation is performed. The necessary subdividing takes place in only one 3 -simplex of the original triangulation and is described as follows. Let $t=a b c d$ denote a 3-simplex in a triangulation T of a 3-manifold. Pick a_{1} in $\operatorname{Int}(t)$ and subdivide t radially from a_{1}. Denote by $R_{1}(t)$ the subdivision of t containing these four 3-simplexes. Now, pick b_{1} in Int ($a_{1} b c d$) and subdivide $a_{1} b c d$ radially from b_{1}. Let $R_{2}(t)$ denote the subdivision of t defined by $\left(R_{1}(t)-a_{1} b c d\right) \cup R_{1}\left(a_{1} b c d\right)$. Let $c_{1} \in \operatorname{Int}\left(a_{1} b_{1} c d\right)$ and subdivide radially from c_{1}. Denote by $R_{3}(t)$ the subdivision of t defined by $\left(R_{2}(t)-a_{1} b_{1} c d\right) \cup R_{1}\left(a_{1} b_{1} c d\right)$. Finally, pick d_{1} in $\operatorname{Int}\left(a_{1} b_{1} c_{1} d\right)$ and subdivide $a_{1} b_{1} c_{1} d$ radially from d_{1}. Denote by $R(t)$ the subdivision of t defined by $\left(R_{3}(t)-a_{1} b_{1} c_{1} d\right) \cup R_{1}\left(a_{1} b_{1} c_{1} d\right)$. We note that $R(t)$ consists of thirteen 3 -simplexes and one of these, $a_{1} b_{1} c_{1} d_{1}$, lies in $\operatorname{Int}(t)$. Also, since no vertices are added to $\operatorname{Bd}(t),(T-t) \cup R(t)$ is a subdivision of T. The following theorem shows that this subdivision has the free cell property if T does.

Theorem 2.1. Suppose M is a 3-manifold with boundary and Tis a triangulation of M with the free cell property. Denote by S the triangulation of M defined by $(T-t) \cup R_{1}(t)$, where t is a 3-simplex of T. Then S has the free cell property.

Proof. Suppose S does not have the free cell property and B is a nontrivial, S-saturated 3 -cell which has a minimal number of 3 -simplexes, while containing at most one free 3 -simplex.

If there is a 2-simplex $x y z$ in B such that $x y z \cap \operatorname{Bd}(B)=\operatorname{Bd}(x y z)$, then $B=C_{1} \cup C_{2}$, where each C_{1} is a 3 -cell and $C_{1} \cap C_{2}=x y z$. Since C_{1}, C_{2} have fewer 3 -simplexes than B, there are 3 -simplexes g_{1} in C_{1} and g_{2} in C_{2} which are free in B, a contradiction. This implies there are no 3-simplexes in B with three faces in $\operatorname{Bd}(B)$ and each 3-simplex with two faces in $\operatorname{Bd}(B)$ is free in B.

Let $t=a b c d$ and suppose $R_{1}(t)$ is a radial subdivision of t from a_{1} in Int (t). If $a_{1} \notin B$, then B is a T-saturated 3 -cell and has two free 3-simplexes in T. These 3 -simplexes are also simplexes of S, a contradiction. Thus, $a_{1} \in B$ and we now consider the number of 3-simplexes from $\operatorname{St}\left(a_{1}, S\right)$ in B.

Case 1. Suppose there is precisely one 3-simplex of $\operatorname{St}\left(a_{1}, S\right)$ in B. This 3-simplex has three faces in $\operatorname{Bd}(B)$, a contradiction.

Case 2. Suppose there are precisely two 3-simplexes of $\operatorname{St}\left(a_{1}, S\right)$ in B. Each of these 3 -simplexes would have two faces in $\operatorname{Bd}(B)$ and would thus be free in B, a contradiction.

