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TRIANGULATIONS WITH THE FREE CELL PROPERTY

W. 0 . MURRAY AND L. B. TREYBIG

We show that if each of Mx and M2 is a connected,
orientable, 3-manifold having a triangulation with the free cell
property, then the connected sum Mx # M2 has a natural
triangulation with the free cell property. We also show that if
M is a connected, orientable, 3-manifold having a triangulation
with the free cell property, and a manifold N is formed from M
by adding a handle, then N has a natural triangulation with the
free cell property. These theorems are then applied to show
that E 3 and various other noncompact 3-manifolds have trian-
gulations with the free cell property.

In this paper all n-manifolds are metrizable and are assumed to be
orientable. If T is a triangulation of an n-manifold M with boundary,
then a subset S of M is said to be saturated (or T-saturated) provided S
is the union of simplexes of T. An n -simplex t is said to be free in a
saturated n-cell S pnfvided t n Bd(S) is an n - 1-cell or t = S. Thus, a
triangulation T of an n-manifold with boundary is said to have the free
cell property provided each nontrivial saturated n-cell contains two free
n-simplexes. Closely related to this idea is the concept of shelling. If
the n-simplexes of a T-saturated n-cell S can be ordered tut2,'—9tm

such that tt is free in the n-cell UlS;fy, then we say S can be shelled
relative to T and that tl9t2, —

 m
9tm is a shelling order for S. Hence, if a

triangulation T has the free cell property, then every T-saturated 3-cell
can be shelled relative to T. If v is a vertex of a triangulation T, then
St(u, T) will denote the union of all the simplexes of T which contain u.

We are concerned with the question; which n-manifolds have
triangulations with the free cell property? In [11] Sanderson showed
that every triangulation of a 2-manifold with boundary has the free cell
property. R. H. Bing's "House with two rooms" in [2] and M. E.
Rudin's triangulation of a tetrahedron in [10] imply that there are
triangulations of 3-manifolds with boundary which do not have the free
cell property. Although Sanderson showed in [11] that a triangulation
of a 3-cell has a subdivision with two free 3-simplexes, it remains
unknown whether a given triangulation has a subdivision such that every
nontrivial saturated 3-cell has two free 3-simplexes. However, L. B.
Treybig showed in [12] that every compact 3-manifold M with or without
boundary has a triangulation T with the free cell property. In [9] W. O.
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Murray extended this result by showing that T may be made to agree
with a predetermined triangulation of Bd(M).

For completeness we mention some of the recent results involving
shelling. G. Danaraj and V. Klee have shown in [4] that several types of
shelling agree in 2-spheres and 3-spheres, and in [5] have given an
algorithm for finding a shelling order for a triangulated 2-
sphere. Bruggesser and Mani showed in [3] that every triangulation of
every "convex" n-cell contains a shellable subdivision. They also
showed that if a triangulated 3-sphere is the boundary complex of a
polytope in E4, then it is shellable. Danaraj and Klee in [4] extended
this result by showing that the above shelling may be required to satisfy
certain conditions on the order of appearance of the simplexes. In [6]
Danaraj and Klee are preparing a paper which includes a survey on the
current knowledge of shellability. Also, applications of shelling are
given by Bing [1], Moise [8], Sanderson [11], and Treybig [13].

2. The theorems. Both the connected sum operation and the
operation of adding a handle, as we use them here, require a slight
subdivision of the original triangulation before the operation is
performed. The necessary subdividing takes place in only one 3-simplex
of the original triangulation and is described as follows. Let t = abed
denote a 3-simplex in a triangulation T of a 3-manifold. Pick ax in Int(f)
and subdivide t radially from ax. Denote by Rx(t) the subdivision of t
containing these four 3-simplexes. Now, pick bx in Int(axbcd) and
subdivide axbcd radially from bx. Let R2(t) denote the subdivision of t
defined by (JRx(f) — axbcd) U Rx(axbcd). Let cx E lnt(axbxcd) and sub-
divide radially from cx. Denote by i?3(0 the subdivision of t defined by
(JR2(0~ axbxcd) U Rx{axbxcd). Finally, pick dx in lnt(axbxcxd) and sub-
divide axbxcxd radially from dx. Denote by R{t) the subdivision of t
defined by (JR3(0 - axbxcxd) U Rx{axbxcxd). We note that R {t) consists
of thirteen 3-simplexes and one of these, axbxcxdu lies in Int(f). Also,
since no vertices are added to Bd(f), (T-1) U R(t) is a subdivision of
T. The following theorem shows that this subdivision has the free cell
property if T does.

