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A-LARGE SUBGROUPS OF Ck -GROUPS

RONALD C. LINTON

If L is a fully invariant subgroup of the p- primary group G,
and if G = B + L for all basic subgroups B of G, then L is
called a large subgroup of G; this definition is due to R. Pierce.
In light of K. Wallace's generalization of the concept of basic
subgroup to that of a A-basic subgroup, we extend Pierce's
definition by defining the fully invariant subgroup L to be a
A-large subgroup of G if G = B + L for all A-basic subgroups
B of G. Our main theorems are: (1) L is a A-large subgroup of
the CA-group G if and only if L = G(v) where v denotes an
increasing sequence of ordinals less than A satisfying the gap
condition. (2) If L is a A-large subgroup of the CA- group G, then
GIL is a totally projective group, and L is a Q-group where /JL
denotes the length of L/pxG. (3) If L is a A-large subgroup of the
CA-group G, then L is a totally projective group only if G is a
totally projective group.

1. Preliminaries. All our groups are additively written,
abelian, p-primary groups for some prime p. Most of the terminology
and notation we use can be found in [2].

DEFINITION 1. [10] Let A denote a limit ordinal and B a subgroup
of the p-primary group G. Then B is called a A -basic subgroup of G if
B is a totally projective group of length at most A, B is a pA-pure [8]
subgroup of G, and GIB is divisible. A reduced p-primary group G is a
Ck-group if G/paG is a totally projective group for all a less than A.

Wallace has shown in [10] that the p -primary group G contains a
prQper A -basic subgroup if and only if A is cofinal with w (the first infinite
ordinal) and G is a CA -group. Thus A will henceforth denote a limit
ordinal cofinal with <u. If G is a CA-group of length less than A, then G
is necessarily a totally projective group. Since properties of these groups
are well-known, we shall restrict our attention to CA-groups of length at
least A. By applying results in [8], we can prove the following.

PROPOSITION 1. A subgroup BofGisak- basic subgroup if and only
if (1) B is a totally projective group of length A,(2)G[p]Cp°G + B[p] for
all a less than A, and (3) there is no subgroup H of G properly containing B
such that H[p] = B[p].

All
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DEFINITION 2. If L is a fully invariant subgroup of the Ck -group G,
then L is called a A- large subgroup of G if G = B + L for all A-basic
subgroups B of G.

Note that the a>-large subgroups are just the large subgroups that
Pierce studies in [9]. It follows from Proposition 1 that paG is a A-large
subgroup of G whenever a is less than A. In addition, a straightforward
argument shows that pnL is a A-large subgroup of G whenever L itself
possesses this property and n is a positive integer; further on, we shall
show that paL is also a A-large subgroup if a is less than the length of
LIp'G.

DEFINITION 3. [2] Let v = (cr(0), or(l), • • -, <r(n), • • •) denote a se-
quence of ordinals and perhaps symbols «> such that for any k and t,
<r(k)< a(k + 1) if a(k) is an ordinal and a{t + 1) = o° if a(t) = «. We say
that v satisfies the gap condition (for the p -primary group K) if
a(n)+ 1< cr(n +1) for some n implies that the Ulm invariant of K
corresponding to cr(n) is nonzero. If v satisfies the gap condition for the
reduced p -primary group K and if each ordinal is less than the length of
K, then v is called a U-sequence for K.

DEFINITION 4. [3] If v = (cr(0), <J(1), • • •, o-(n), • • •) is a sequence of
ordinals and perhaps symbols a>? and if K is a p-primary group, then
K(v) denotes {x G K: hK(pnx)^a(n) for each n}. Note that a(n) = »
for all n larger than some fixed integer k if and only if pk+1(K(v)) = 0.

In [3] Kaplansky shows that each fully invariant subgroup of a
fully-transitive, p-primary group K has the form K(v) where v is a
[/-sequence for K. In [9] Pierce proves that a fully invariant subgroup is
a large subgroup of K if and only if it has the form K(v) where v is a
[/-sequence for K consisting of nonnegative integers. In the next two
sections, we shall show that A-large subgroups are similarly determined
by [/-sequences of ordinals less than A.