Case 3. Suppose there are precisely three 3-simplexes of $\operatorname{St}\left(a_{1}, S\right)$ in B, say $a_{1} a b c, a_{1} a b d$, and $a_{1} a c d$. If $a_{1} b c d$ intersects B in four faces then $M-a_{1} b c d \subset B$ and $a_{1} a b c, a_{1} a c d$ are free in B. Thus, $a_{1} b c d$ intersects B in only three faces. Since $a_{1} b c d$ intersects B in three faces of $a_{1} b c d, B \cup a_{1} b c d$ is an S-saturated 3-cell. Consider a T-saturated 3-cell B^{*} which is obtained from $B \cup a_{1} b c d$ by replacing $\operatorname{St}\left(a_{1}, S\right)$ with $t=a b c d$. Since T has the free cell property, there are two 3-simplexes g_{1} and g_{2} which are free in B^{*}. If $g_{1} \neq a b c d \neq g_{2}$, then a_{1} is not in g_{1} nor g_{2}, and g_{1}, g_{2} are free in B. If $g_{1}=a b c d$ and g_{1} has two faces in $\operatorname{Bd}\left(B^{*}\right)$, then one of $a_{1} a b c, a_{1} a c d$ or $a_{1} a b d$ has two faces in $\operatorname{Bd}(B)$ and is thus free in B. If g_{1} has only one face in $\operatorname{Bd}\left(B^{*}\right)$ then $g_{1} \cap \operatorname{Bd}\left(B^{*}\right)=b c d$. Since $a \in \operatorname{Int}\left(B^{*}\right), a \in \operatorname{Int}(B)$ and all of $a_{1} a b c, a_{1} a c d, a_{1} a b d$ are free in B. In any event, there are two 3 -simplexes, g_{2} and one other, which are free in B, a contradiction.

Case 4. Suppose $\operatorname{St}\left(a_{1}, S\right) \subset B$. Replace $\operatorname{St}\left(a_{1}, S\right)$ by $a b c d$ in B to obtain a T-saturated 3-cell B^{*}. As before there are two 3-simplexes g_{1}, g_{2} free in B^{*}. If $g_{1} \neq a b c d \neq g_{2}$, then g_{1}, g_{2} are free in B. If $g_{1}=a b c d$, then there is a 3-simplex of $\operatorname{St}\left(a_{1}, S\right)$ which is free in B. In either case, there are two 3-simplexes which are free in B. The proof is now complete.

Corollary 2.2. If T is a triangulation of M with the free cell property then $(T-t) \cup R_{2}(t),(T-t) \cup R_{3}(t)$ and $(T-t) \cup R(t)$ all have the free cell property.

Proof. By successive applications of Theorem 2.1 to $(T-t) \cup R_{1}(t)$ we see that $(T-t) \cup R_{2}(t),(T-t) \cup R_{3}(t)$ and $(T-t) \cup R(t)$ have the free cell property, which completes the proof.

In [7], Milnor defined the connected sum $M_{1} \# \boldsymbol{M}_{2}$ of two connected, orientable 3-manifolds M_{1} and M_{2} by removing the interior of a 3-cell in each of M_{1}, M_{2}, and then matching the resulting boundaries using an orientation reversing homeomorphism. We modify Milnor's definition slightly, by requiring that the 3-cells be 3 -simplexes in triangulations T_{1}, T_{2} of M_{1}, M_{2}, respectively, and that the boundaries are identified by means of an affine, orientation reversing homeomorphism. When $M_{1} \#$ M_{2} is defined in this manner, there results a natural triangulation T of $M_{1} \# M_{2}$. Although $M_{1} \# M_{2}$ is well defined up to homeomorphism, the resulting triangulation T depends on the 3-simplexes which are removed and the identification map on the boundaries of the 3 -simplexes. Thus, we denote by $T_{1} \# T_{2}$ the class of all such triangulations T of $M_{1} \#$ M_{2}. We are now prepared to show that $M_{1} \# M_{2}$ has a triangulation T in $S_{1} \# S_{2}$ with the free cell property, where S_{1} and S_{2} are certain triangulations of M_{1} and M_{2}, respectively, with the free cell property.

Theorem 2.3. Suppose M_{1} and M_{2} are connected 3-manifolds with triangulations T_{1} and T_{2}, respectively, which have the free cell property. Let $S_{1}=\left(T_{1}-t_{1}\right) \cup R\left(t_{1}\right)$ and $S_{2}=\left(T_{2}-t_{2}\right) \cup R\left(t_{2}\right)$ be subdivisions of, respectively, T_{1} and T_{2}, as defined previously. Denote by $a_{1} b_{1} c_{1} d_{1}$ and $a_{2} b_{2} c_{2} d_{2}$ the 3 -simplexes of $R\left(t_{1}\right), R\left(t_{2}\right)$ which lie in $\operatorname{Int}\left(t_{1}\right)$, Int $\left(t_{2}\right)$, respectively. Let T denote a triangulation of $M_{1} \# M_{2}$, where $T \in S_{1} \# S_{2}$, and the identification is made along $a_{1} b_{1} c_{1} d_{1}$ and $a_{2} b_{2} c_{2} d_{2}$. Then, T has the free cell property.