THEOREM 2.1. Suppose M is a 3-manifold with boundary and T is a
triangulation of M with the free cell property. Denote by S the triangula-
tion of M defined by (T-t)U Rx(t% where t is a 3-simplex of T. Then S
has the free cell property.

Proof. Suppose S does not have the free cell property and B is a
nontrivial, S -saturated 3-cell which has a minimal number of 3-simplexes,
while containing at most one free 3-simplex.
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If there is a 2-simplex xyz in B such that xyz n Bd(J3) = Bd(jcyz),
then B = Cx U C2, where each Q is a 3-cell and Cx fl C2 = xyz. Since Cb

C2 have fewer 3-simplexes than B, there are 3-simplexes gx in Ci and g2 in
C2 which are free in B, a contradiction. This implies there are no
3-simplexes in B with three faces in Bd(B) and each 3-simplex with two
faces in Bd(2?) is free in B.

Let t = abed and suppose R\(t) is a radial subdivision of t from ax in
Int(f). If ax$£B, then B is a T-saturated 3-cell and has two free
3-simplexes in T. These 3-simplexes are also simplexes of S, a
contradiction. Thus, axE B and we now consider the number of
3-simplexes from St(ai, S) in B.

Case 1. Suppose there is precisely one 3-simplex of St(a1? S) in B.
This 3-simplex has three faces in Bd(JB), a contradiction.

Case 2. Suppose there are precisely two 3-simplexes of St(a1?S)
in B. Each of these 3-simplexes would have two faces in Bd(JB) and
would thus be free in B, a contradiction.

Case 3. Suppose there are precisely three 3-simplexes of St(a1? S)
in B, say axabc, axabd, and axacd. If axbed intersects B in four faces
then M-axbcdCB and axabc, axacd are free in B. Thus, axbcd
intersects B in only three faces. Since axbcd intersects B in three faces
of axbcd, B U axbcd is an S-saturated 3-cell. Consider a T-saturated
3-cell JB* which is obtained from B U axbcd by replacing St(ab S) with
t = abed. Since T has the free cell property, there are two 3-simplexes
gi and g2 which are free in B *. If gx ̂  abed^ g2, then ax is not in gx nor
g2, and gu g2 are free in B. If gx = abed and gx has two faces in Bd(B *),
then one of axabc, axacd or axabd has two faces in Bd(J5) and is thus free
in J3. If gx has only one face in Bd(J3 *) then gx n Bd(B *) = bed. Since
a E Int(2? *), a E Int(B) and all of axabc, axacd, axabd are free in B. In
any event, there are two 3-simplexes, g2 and one other, which are free in
B, a contradiction.

Case 4. Suppose St(ax,S)CB. Replace St(ai, S) by abed in B
to obtain a T-saturated 3-cell B *. As befor,e there are two 3-simplexes
gu g2 free in JB*. If gx^ abed^ g2, then gl9 g2 are free in B. If
gi = a&cd, then there is a 3-simplex of St(ab S) which is free in B. In
either case, there are two 3-simplexes which are free in B. The proof is
now complete.

COROLLARY 2.2. If T is a triangulation of M with the free cell
property then (T-t)U R2(t), (T-t)U R3(t) and (T-t)UR (t) all have
the free cell property.
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Proof. By successive applications of Theorem 2.1 to (T - t) U Rx(t)
we see that (T - t) U R2{t), (T-t)U R3(t) and (T-t)UR (t) have the
free cell property, which completes the proof.