2. CA- groups off length A. Our immediate objective is to
show that CA-groups of length A are fully transitive.

DEFINITION 5. [7] Call a reduced, p -primary group G of length j8
(T'summable if G[p]= U{S(n): n < w} where S(w)C S(n + 1) and
S(n)npain)G = 0 for some increasing sequence of ordinals {a(n): n <
a)} having supremum p.

The following generalized Kulikov Criterion plays a crucial role in
the development of results in this section and in the study of the structure
of A-large subgroups which we begin in Section 4.
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PROPOSITION 2. [7] A p-primary group G of length A (cofinal with
a)) is a totally projective group if and only ifG is a cr-summable Ck-group.

PROPOSITION 3. If H is a subgroup of a Ck-group G and H H
paG = 0 for some a less than A, then H is contained in some A-basic
subgroup of G.

Proof. If a is the first ordinal satisfying H n paG = 0, then we let
{a(n): n < a)} denote an increasing sequence of ordinals greater than a
having supremum A. We construct an increasing sequence of subgroups
{S(n): n < o)} with the property that S(n) is maximal in G[p] with
respect to the property S(n) n pa{n)G = 0. If B is maximal in G[p] with
respect to the properties B D H and B[p] = U{S(n): n < <o}, then B is
cr-summable and satisfies the second and third conditions of Proposition
1. For each a less than A, B/paB is isomorphic to G/paG and thus B is
a CA-group. Proposition 2 implies that B is a totally projective group.

PROPOSITION 4. Let H denote a finite subgroup of the CA-group
G. If HDpaG = 0 for some a less than A, then G = A@K where
AD H and A is a direct summand of some A -basic subgroup of G.

Proof. According to the preceding proposition, H is contained in a
A -basic subgroup B of G. Since B is of length A and A is a limit ordinal,
we can write B = 0{B(/ ) : i E 1} where, for each i E /, B(i) is a totally
projective group of length less than A. There is a finite subset J of I
such that HC(&{B(j): j EJ}; let A denote this sum. If K =
(@{B(i): i Gl-J})^ppG, where j3 is the maximum of the lengths of
the groups JB(/) for / E J, then G = A © K

PROPOSITION 5. Every CA-group of length A is fully transitive.

Proof Suppose that x and y are elements in the CA-group G of
length A, where h%(pnx)^ h%{pny) for all n. We need only show the
existence of an endomorphism of G sending x to y. By Proposition 4,
G = A 0 X where (x, y) C A and A is a direct summand of a A-basic
subgroup of G\ thus A is a totally projective group. Since totally
projective groups are fully transitive and since fr*(a)= h%{a) for all
aEA, f(x)= y for some endomorphism / of A. There is an obvious
extension of / to an endomorphism of G.

The next proposition can be proved by applying Proposition 3 and
generalizing the proof of Lemma (1.2) in [9].

PROPOSITION 6. IfB is a A- basic subgroup of the CA- group G, where
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the length of G is not less than A, and if A and C are fully invariant
subgroups of G, then ( A + B ) n C = (AflC) + (Bfl C).

COROLLARY 1. Suppose that B is a A -basic subgroup of G, x E G,
and a is less than A. If o(x) denotes the exponential order of x, then
x = b + g for some g EpaG and b EB satisfying o{b)^ O(JC).

Proof If o(x) = m, set A = paG and C = G[pm] and then apply
the preceding proposition.

DEFINITION 6. Let v = (<r(0), o-(l), •• ,a(n),•••) denote a [/-
sequence for the p-primary group K. Then v is called a Up-sequence
for K if each <r{n) is an ordinal less than /3.

THEOREM 1. Suppose that G is a Ck-group of length A. Then L is a
X-large subgroup of G if and only ifL = G(v) where v is a Uk-sequence for
G.