Proof. Suppose T does not have the free cell property, and B is a nontrivial, T-saturated 3-cell in $M_{1} \# M_{2}$ which has a minimal number of 3-simplexes, while having at most one free 3 -simplex. If B lies entirely in M_{1} or in M_{2}, then since S_{1} and S_{2} have the free cell property by Corollary 2.2, we are done. Thus, suppose B contains 3 -simplexes in both M_{1} and M_{2}. Let $B_{i}=\mathrm{Cl}\left[\operatorname{Int}\left(B \cap M_{i}\right)\right], i=1$ and 2 . We consider the following preliminary case.

Case 1. Suppose there is a 2 -simplex $x y z$ in B such that $x y z \cap$ $\mathrm{Bd}(B)=\mathrm{Bd}(x y z)$. Then B is the union of two 3-cells C_{1} and C_{2} such that $C_{1} \cap C_{2}=x y z$. Since each of these contains fewer 3-simplexes than B, there are 3-simplexes g_{1} in C_{1} and g_{2} in C_{2} such that g_{1} and g_{2} are free in B, a contradiction.

For the remainder of the proof we assume Case 1 does not hold. This implies that no 3-simplex in B has three faces in $\operatorname{Bd}(B)$, and
if a 3-simplex in B has two faces in $\operatorname{Bd}(B)$, then it is free in B. The proof is now finished by considering the possible ways in which B_{1} may intersect $a_{1} b_{1} c_{1} d_{1}, i=1$ and 2. Note that Case 1 implies that $B_{1} \cap a_{1} b_{1} c_{1} d_{t}$ contains at least two faces of $a_{l} b_{l} c_{i} d_{l}, i=1$ and 2.

Case 2. Suppose $B_{1} \cap a_{1} b_{1} c_{1} d_{1}=\operatorname{Bd}\left(a_{1} b_{i} c_{1} d_{t}\right), i=1$ or 2 . This implies that one of $M_{1}-a_{1} b_{1} c_{1} d_{1}$ or $M_{2}-a_{2} b_{2} c_{2} d_{2}$ lies in B, say $M_{2}-$ $a_{2} b_{2} c_{2} d_{2}$. Then, $B_{1} \cup a_{1} b_{1} c_{1} d_{1}$ is an S_{1}-saturated 3-cell and thus, has two free 3 -simplexes g_{1} and g_{2}. If $g_{1} \neq a_{1} b_{1} c_{1} d_{1} \neq g_{2}$, then g_{1} and g_{2} are free in B. If $g_{1}=a_{1} b_{1} c_{1} d_{1}$, then we may choose a 3 -simplex g_{1}^{*} in M_{2} which has a face in $\operatorname{Bd}(B) \cap a_{2} b_{2} c_{2} d_{2}=\operatorname{Bd}\left(B_{1} \cup a_{1} b_{1} c_{1} d_{1}\right) \cap g_{1}$. Then, $g{ }_{1}^{*}$ and g_{2} are free in B, a contradiction.

Case 3. Suppose Case 2 does not hold and, in $M_{1} \# M_{2}, B_{1} \cap$ $\operatorname{Bd}\left(a_{1} b_{1} c_{1} d_{1}\right)=B_{2} \cap \operatorname{Bd}\left(a_{2} b_{2} c_{2} d_{2}\right)=$ union of three faces of $a_{1} b_{1} c_{1} d_{1}$ (or $a_{2} b_{2} c_{2} d_{2}$). Then $B_{1}^{*}=B_{1} \cup a_{1} b_{1} c_{1} d_{1}$ and $B_{2}^{*}=B_{2} \cup a_{2} b_{2} c_{2} d_{2}$ are saturated 3-cells in M_{1} and M_{2}, respectively.