In [7], Milnor defined the connected sum Mx # M2 of two connected,
orientable 3-manifolds Mi and M2 by removing the interior of a 3-cell in
each of Mu M2, and then matching the resulting boundaries using an
orientation reversing homeomorphism. We modify Milnor's definition
slightly, by requiring that the 3-cells be 3-simplexes in triangulations Tx,
T2 of Mb M2, respectively, and that the boundaries are identified by
means of an affine, orientation reversing homeomorphism. When M! #
M2 is defined in this manner, there results a natural triangulation T of
Mi # M2. Although Mi # M2 is well defined up to homeomorphism, the
resulting triangulation T depends on the 3-simplexes which are removed
and the identification map on the boundaries of the 3-simplexes. Thus,
we denote by Tx # T2 the class of all such triangulations T of M, #
M2. We are now prepared to show that M! # M2 has a triangulation T
in Sx # S2 with the free cell property, where Sx and S2 are certain
triangulations of Mi and M2, respectively, with the free cell property.

THEOREM 2.3. Suppose Mx and M2 are connected 3-manifolds with
triangulations Tx and T2, respectively, which have the free cell
property. Let Sx = (Tl-tx)UR(f,) and S2 = (T2-t2)UR(t2) be subdivi-
sions of, respectively, Tx and T2, as defined previously. Denote by
axbxCidx and a2b2c2d2 the 3-simplexes of R(tx), R(t2) which lie in Int(^),
Int(f2), respectively. Let T denote a triangulation of MX#M2, where
T E Sx# S2, and the identification is made along axbxcxdx and
a2b2c2d2. Then, T has the free cell property.

Proof. Suppose T does not have the free cell property, and B is a
nontrivial, T-saturated 3-cell in Mi # M2 which has a minimal number of
3-simplexes, while having at most one free 3-simplex. If B lies entirely
in Mi or in M2, then since Sx and S2 have the free cell property by
Corollary 2.2, we are done. Thus, suppose B contains 3-simplexes in
both M! and M2. Let B, = Cl[Int(B n M,)], i = 1 and 2. We consider
the following preliminary case.

Case 1. Suppose there is a 2-simplex xyz in B such that xyz fl
Bd(B) = Bd(jcyz). Then B is the union of two 3-cells Cx and C2 such
that Ci PI C2 = xyz. Since each of these contains fewer 3-simplexes than
B, there are 3-simplexes gx in Cx and g2 in C2 such that gx and g2 are free
in B, a contradiction.

For the remainder of the proof we assume Case 1 does not
hold. This implies that no 3-simplex in B has three faces in Bd(J3), and
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if a 3-simplex in B has two faces in Bd(B), then it is free in B. The
proof is now finished by considering the possible ways in which B, may
intersect a.b.cA, i = 1 and 2. Note that Case 1 implies that Bx D
contains at least two faces of a.ft.c.d,, i = 1 and 2.

Case 2. Suppose Bx n afocA = Bd{alblcldl), i = 1 or 2. This im-
plies that one of Mx- axbxcxdx or M 2 - a2fc2c2d2 lies in B, say M 2 -
a2b2C2d2. Then, Bi U axbxcxdx is an S rsaturated 3-cell and thus, has two
free 3-simplexes gx and g2. If gi ¥" axbxcxdx / g2, then g! and g2 are free
in B. If g! = axbxcxdu then we may choose a 3-simplex g? in M2 which
has a face in Bd(B)D a2b2c2d2 = Bd(£i U a i t i C i ^ O g , . Then, g? and
g2 are free in B, a contradiction.

3. Suppose Case 2 does not hold and, in Mx # M2, Bx D
di) = B2nBd(a2b2c2d2) = union of three faces of axbxcxdx (or

a2b2c2d2). Then 2?* = Bx U aibxCxdx and B2 = B2U a2b2c2d2 are satu-
rated 3-cells in Mi and M2, respectively.

