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ON THE UNITARY INVARIANCE
OF THE NUMERICAL RADIUS

IVAN FILIPPENKO AND MARVIN MARCUS

A characterization is obtained of scalar multiples of unitary
matrices in terms of the unitary invariance of a generalized
numerical radius. The method of proof involves some rather
delicate combinatorial considerations.

1. Introduction. Let n and m be positive integers, 1 ̂  m ^
n, and denote by M^m(C) (Mn(C)) the vector space of all n-by-m
(n -square) complex matrices. For a matrix A E Mn (C), define the m th
decomposable numerical range of A to be the set

(1) W;(A) = {det(X*AX)|XGMn,m(C),det(X*X)=l}

in the complex plane (the reason for this choice of terminology will
become apparent in the next section). It is not difficult to verify that
W*m(A) is compact, so it makes sense to define the mth decomposable
numerical radius of A by

= max \z\.

When m = 1, W\{A) is simply the classical numerical range

(3) W(A) = {(Ax,Jc)|xeC-,| |x| |=l}

(here (•, •) denotes the standard inner product in the space C" of
complex n-tuples), and r\{A) is the classical numerical radius

\z .
zBW(A)

The numerical radius r(A) satisfies the interesting power inequality

(5) r(Ak)^r(A)\ k = 1,2,3,- ••

[2, §176]. In general, the number r^(A) is an important function of the
matrix A. For example, it is a bound for the moduli of all products of m
eigenvalues of A. This is an immediate consequence of Proposition
1. Another easy consequence (Corollary 2) of Proposition 1 is that if A
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is a scalar multiple of a unitary matrix, then r^(A) remains invariant
under pre- and postmultiplication of A by arbitrary unitary
matrices. The purpose of the present paper is to prove that in fact this
invariance property characterizes scalar multiples of unitary matrices
(Theorem 1).

2. Preliminary notions. The mth Grassmann space over
C", denoted by AmC", provides an appropriate setting for our investiga-
tion of the mth decomposable numerical radius. The standard inner
product in C" induces an inner product in AmC", given on decomposable
symmetrized tensors

m

xA = xx A • • • A xm, yA = y! A • - • A ym E AC"

by

The Grassrnannian manifold Gm(C") is the set of all unit length
decomposable symmetrized tensors in AmCn:

Let A E:Mn (C), and let Cm (A) be the m th compound of A, so that
for JCI," • •, xm E Cn we have

Cm ( A )Xi A • " • A Xm = AXi A • • " A Axm.

If the columns of a matrix X E M ^ C ) are xu- - -,jcm in order, then

det(X*AX) = (Cm(A)x1 A • • • A xmxx A • • • Ax m ) .

Furthermore, det(X*X) = 1 if and only if Xi A • • • A xm E Gm(Cn). Thus
from (1),

(6) WUA) = {(Cm (A)x\x«)\x«EGm (C-)}.

Given x A = JCI A • • • A xm E Gm(C"), it may in fact be assumed that
the vectors xl9 • - -, xm E C" are orthonormal [4, p. 1]. Choose, then, a
unitary matrix U E Mn (C) such that

Uek=xk, k = l,'-,m,
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where {eu- • -, en} is the standard orthonormal basis of Cn, and compute
that

= (Cm(U*AU)e1A

where (U*AU)[1,- • •, m 11,- • •, m] indicates the submatrix of U*AU
lying in rows and columns 1,- • •, m. In view of (6), this yields yet another
formulation of the rath decomposable numerical range: denoting by
Un(C) the multiplicative group of n-square unitary matrices, we have

(7) -,m]\U E Un(C)}.

From (6) we obtain

W«m(A)CW(Cm(A))(8)

and hence

(9)

Strict inequality may hold in (9); e.g., consider

A =

0 0 1 0 '
0 0 0 1
0 0 0 0
0 0 0 0

e M4(C)

with m = 2 [1].
We define P^(A), the mth decomposable eigenpolygon of A, to be

the convex polygon in the complex plane spanned by all products of m
eigenvalues of A. Thus

(10) 0) Qm,n}),

where Al5- • •, An are the eigenvalues of A,^t denotes convex hull, and
Qmn is the set of all strictly increasing sequences of m integers chosen
from {1, • • •, n). When m = 1, P\(A) is simply written P(A) and called
the eigenpolygon of A. It should be observed that the sets W^{A) and
Pm{A) are both invariant under transformation of A by a unitary
similarity, that is,



386 I. FILIPPENKO AND M. MARCUS

and

for any l / E l/n(C).