If $a_{1} b_{1} c_{1} d_{1}, a_{2} b_{2} c_{2} d_{2}$ are free in B_{1}^{*} and B_{2}^{*}, then there are 3simplexes g_{1} in B_{1}^{*} and g_{2} in B_{2}^{*} which are free in B_{1}^{*} and B_{2}^{*}, respectively, and $g_{1} \neq a_{1} b_{1} c_{1} d_{1}, \quad g_{2} \neq a_{2} b_{2} c_{2} d_{2}$. Since $a_{1} b_{1} c_{1} d_{1}$ and $a_{2} b_{2} c_{2} d_{2}$ are free in B_{1}^{*} and B_{2}^{*}, respectively, g_{1} and g_{2} are free in B.

If $a_{1} b_{1} c_{1} d_{1}$ is not free in B_{1}^{*}, then there are two 3 -simplexes $g_{1} \neq a_{1} b_{1} c_{1} d_{1} \neq g_{2}$ in B_{1}^{*} which are free in B_{1}^{*}. Since $a_{1} b_{1} c_{1} d_{1}$ is not free in B_{1}^{*}, and B is a 3-cell, $a_{2} b_{2} c_{2} d_{2}$ must be free in B_{2}^{*}. This implies that $\operatorname{Bd}(B) \cap B_{1}^{*}=\mathrm{Cl}\left[\operatorname{Bd}\left(B_{1}^{*}\right)-a_{1} b_{1} c_{1} d_{1}\right]$. Thus, g_{1} and g_{2} are free in B, a contradiction.

For the remainder of the proof we assume that Cases 2 and 3 do not hold. Each of B_{1} and B_{2} may now intersect $\operatorname{Bd}\left(a_{1} b_{1} c_{1} d_{1}\right)=\operatorname{Bd}\left(a_{2} b_{2} c_{2} d_{2}\right)$ in only one of three ways. We consider each of these cases for B_{1} and show there is a 3-simplex g_{1} in B_{1} which is free in B. Since B_{2} must also intersect $\operatorname{Bd}\left(a_{2} b_{2} c_{2} d_{2}\right)$ in one of these ways, we obtain g_{2} in B_{2} which is free in B, and the proof will be completed.

Case 4. Suppose B_{1} intersects $\operatorname{Bd}\left(a_{1} b_{1} c_{1} d_{1}\right)$ in three faces of $a_{1} b_{1} c_{1} d_{1}$, with precisely one of these faces in $\operatorname{Bd}(B)$. Also, suppose no 3-simplex in B_{1} is free in B. Let t_{1} be denoted by abcd.

First assume $B_{1} \cap \operatorname{Bd}\left(a_{1} b_{1} c_{1} d_{1}\right)=a_{1} b_{1} d_{1} \cup a_{1} c_{1} d_{1} \cup b_{1} c_{1} d_{1}$, and one of these faces, say $a_{1} b_{1} d_{1}$, is in $\operatorname{Bd}(B)$. Since $a_{1} b_{1} c_{1} d_{1}$ intersects B_{1} in exactly three faces, $B_{1} \cup a_{1} b_{1} c_{1} d_{1}$ is a 3 -cell which we denote by B_{1}^{*}. Note that the addition of $a_{1} b_{1} c_{1} d_{1}$ affects the freeness of only those 3 -simplexes in B_{1} containing d_{1}. Now consider $a_{1} b_{1} c_{1} d$ as a single 3-simplex in B_{1}^{*}. Since the triangulation $\left(T_{1}-t_{1}\right) \cup R_{3}\left(t_{1}\right)$ of M_{1} has the
free cell property, there is a 3-simplex g_{1} free in B_{1}^{*} such that $g_{1} \neq a_{1} b_{1} c_{1} d$. Since $d_{1} \notin g_{1}, g_{1}$ is free in B.