If aibxCidu a2b2c2d2 are free in B* and Bf, then there are 3-
simplexes gj in B * and g2 in B2 which are free in B* and jBf,
respectively, and %x^ axbxcxdx, g2/a2b2c2d2. Since axbxcxdx and
a2b2c2d2 are free in Bf and £*> respectively, g, and g2 are free in B.

If axbxcxdx is not free in Bf, then there are two 3-simplexes
gi / axbxcxdx ^ g2 in B * which are free in B f. Since axbxcxdx is not free
in Bf, and B is a 3-cell, a2b2c2d2 must be free in Bf. This implies that
B d ( B ) n B f = Cl[Bd(Bt)-aifciC1(i1]. Thus, gx and g2 are free in B, a
contradiction.

For the remainder of the proof we assume that Cases 2 and 3 do not
hold. Each of Bx and B2 may now intersect Bd{axbxCidx) = Bd(a2fe2c2<i2)
in only one of three ways. We consider each of these cases for Bx and
show there is a 3-simplex gx in Bx which is free in B. Since B2 must also
intersect Bd(a2ft2c2d2) in one of these ways, we obtain g2 in B2 which is
free in B, and the proof will be completed.

Case 4. Suppose Bx intersects Bd(axbxcxdx) in three faces of
aibxcxdx, with precisely one of these faces in Bd(B). Also, suppose no
3-simplex in Bx is free in B. Let tx be denoted by abed.

First assume B1r\Bd(axblcxdx)= axbxdxU axcxdxU bxcxdx, and one
of these faces, say axbxdu is in Bd(B). Since axbxcxdx intersects Bx in
exactly three faces, Bx U axbxcxdx is a 3-cell which we denote by
B *. Note that the addition of axbxcxdx affects the freeness of only those
3-simplexes in Bx containing dx. Now consider axbxcxd as a single
3-simplex in B ?. Since the triangulation (Tx - tx) U R3(tx) of M, has the
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free cell property, there is a 3-simplex gx free in B* such that
gi 7̂  axbxcxd. Since dx & gu gx is free in B.

Now suppose BxnBd(axbxcxdx) consists of aibxcx and two other
2-simplexes containing dx. If one of the above 2-simplexes containing dx

lies in Bd(J3), then the 3-simplex in Bx containing it has two faces in
Bd(JB), and is thus free in B. Hence we assume axbxcx lies in
Bd(B). Since axbxcxc does not have two faces in Bd(B), both bxcxdc
and axcxcd are in B. If bxcxdxd is not in B, then axcxdxd and axbxdxd are
in B. Since Bd(axbxcxdx U bxcxdxd) lies in B, Mx — (axbxcxdx U bxcxdxd) is
in B and bxcxcd is free in B. Thus, bxcxdxd is in B and, likewise, axcxdxd
is in B. Since axbxcxdx intersects Bx in exactly three faces, Bx U axbxcxdx

is a 3-cell in M1# Note that in adding axbxcxdx to J3i, only the freeness of
those 3-simplexes in Bx containing cx is affected. If axbxdxd intersects
Bx U axbxcxdx in four faces, then M i - (axbxcxdx U axbxdxd) lies in B and
axcxdxd is free in J3. Thus, axbxdxd intersects the 3-cell Bx U a1b1c1dl in
exactly three faces, and B* = JBI U axbxcxdx U axbxdxd is a 3-cell. Now
consider axbxcd as a single 3-simplex in J5*. Since the triangulation
(Tx - fi) U i?2(^i) of Mi has the free cell property, and B * is a saturated
3-cell under this triangulation, there is a 3-simplex gx free in B * such that
g\¥" axbxcd. Since the addition of axbxcxdx and axbxdxd to 1?! affected
the freeness of only those 3-simplexes containing cx or dx and cu dx & gu

gx is free in B.

Case 5. Suppose Bx intersects Bd(aifeiCi<ii) in exactly two faces of
axbxcxdu say axbxcx U bxcxdx. Since Case 1 does not hold,
bxcxf£Bd(B). Now B* = BXU axbxcxdx is a 3-cell in Mx and so has two
free 3-simplexes one of which, say gu is not axbxcxdx. Since
bxcxf£Bd(B), gx is free in B.