Proof Suppose first that L is A-large in G. Since G is fully
transitive and L is fully invariant, then L = G(v) where v =
(cr(0), or(l), • • •, cr{n\ • • •) is a [/-sequence for G. Thus, if a(n) is an
ordinal for some n, then a(n) is less than A; however, all of the symbols
cr(n) are ordinals since A-large subgroups must be unbounded.

Conversely, suppose that L = G(v) where v is a t/A-sequence for
G. It suffices to show that G C B + G(u). If x E G and o(x) = m, then
by Corollary 1, we can write x = b + g where b E B, g Epa(m)G, and
o(fe)^ o(x). It follows that gEG(v).

Note that in the preceding proof we have shown that G(v) is A -large
whenever v is a Uk -sequence, even when the length of G exceeds
A. The following corollary is useful in the study of A -large subgroups of
Ck -groups having length greater than A which we begin in §3.

COROLLARY 2. If G is a Ck~group of length A, then L is a A -large
subgroup of G if and only ifL is an unbounded, fully invariant subgroup of
G.

3. CA-groups of length greater than A. Whenever L is a
A-large subgroup of a Ck -group G, L contains pAG; this follows from
Proposition 6 by setting A = L and C = pkG. Now, if pn(L/pxG) = 0, we
can show that pkG = pnL; however this gives us a decomposition
G = JB0pAG for any A-basic subgroup B of G since pnL is also a
A-large subgroup. Since Ck -groups are reduced, we must conclude that
LlpKG is an unbounded subgroup of G/pxG. It is important to our
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development to show that LlpKG is a A-large subgroup of G/pxG
whenever L is a A-large subgroup of G; according to Corollary 2,
we need only show that L/pxG is a fully invariant subgroup
of G/pxG. Most of this section is devoted to accomplishing that
goal.

Many of our subsequent results can best be formulated in topologi-
cal language. Therefore we introduce the following definition.

DEFINITION 7. [6] The A-topology is defined on the p-primary
group K by taking the family of subgroups {paK: a < A} as neighbor-
hoods of the identity. If H is a subset of K, then H'K will denote the
closure of H in K with respect to the A-topology on K; whenever the
containing group is obvious, we will simply write H'.

PROPOSITION 7. IfFis a fully invariant subgroup of G, and ifB is a
k-basic subgroup ofG, then F C (F n B)'. Moreover, if G has length A and
F is unbounded, then F = (FnB)'.

Proof. If a is less than A, then we set A = paG and C — F and
apply Proposition 6 to get F C (F n B) + paG, and thus F C (F n B)'. If
G has length A, then we write F = G(v) where v =
(cr(0), cr(l), • • -, a(n), - - -) is a C/A-sequence for G. Now if x G (F n B)'
where o(x)=m, say, then by applying Corollary 1, we can write
x = b + g where g G p ^ ^ , 6 G B(u). It follows that x G G(u).

In general, fully invariant subgroups are not closed in the A-
topology. For example, pk+1G is a fully invariant subgroup of G and has
pkG as its closure. On the other hand, the following proposition shows
that A-large subgroups of G are closed even when G has length
exceeding A.

PROPOSITION 8. IfB is a A -basic subgroup of G, and ifL is a A -large
subgroup of G, then L = (LnB)'.

Proof Since G = L + B and L C ( i n J B ) ' , by the modular law
(L H B)f = (L + B)D(L n B)' = L + B H(L H B)'. Thus it suffices to
prove that B n (L fl B)' C L n B. But by purity, B f l ( L n B ) ' =
(LflB)i . Thus the result follows from Proposition 7, once we see that
L n B is fully invariant subgroup of B. Now if z G L n B and / is an
endomorphism of B, then by applying the technique of Proposition 4, we
can obtain a subgroup A of B where (z2,f(z2))C A and G = A ® £
Thus there is an endomorphism of A mapping z2 to /(z2) which extends
to an endomorphism of G. Since L is a fully invariant subgroup of G,
f(z2) = b is in L. Thus x = fe + zx is in L, and (L D B)' is contained in L.
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COROLLARY 3. IfFis an unbounded, fully invariant subgroup ofB,
where B is a A - basic subgroup of G, then FG is a fully invariant subgroup of
G.