Now suppose $B_{1} \cap \operatorname{Bd}\left(a_{1} b_{1} c_{1} d_{1}\right)$ consists of $a_{1} b_{1} c_{1}$ and two other 2 -simplexes containing d_{1}. If one of the above 2 -simplexes containing d_{1} lies in $\operatorname{Bd}(B)$, then the 3 -simplex in B_{1} containing it has two faces in $\operatorname{Bd}(B)$, and is thus free in B. Hence we assume $a_{1} b_{1} c_{1}$ lies in $\operatorname{Bd}(B)$. Since $a_{1} b_{1} c_{1} c$ does not have two faces in $\operatorname{Bd}(B)$, both $b_{1} c_{1} d c$ and $a_{1} c_{1} c d$ are in B. If $b_{1} c_{1} d_{1} d$ is not in B, then $a_{1} c_{1} d_{1} d$ and $a_{1} b_{1} d_{1} d$ are in B. Since $\operatorname{Bd}\left(a_{1} b_{1} c_{1} d_{1} \cup b_{1} c_{1} d_{1} d\right)$ lies in $B, M_{1}-\left(a_{1} b_{1} c_{1} d_{1} \cup b_{1} c_{1} d_{1} d\right)$ is in B and $b_{1} c_{1} c d$ is free in B. Thus, $b_{1} c_{1} d_{1} d$ is in B and, likewise, $a_{1} c_{1} d_{1} d$ is in B. Since $a_{1} b_{1} c_{1} d_{1}$ intersects B_{1} in exactly three faces, $B_{1} \cup a_{1} b_{1} c_{1} d_{1}$ is a 3-cell in M_{1}. Note that in adding $a_{1} b_{1} c_{1} d_{1}$ to B_{1}, only the freeness of those 3 -simplexes in B_{1} containing c_{1} is affected. If $a_{1} b_{1} d_{1} d$ intersects $B_{1} \cup a_{1} b_{1} c_{1} d_{1}$ in four faces, then $M_{1}-\left(a_{1} b_{1} c_{1} d_{1} \cup a_{1} b_{1} d_{1} d\right)$ lies in B and $a_{1} c_{1} d_{1} d$ is free in B. Thus, $a_{1} b_{1} d_{1} d$ intersects the 3 -cell $B_{1} \cup a_{1} b_{1} c_{1} d_{1}$ in exactly three faces, and $B_{1}^{*}=B_{1} \cup a_{1} b_{1} c_{1} d_{1} \cup a_{1} b_{1} d_{1} d$ is a 3-cell. Now consider $a_{1} b_{1} c d$ as a single 3 -simplex in B_{1}^{*}. Since the triangulation ($\left.T_{1}-t_{1}\right) \cup R_{2}\left(t_{1}\right)$ of M_{1} has the free cell property, and B_{1}^{*} is a saturated 3-cell under this triangulation, there is a 3-simplex g_{1} free in $B{ }_{1}^{*}$ such that $g_{1} \neq a_{1} b_{1} c d$. Since the addition of $a_{1} b_{1} c_{1} d_{1}$ and $a_{1} b_{1} d_{1} d$ to B_{1} affected the freeness of only those 3 -simplexes containing c_{1} or d_{1} and $c_{1}, d_{1} \notin g_{1}$, g_{1} is free in B.

Case 5. Suppose B_{1} intersects $\operatorname{Bd}\left(a_{1} b_{1} c_{1} d_{1}\right)$ in exactly two faces of $a_{1} b_{1} c_{1} d_{1}$, say $a_{1} b_{1} c_{1} \cup b_{1} c_{1} d_{1}$. Since Case 1 does not hold, $b_{1} c_{1} \not \subset \operatorname{Bd}(B)$. Now $B_{1}^{*}=B_{1} \cup a_{1} b_{1} c_{1} d_{1}$ is a 3-cell in M_{1} and so has two free 3 -simplexes one of which, say g_{1}, is not $a_{1} b_{1} c_{1} d_{1}$. Since $b_{1} c_{1} \not \subset \mathrm{Bd}(B), g_{1}$ is free in B.

Case 6. Suppose B_{1} intersects $\operatorname{Bd}\left(a_{1} b_{1} c_{1} d_{1}\right)$ in two faces of $a_{1} b_{1} c_{1} d_{1}$ and a 1 -simplex $x y$ belonging to neither of these faces. We now consider the various possibilities for $x y$ on $a_{1} b_{1} c_{1} d_{1}$.

If $x y$ contains d_{1}, say $x=d_{1}$, then there is a 3 -simplex in B_{1} which contains $d_{1} y$. But, each 3 -simplex in M_{1} which contains $d_{1} y$ shares a face with $a_{1} b_{1} c_{1} d_{1}$, which contradicts the manner in which B_{1} intersects $a_{1} b_{1} c_{1} d_{1}$.