Case 6. Suppose Bx intersects Bd{axbxcxdx) in two faces of
axbxcxdx and a 1-simplex xy belonging to neither of these faces. We now
consider the various possibilities for xy on axbxcxdx.

If xy contains du say x = du then there is a 3-simplex in Bx which
contains dxy. But, each 3-simplex in Mx which contains dxy shares a
face with axbxcxdu which contradicts the manner in which Bx intersects
axbxcxdx.

If xy contains cu say x = cu then there are at most four 3-simplexes
in Mi which contain cxy. One of these 3-simplexes is axbxcxdu which is
not in Bx. Since the faces adjacent to Ciy on axbxcxdx are not in Bu there
are two other 3-simplexes containing cxy which are not in Bx. This
implies that only one 3-simplex gx containing cxy is in Bx. Thus, gx has
two faces in Bd(jB) and is free in B.

Now suppose Bx n axbxcxdx = axbx U bxcxdx U axcxdx. There are ex-
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actly five 3-simplexes in Mx which contain axbx and, as above, three of
these are not in Bx. The two remaining 3-simplexes are axbxbc and
axbxbd. If only one of axbxbc, axbxbd is in B, it would have two faces in
Bd(B) and would be free in B. Thus, suppose both axbxbc and axbxbd
are in B. Since each of these has one face in Bd(£), bxbcd, axabc and
axabd are in JB, for otherwise axbxbc or axbxbd would have two faces in
Bd(B). We wish to show that axacd is in B. Suppose axacd is not in
B. If axcxcd is in B then, since axbxcxc is not in JB, axcxcd has two faces,
axcd and axcxc, in Bd(£), and is thus free in B. If axcxcd is not in B
then, since axbxdxd is not in B, axcxdxd has two faces axcxdx and axdxd in
Bd(B), and is thus free in JB. We have produced a free cell in either
case, which implies axacd is in B.

We now have the 2-sphere Bd(abed) in £, which implies that
M2 - Int(abed) is in JB. It follows that b G Int(B) and axbxbc is free in
B. This completes Case 6 and the proof of Theorem 2.3.

An important aspect of Theorem 2.3 is that the triangulation T of
Mx # M2 agrees with Ti U T2 outside of two 3-simplexes, one in each of
Tx and T2. That is, the triangulation T agrees with T - tx on Mx and
T2 - t2 on M2. As will be seen in later examples, this fact allows us to
construct triangulated 3-manifolds with the free cell property which are
not compact.

In [7], Milnor defines adding a handle to a connected, orientable
3-manifold M by choosing two disjoint 3-cells in M, removing their
interiors, and matching the resulting boundaries under an orientation
reversing homeomorphism. As in the case of connected sums, this
operation is well defined up to homeomorphism. For example, if a
handle is added to the 3-sphere S3, the result is isomorphic to S1 x S2. For
our purpose, we modify this definition slightly by requiring that the
disjoint 3-cells be 3-simplexes with disjoint stars in a triangulation T of
M, and that the boundaries be identified under an affine, orientation
reversing homeomorphism. If H(M) denotes the resulting 3-manifold,
then there is a natural triangulation S of H(M). As before, the
triangulation 5 depends on which 3-simplexes are removed, and the
identification map on the boundaries of the 3-simplexes. Thus, we
denote by H(T) the class of all such triangulations S of the 3-manifold
H(M).

THEOREM 2.4. Suppose M is a connected 3-manifold and T is a
triangulation ofM with the free cell property. Suppose further that tx and t2

are disjoint 3-simplexes in T, and axbxcxdx and a2b2c2d2 are the 3-
simplexes of R(tx) and R(t2) in lnt(tx) and Int(f2), respectively. Let S
denote the triangulation ofM defined by (T - tx - t2) U R (tx) U R (t2). Let
K be a triangulation from H(S), where the identification is defined as
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above on Bd(aibiddi) and Bd(a2b2C2d2). Then, K has the free cell
property.