PROPOSITION 1. Let A E Mn(C) have eigenvalues Al5- • •, An, and let
m E { l , - - - , n } . 77ien

(11)

Moreover, if A is normal then

(12) W

Proof. Fix w E Qmn. By the Schur triangularization theorem,
there exists a matrix U E C/n(C) such that U*AU is an upper triangular
matrix with first m main diagonal elements Aw(1),- • •, A ^ j . Then

f [ A.(k) = det(C/*Af/)[l,- • -, m 11,- • •, m] .

In view of (7), (11) is established.
Next, assume A E. Mn(C) is normal. Let {iii,-••,!!„} be an or-

thonormal basis of Cn such that

Then

Aut = A,M£, i = 1,- • •, n.

A !!„(„) 6 Gm(Cn)|ft) E

is a n o r t h o n o r m a l b a s i s of A m C " [ 3 , p . 1 3 2 ] . G i v e n * A E G m ( C n ) , w e
h a v e

(13)

Since

= 2
EQ

( * A> M ^»)
k = l
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(13) expresses the element (Cm(A)x \ xA) of W^(A) as a convex
combination of all products of m eigenvalues of A. This establishes
(12).

COROLLARY 1. Let A6M, (C) be normal and m G
{l , - - - ,n} . 77ien /^(A) is the maximum modulus of a product of m
eigenvalues of A.

COROLLARY 2. Let A=cZEMn (C), where Z G Un (C) and c G C,
and/er m G{1,-•-,n}. Then

/or all U,VEUn(C).

3 . Some l e m m a s . In the following discussion let A G Mn(C)
be a fixed matrix, m G {1,- • •, n} a fixed positive integer, and assume the
rank of A is at least m. Denote the singular values of A by au- • •, an,
arranged so that

a, g • • • ̂  an & 0,

and set

D=diag(a,,---,an)GMn(C).

It is well known that there exist matrices Uu Vi G Un(C) such that

A = C/,DV,.

Suppose momentarily that

(14) r:(l/AV)

for all U,VG Un(C). Then clearly

(15)

for all U, VE Un(C):

r*m(UDV) =

(by (14))

(by (14))
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Fix f/0G Un(C) and choose x*0E Gm(Cn) so that

Set

Let {eu- - -,en} be the standard orthonormal basis of C"; then

{eAa, = eu{1) A • • • A ew(m)G Gm(Cn) | <o G QmJ

is the induced orthonormal basis of AmC". Write
(18) A== V ., Â ,y c r ^ d n

a;

and

( 1 9 ) yS =

LEMMA 1. Assume

am = anix) • • • a

/or euery cu E Om>n /or which x^ 0. Moreover,

\X» I = |TJ« I, co G Om>n.

Froo/. Notice that

since A has rank at least m. We compute

« i • • • otm = rA
m(D) (by Corollary 1)

= rh
m{UQD) (by hypothesis)

= |(G,(l70D)x8>xj)|(by (16))
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(20)

T ( 2 N . ! )
/ \ O)EQm,n /

am.

The last inequality in (20) is the Cauchy-Schwarz inequality. Since
equality holds throughout, ax • • • am > 0, and x S, y S ^ 0, we conclude that

for some c > 0. But then || x S || = 1 = || y SII implies c = 1. Thus

It follows from equality in the second inequality in (20) that

otm =

for-every co G Om,n for which ^«^0.