If $x y$ contains c_{1}, say $x=c_{1}$, then there are at most four 3 -simplexes in M_{1} which contain $c_{1} y$. One of these 3 -simplexes is $a_{1} b_{1} c_{1} d_{1}$, which is not in B_{1}. Since the faces adjacent to $c_{1} y$ on $a_{1} b_{1} c_{1} d_{1}$ are not in B_{1}, there are two other 3 -simplexes containing $c_{1} y$ which are not in B_{1}. This implies that only one 3-simplex g_{1} containing $c_{1} y$ is in B_{1}. Thus, g_{1} has two faces in $\operatorname{Bd}(B)$ and is free in B.

Now suppose $B_{1} \cap a_{1} b_{1} c_{1} d_{1}=a_{1} b_{1} \cup b_{1} c_{1} d_{1} \cup a_{1} c_{1} d_{1}$. There are ex-
actly five 3 -simplexes in M_{1} which contain $a_{1} b_{1}$ and, as above, three of these are not in B_{1}. The two remaining 3-simplexes are $a_{1} b_{1} b c$ and $a_{1} b_{1} b d$. If only one of $a_{1} b_{1} b c, a_{1} b_{1} b d$ is in B, it would have two faces in $\operatorname{Bd}(B)$ and would be free in B. Thus, suppose both $a_{1} b_{1} b c$ and $a_{1} b_{1} b d$ are in B. Since each of these has one face in $\operatorname{Bd}(B), b_{1} b c d, a_{1} a b c$ and $a_{1} a b d$ are in B, for otherwise $a_{1} b_{1} b c$ or $a_{1} b_{1} b d$ would have two faces in $\operatorname{Bd}(B)$. We wish to show that $a_{1} a c d$ is in B. Suppose a_{1} acd is not in B. If $a_{1} \dot{c}_{1} c d$ is in B then, since $a_{1} b_{1} c_{1} c$ is not in $B, a_{1} c_{1} c d$ has two faces, $a_{1} c d$ and $a_{1} c_{1} c$, in $\operatorname{Bd}(B)$, and is thus free in B. If $a_{1} c_{1} c d$ is not in B then, since $a_{1} b_{1} d_{1} d$ is not in $B, a_{1} c_{1} d_{1} d$ has two faces $a_{1} c_{1} d_{1}$ and $a_{1} d_{1} d$ in $\operatorname{Bd}(B)$, and is thus free in B. We have produced a free cell in either case, which implies $a_{1} a c d$ is in B.

We now have the 2 -sphere $\operatorname{Bd}(a b c d)$ in B, which implies that $M_{2}-\operatorname{Int}(a b c d)$ is in B. It follows that $b \in \operatorname{Int}(B)$ and $a_{1} b_{1} b c$ is free in B. This completes Case 6 and the proof of Theorem 2.3.

An important aspect of Theorem 2.3 is that the triangulation T of $M_{1} \# M_{2}$ agrees with $T_{1} \cup T_{2}$ outside of two 3-simplexes, one in each of T_{1} and T_{2}. That is, the triangulation T agrees with $T-t_{1}$ on M_{1} and $T_{2}-t_{2}$ on M_{2}. As will be seen in later examples, this fact allows us to construct triangulated 3-manifolds with the free cell property which are not compact.

In [7], Milnor defines adding a handle to a connected, orientable 3-manifold M by choosing two disjoint 3-cells in M, removing their interiors, and matching the resulting boundaries under an orientation reversing homeomorphism. As in the case of connected sums, this operation is well defined up to homeomorphism. For example, if a handle is added to the 3 -sphere S^{3}, the result is isomorphic to $S^{1} \times S^{2}$. For our purpose, we modify this definition slightly by requiring that the disjoint 3-cells be 3 -simplexes with disjoint stars in a triangulation T of M, and that the boundaries be identified under an affine, orientation reversing homeomorphism. If $H(M)$ denotes the resulting 3-manifold, then there is a natural triangulation S of $H(M)$. As before, the triangulation S depends on which 3-simplexes are removed, and the identification map on the boundaries of the 3 -simplexes. Thus, we denote by $H(T)$ the class of all such triangulations S of the 3-manifold $H(M)$.