Proof We can write F = B(v) where v is a (7-sequence for
B. But v is also a [/-sequence for G. By Proposition 8, G(v) —

Note that the proof of Proposition 8 shows that F HB is a fully
invariant subgroup of B whenever F is a fully invariant subgroup of G
and B is a A-basic subgroup of G. This observation is important to our
study which now turns to the quotients LlpKG.

PROPOSITION 9. LisaX- large subgroup of G if and only ifL/pkG is
a A -large subgroup of G/pkG.

Proof Suppose first that L is a A -large subgroup of G. We have
seen that L/pkG is unbounded; since GlpkG is a CA-group of length A,
we need only show that L/pkG is a fully invariant subgroup. If B is a
A-basic subgroup of G, then (L/pAG) n ((J3+pAG)/pAG) is equal to
((L n J3) + pAG)/pAG. The latter quotient is an isomorphic copy of
L H B, which is unbounded by Proposition 8, while (B + pkG)/pkG is
isomorphic to B. Thus (L/pkG) n {{B + pkG)lpkG) is an unbounded,
fully invariant subgroup of (B+pkG)/pkG, a A-basic subgroup of
G/pkG. By Proposition 8, (L (1B)'= L and thus the closure of
((L HB) + pkG)lpkG in G/pkG is just L/pkG. Since (J3 +pkG)/pkG is a
A-basic subgroup of G/pkG, Corollary 3 guarantees that L/pkG is a fully
invariant subgroup of G/pkG.

On the other hand, if L/pkG is a A-large subgroup of G/pkG, then
we can easily show that L is a fully invariant subgroup of G. If B is a
A-basic subgroup of G, then G = B + L since G/pkG =
((B+pkG)/pkG)

THEOREM 2. L is a A-large subgroup G if and only if L = G(u),
where v is a Uk-sequence for G.

Proof. L is A-large in G if and only if L/pkG is A-large in G/pkG.
Thus L is A-large in G if and only if L/pkG = (G/pkG)(v) for some
Uk-sequence for G/pkG; however v is also a t/A-sequence for G, and
(G/pkG)(v)= G(v)/pkG. Hence L is A-large in G if and only if
L/pkG = G(v)/pkG.

4. The structure of A-large subgroups. It is shown in
[1] that some of the solutions to the open statement "A large subgroup L
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of G has property P if and only if G has property F " are these
properties: direct sum of cyclic groups, direct sum of countable groups,
and totally projective group. In this section we study the relation between
the structure of A-large subgroups and the structure of the containing
groups. Note that if G is a totally projective group of length ft + (o2 where
ft denotes the first uncountable ordinal, then pn+aiG is a direct sum of
cyclic groups and paG is a direct sum of countable groups. Since each of
these subgroups is a A-large subgroup of G, we see that inheritance of
structure in our general Ck -theory is not as widespread as that in the
classical theory.

PROPOSITION 10. IfL is a A -large subgroup of G and if a is less than
the length of L/pKG, then paL is also a A -large subgroup of G.

Proof. Let fi denote the length of LlpKG. We can assume that a is
not less than a) and write a = (o + a and fi = o) + j8, where a < ]8. If
L = G(v), where v = (CJ(0), cr(l), • • •, <r(n), • • •), and if 5 =
sup{o-(n): n < a)}, then ptaL=p8G\ hence paL = pa(po)L) = ps+aG
where S + a is less than A.

PROPOSITION 11. ([4], [5], [2]). Let F denote a fully invariant
subgroup of the totally projective group K. Then F and K/F are totally
projective and the length of K/F does not exceed the length of K.

COROLLARY 4. GIL is a totally projective group whenever L is a
A-large subgroup of G.

Proof If B is a A-basic subgroup of G, then G/L is isomorphic to
B/(LHB) where LC\B is a fully invariant subgroup of the totally
projective group B.

THEOREM 3. If L is a A-large subgroup of G, then L is a totally
projective group only if G is a totally projective group.