Proof. Note first that since tx and t2 are disjoint, the stars of
and a2b2C2d2 are disjoint, and indeed, K is a triangulation. To see that
K has the free cell property, consider 3-manifolds Mx = M2 = M with
triangulations St= S2= S. Let K* denote the triangulation of Mx # M2

which is defined by the same identification along Bd(a161Cid1) and
Bd(a2b2c2d2) as in K. By Theorem 2.3, K* has the free cell
property. Since any K saturated 3-cell B has an isomorphic copy B * in
K*, K has the free cell property.

3. Applications.

EXAMPLE 3.1. We now give a general method of constructing a
noncompact triangulated 3-manifold with the free cell property from a
sequence of compact 3-manifolds. Let Mu M2, M3, • • • be compact
3-manifolds with triangulations Tu T2, T3, • • •, respectively, where each T,
has the free cell property. This is feasible since we could assume each Tx

has a minimal number of 3-simplexes, and by [12], each Tt would have
the free cell property. Let tlb be a 3-simplex in Tx and let tia, tlb be
disjoint 3-simplexes in Tn for i = 2,3,4, • • •. We may assume such tm

and tlb exist since, by Theorem 2.1, we could subdivide each Tr sufficiently
to produce disjoint 3-simplexes, while preserving the free cell
property. Now, let Sx = (Tt - tlb) U R (tlb) and let S, =
(Tt - tm - tlh) UR(tia)UR(tlb), for i = 2,3,4, • • •. Denote by rlb9 rla, rlb

the 3-simplexes of R (tlb), R (tia), R (tlb) which lie in the interiors of tlb, tla,
tlb, respectively, for i =2,3,4, •••. Remove the interiors of rlb, ria, rlb

(i = 2,3,4, • • •) and then match the resulting boundary of t]b with that of
t,+i,a 0; = 1J2, 3, • • •) using, as in Theorem 2.3, an affine, orientation
reversing homeomorphism. Note that, since rm and rlb are disjoint, the
identification map is well defined. The resulting 3-manifold M may be
thought of as M t # M 2 # M 3 # • • • with a resulting triangulation S in
Si # S2 # S3 # - - •. Since S contains an infinite number of 3-simplexes,
M is not compact.

We now show that S has the free cell property. Let B be a
saturated 3-cell in M. Since B contains at most a finite number of
3-simplexes, there exists an integer N such that B lies in M{# M2# M3#
- •# MN and is saturated under a triangulation K such that K agrees
with 5 on Mi# M2# M3# - — # MN. From the construction of S we
see that K satisfies the hypothesis of Theorem 2.3, and thus K has the
free cell property. Therefore, there are two 3-simplexes gi and g2 from
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K which are free in B. But these 3-simplexesi may be considered as
3-simplexes from S, and so S has the free cell property.

EXAMPLE 3.2. Following the previous example, we now construct a
triangulation of E3 which has the free cell property. First, consider a
triangulation of the 3-sphere S3 described as follows. We view S3 as
consisting of two 3-simplexes tx and t2 such that tx H t2 = Bd(ti) =
Bd(r2). Let T denote the triangulation UHR^) of S3. Since T
consists of only five 3-simplexes, it is easily verified that T has the free
cell property. By repeated applications of Theorem 2.1 to T, the
triangulation K = tx U R (t2) has the free cell property. Let s{ denote the
3-simplex of K which lies in Int(f2).

Now let M, = S3, Tt = K, tia = tx and tlh = su for each i =
1,2,3, • • •. It follows from Example 3.1 that the resulting triangulation 5
in Sl#S2#S3#'" of E3 = M{#M2#M3#'" has the free cell
property. As a note, the above triangulation S could also be realized as
the "limit" of a sequence of radial subdivisions of K. It would then
follow from Theorem 2.1 that S has the free cell property.

By similar methods, it can be shown that if S is a triangulation of a
3-manifold M with the free cell property, then there is a triangulation Sf

of M-{x} with the free cell property, where x is a point of
M. Moreover, if X is a countable set of points in M with no limit points,
then M-X also has a triangulation with the free cell property.
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