Theorem 2.4. Suppose M is a connected 3-manifold and T is a triangulation of M with the free cell property. Suppose further that t_{1} and t_{2} are disjoint 3-simplexes in T, and $a_{1} b_{1} c_{1} d_{1}$ and $a_{2} b_{2} c_{2} d_{2}$ are the 3simplexes of $R\left(t_{1}\right)$ and $R\left(t_{2}\right)$ in $\operatorname{Int}\left(t_{1}\right)$ and $\operatorname{Int}\left(t_{2}\right)$, respectively. Let S denote the triangulation of M defined by $\left(T-t_{1}-t_{2}\right) \cup R\left(t_{1}\right) \cup R\left(t_{2}\right)$. Let K be a triangulation from $H(S)$, where the identification is defined as
above on $\operatorname{Bd}\left(a_{1} b_{1} c_{1} d_{1}\right)$ and $\operatorname{Bd}\left(a_{2} b_{2} c_{2} d_{2}\right)$. Then, K has the free cell property.

Proof. Note first that since t_{1} and t_{2} are disjoint, the stars of $a_{1} b_{1} c_{1} d_{1}$ and $a_{2} b_{2} c_{2} d_{2}$ are disjoint, and indeed, K is a triangulation. To see that K has the free cell property, consider 3-manifolds $M_{1}=M_{2}=M$ with triangulations $S_{1}=S_{2}=S$. Let K^{*} denote the triangulation of $M_{1} \# M_{2}$ which is defined by the same identification along $\operatorname{Bd}\left(a_{1} b_{1} c_{1} d_{1}\right)$ and $\operatorname{Bd}\left(a_{2} b_{2} c_{2} d_{2}\right)$ as in K. By Theorem 2.3, K^{*} has the free cell property. Since any K saturated 3-cell B has an isomorphic copy B^{*} in K^{*}, K has the free cell property.

3. Applications.

Example 3.1. We now give a general method of constructing a noncompact triangulated 3-manifold with the free cell property from a sequence of compact 3 -manifolds. Let $M_{1}, M_{2}, M_{3}, \cdots$ be compact 3-manifolds with triangulations $T_{1}, T_{2}, T_{3}, \cdots$, respectively, where each T_{1} has the free cell property. This is feasible since we could assume each T_{t} has a minimal number of 3 -simplexes, and by [12], each T_{1} would have the free cell property. Let $t_{1 b}$ be a 3 -simplex in T_{1} and let t_{a}, $t_{b b}$ be disjoint 3-simplexes in T_{i}, for $i=2,3,4, \cdots$. We may assume such $t_{i a}$ and $t_{t b}$ exist since, by Theorem 2.1 , we could subdivide each $T_{\text {t }}$ sufficiently to produce disjoint 3 -simplexes, while preserving the free cell property. Now, let $S_{1}=\left(T_{1}-t_{1 b}\right) \cup R\left(t_{1 b}\right)$ and let $S_{1}=$ $\left(T_{t}-t_{t a}-t_{t b}\right) \cup R\left(t_{t a}\right) \cup R\left(t_{b}\right)$, for $i=2,3,4, \cdots$. Denote by $r_{1 b}, r_{t a}, r_{t b}$ the 3 -simplexes of $R\left(t_{1 b}\right), R\left(t_{t a}\right), R\left(t_{b b}\right)$ which lie in the interiors of $t_{1 b}, t_{a a}$, $t_{i b}$, respectively, for $i=2,3,4, \cdots$. Remove the interiors of $r_{1 b}, r_{a}, r_{i b}$ ($i=2,3,4, \cdots$) and then match the resulting boundary of t_{b} with that of $t_{j+1, a}(j=1,2,3, \cdots)$ using, as in Theorem 2.3, an affine, orientation reversing homeomorphism. Note that, since $r_{t a}$ and $r_{b b}$ are disjoint, the identification map is well defined. The resulting 3 -manifold M may be thought of as $M_{1} \# M_{2} \# M_{3} \# \cdots$ with a resulting triangulation S in $S_{1} \# S_{2} \# S_{3} \# \cdots$. Since S contains an infinite number of 3-simplexes, M is not compact.