Suppose now that o* is a permutation in Sn, the symmetric group of
degree n, and U*E Un(C) is the permutation matrix corresponding to a:

In this situation, continuing with the above notation, we have

(21) ) A • • • A e™^) (since F(c7)6, = ea(l), i = 1, • • •, n)
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Here <ov E Qmn is the strictly increasing rearrangement of the sequence

and ew = ± 1 is the sign of the permutation

( ao) (1) •' • crco (m ) \

The mapping

is clearly a bijection of Qmn. Hence from (19) and (21),

V A_ V

y o - ZJ

i ^ ^ ^W/\ til*' t

OlEQm,n

so that

(22)

LEMMA 2.

al'-am=

/or euery a; E Qmn for which x**,^ 0- Moreover,

Proo/. The first assertion is immediate from Lemma 1, as is the
second:

(by (22))



THE UNITARY INVARIANCE OF THE NUMERICAL RADIUS 391

4. The main result.

THEOREM 1. Let A £Mn(C) and let m be a positive integer, 1 ^
m <n. Assume the rank of A is at least m. Then

(23) r i ( [ /AV)=r; (A)

for all U,VE Un(C) if and only if A is a scalar multiple of a unitary
matrix.

Proof. We have observed in Corollary 2 that the condition is
sufficient.

To see that the condition is necessary, assume (23) holds for all
U, V £ Un(C). Since there exist matrices Uu VXE. Un(C) such that

A = UXDVU

where

D=diag(a1,---,an)eMn(C)

and

are the singular values of A, it suffices to show that

<*i = an.

Consider the full cycle

<p = ( 1 2 - - - n ) < = S n .

C h o o s e XoE Gm(Cn) so tha t

and write

r A = V V P A V € = C M G : O

Since
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there exists o) E Qmn for which

(24) *yo.

Set

(25) y = w^-.,i )+iGO»,,

By (15) and Lemma 2 (with a = <p —o*1), | *T | = | #w | and hence by (24)

(26) * ^ 0 .

Also observe that

n -

= 1

implies orn^w+l(l)= 1, i.e.,

The argument now splits into two cases.

Case I. y(m)<n. Apply the permutation <pnT(m) to

to obtain

?-T(-)y = (1 + „ - y(m) , y(2)+ n - y(m),- • •, y(m - 1)+ n - y(m), n)

(27)
y,pfi-y(m)

Since y ( m ) < n, we have

m ^ y(m - 1)+ n — y(m).



THE UNITARY INVARIANCE OF THE NUMERICAL RADIUS 393

Therefore

(28) «2^3 ' m ' 0Lm = a l+n-y(m)a y(2)+n-y(m) " * " # y(m-l)+n-y(m)'

B y (15) a n d L e m m a 2 ( w i t h a = <pn~y ( m )), \ x y n_T(m)| = |Xy I an<* h e n c e b y
(26)

Then Lemma 2 together with (27) implies

(29) OLiOLiOLs ' ' ' 0Lm = Of l+n-y(m)Ct y(2)+n-y(m) ' ' ' & 7(m-l)+n--y(m)#n-

Since «i • • • am > 0 (A has rank at least m), it follows from (28) and (29)
that

Case II. y(m)= n. In this case

Now m < n by hypothesis, so there exists a least positive integer
k E {2,- • •, m} such that

fc<y(fc).

Apply the permutation <pl~k to

to obtain

<pl'ky = (n - k + 2, n - k + 3 ,• • •, n - 1, n, y ( k ) - k + 1 ,• • •,

Then

(30)
n - fc +3 , - • •, n — 1, n).

Since k < y(fc), we have
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m -

m ^ n - 1.

Therefore

(31 ) a2a3 • • • am ^ ay ( k )_k + 1a r ( f c + 1 )_ f c + 1 • • • an-x.

By (15) and Lemma 2 (with or = <p 1~k), | ̂ 7(pl_k | = | *y | and hence by (26)

Then Lemma 2 together with (30) implies

(32) ala2ot3 - - am = a y(kyk+1a yik+iyk+1 - - - an-xan.

Once again, since ax • • • am >0 it follows from (31) and (32) that

«! = an.

This completes the proof.

We remark that the restriction m^ n in Theorem 1 is
inevitable. Indeed, for any matrix A EMn (C),

rn(A)= |det(A)|

= |det(l/AV)|

= K(UAV)

for all U, V £ Un(C). The hypothesis that A have rank at least m is
equally essential, since any matrix A G Mn (C) of rank less than m
satisfies

for all [/, Vel/n(C).
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