Proof. We first consider the case where G has length A. Our
proof is inductive on A; if A = a), then the result follows from Theorem
4.3 in [1]. Thus we assume the conclusion for all limit ordinals j8 less
than A where ]8 is a limit ordinal cofinal with <o. If L = G(v) where
v = (cr(0), o"(l), • • •, cr(n),-••) is a Uk-sequence for G, then we set
5 = supfo-(n): n < <o} and consider two cases.

Case 1. 5<A. In this case we note that (G/psG)(v) = L/p8G =
L/p^L is a totally projective group and is a 5-large subgroup of the
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Cs-group G/psG. By the induction hypothesis, G/p8G is a totally
projective group as is p8G = pmL. Hence G is a totally projective group.

Case 2. 5 = A. In this case, paL = psG = 0 and, according to the
generalized Kulikov Criterion, L is cr-summable; thus L[p] =
U{S(n): n<w} where S(n)CS(n + l) and S(n)npnL=0 for each
n < a). Since p ^ G I p ] = L[p], we can show that p ^ G is a cr-summable
Q -group of length jx, where jit is a limit ordinal cofinal with <o. For
each positive integer n, there is an ordinal /x (n) less than /x, the length of
p ^ G , such that <r(n) = a(0) + fi(n)< cr(0) + /x = A. From familiar prop-
erties of ordinals, it follows that /x = sup{ju,(n): n < a)} and hence JJL is
cofinal with co. Since S(n)np'i(ll)(p<r(0)G)[p] C S(n) f l p ^ G f p ] C
S(n)flpnL =0, we see that pa{0)G is cr-summable. Let /3 denote an
ordinal less than ft. Since G is a CA-group, GIp^ip^G) and
p^XGIp^ip^G)) are totally projective groups. Hence
pa(P)G/pp(pa(fi)G) is a totally projective group and pa(0)G is a CA-group.
Thus, by the generalized Kulikov Criterion, pa(0)G is a totally projective
group as is G/p'^G. So G possess this property.

In general, if G has length greater than A, then 0 / p 6 G = p < o L
where 8 = sup{o-(n): n < co}. Thus L/p^L = L/psG is a totally projec-
tive group and 5-large in G/psG. By the argument given above, G/psG
is a totally projective group as is psG = p"L.

PROPOSITION 12. If L is a A -/arge subgroup of G and B isak-basic
subgroup of G, tfien L n B is a /x -basic subgroup ofB, where JJL denotes the
length ofLlpkG.

Proof. Let L = G(v) where v is a [/A-sequence for G. Then
L fl 2? = J3(i;) is a fully invariant subgroup of the totally projective group
B. By Proposition 11, L O B is a totally projective group. If 5 =
sup{cr(n): n < <o} and /3 has the property that A = 5 + /3 and /x = co + 0,
then p/1(B(u)) = p^(/7'ujB(t;)) = p^(p5B) = p A B=0. Thus the length of
J3(u) = L n B does not exceed fx.

In order to show that L[p]C(L D B)[p] + ppL for all /3 less than /x,
we first note that ppL is A-large in G. Thus, by Proposition 6,
P*G[p] = pf*G[p] n (B + p*L) = ppB[p] + p*L[p]. Since B is a A-basic
subgroup of G, G[p] = ppG[p] + B[p] = B[p] + p*L[p]. Suppose now
that x EL[p]. Then L[p] = LH G[p] = LH (B[p] + ppL[p]) =
(L njB)[p] + p*L[p] (by the modular law).

All that remains is to show that there is no subgroup H of L
properly containing L C\ B such that H[p] = (L PI B)[p]. It suffices to
show that p i fl (L D B)Cp(L D B) or pL n J3 Cp(B(u)). So suppose
that pzEpLDB for some z G L. Then pz G p"(1)G n J3 C p*miB, and
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pz = pb for some b G pai0)B. It follows that bEB(v) and that pLDBQ
p(B(v)).

COROLLARY 5. IfLisa A - large subgroup of the Ck - group G and if /JL

denotes the length of L/pxG, then L is a Q-group.
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