We now show that S has the free cell property. Let B be a saturated 3 -cell in M. Since B contains at most a finite number of 3-simplexes, there exists an integer N such that B lies in $M_{1} \# M_{2} \# M_{3} \#$ $\cdots \# M_{N}$ and is saturated under a triangulation K such that K agrees with S on $M_{1} \# M_{2} \# M_{3} \# \cdots \# M_{N}$. From the construction of S we see that K satisfies the hypothesis of Theorem 2.3, and thus K has the free cell property. Therefore, there are two 3 -simplexes g_{1} and g_{2} from
K which are free in B. But these 3-simplexes may be considered as 3-simplexes from S, and so S has the free cell property.

Example 3.2. Following the previous example, we now construct a triangulation of E^{3} which has the free cell property. First, consider a triangulation of the 3 -sphere S^{3} described as follows. We view S^{3} as consisting of two 3 -simplexes t_{1} and t_{2} such that $t_{1} \cap t_{2}=\operatorname{Bd}\left(t_{1}\right)=$ $\operatorname{Bd}\left(t_{2}\right)$. Let T denote the triangulation $t_{1} \cap R_{1}\left(t_{2}\right)$ of S^{3}. Since T consists of only five 3 -simplexes, it is easily verified that T has the free cell property. By repeated applications of Theorem 2.1 to T, the triangulation $K=t_{1} \cup R\left(t_{2}\right)$ has the free cell property. Let s_{1} denote the 3 -simplex of K which lies in $\operatorname{Int}\left(t_{2}\right)$.

Now let $M_{i}=S^{3}, T_{t}=K, t_{i a}=t_{1}$ and $t_{t b}=s_{1}$, for each $i=$ $1,2,3, \cdots$. It follows from Example 3.1 that the resulting triangulation S in $S_{1} \# S_{2} \# S_{3} \# \cdots$ of $E^{3}=M_{1} \# M_{2} \# M_{3} \# \cdots$ has the free cell property. As a note, the above triangulation S could also be realized as the "limit" of a sequence of radial subdivisions of K. It would then follow from Theorem 2.1 that S has the free cell property.

By similar methods, it can be shown that if S is a triangulation of a 3-manifold M with the free cell property, then there is a triangulation S^{\prime} of $M-\{x\}$ with the free cell property, where x is a point of M. Moreover, if X is a countable set of points in M with no limit points, then $M-X$ also has a triangulation with the free cell property.

References

1. R. H. Bing, An alternative proof that 3-manifolds can be triangulated, Ann. of Math., (1) 59 (1959), 37-65.
2. ——, Topology of 3-manifolds related to the Poincaré conjecture, Lectures on Modern Mathematics, (T. L. Saaty, ed.), New York, Wiley, 1964, 93-128.
3. H. Bruggesser and P. Mani, Shellable decompositions of cells and spheres, Math. Scand., 29 (1972), 197-205.
4. G. Danaraj and V. Klee, Shellings of spheres and polytopes, Duke Math. J., 41 (1974), 443-451.
5. ——, Shelling algorithms, Report RC 5301, IBM Watson Research Center, 1975.
6. -_, Which spheres are shellable?, (in preparation).
7. J. Milnor, A unique decomposition theorem for 3-manifolds, Amer. J. Math., 84 (1962), 1-7.
8. E. E. Moise, Affine structures in 3-manifolds. II. Positional properties of 2-spheres, Ann. of Math.,
(2) 55 (1952), 172-176.
9. W. O. Murray, Shelling in low dimensional manifolds, Masters thesis, Texas A \& M University, 1974.
10. M. E. Rudin, An unshellable triangulation of a tetrahedron, Bull. Amer. Math. Soc., 64 (1958), 90-91.
11. D. E. Sanderson, Isotopy in 3-manifolds. I. Isotopic deformations of 2-cells and 3-cells, Proc. Amer. Math. Soc., 8 (1957), 912-922.
12. L. B. Treybig, Shelling 3-cells in compact triangulated 3-manifolds, Proc. Amer. Math. Soc., 33 (1972), 171-174.
13. ——, Bounds in piecewise linear topology, Trans. Amer. Math. Soc., 201 (1975), 383-405.

Received October 29, 1976 and in revised form June 8, 1977. Some of the results herein are modifications of a portion of the first author's dissertation.

Texas A \& M University
College Station, TX 77843
Current address W. O. Murray:
Hendrix College
Conway, AR 72032

