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RATIONAL HOMOTOPY AND
UNIQUE FACTORIZATION

RICHARD B O D Y AND R O Y DOUGLAS

Decompositions of various kinds of mathematical objects as
products or coproducts are considered, and the uniqueness of
these decompositions is discussed. For instance, the following
topological result is proved. Let A be the set of formal,
simply-connected, rational homotopy types having finitely gener-
ated rational homotopy. Of course, A is a commutative
semigroup with respect to the usual product space
construction. Then A is a free commutative semigroup.

This is a statement about "unique factorization" in A, and it follows
from our main result (Theorem 4) concerning the unique factorization of
certain differential graded Q -algebras called formal minimal algebras.

These results are reminiscent of the Krull-Schmidt Theorem (cf. [7],
page 58), which is a unique factorization result for suitable classes of
"M-groups". However, the Krull-Schmidt Theorem discusses
(categorical) products, while our algebraic results are concerned with
tensor product decompositions where the tensor product is the (categori-
cal) coproduct.

In contrast to Corollary 8, negative results in finer topological
contexts are obtained from the interesting noncancellation example of
Hilton and Roitberg [5]: E is a compact, simply-connected manifold such
that S3 x Sp(2) and S 3 x £ are diffeomorphic; however, Sp(2) and E have
distinct homotopy types. Thus, differentiable manifolds, topological
spaces, and homotopy types each fail to satisfy the unique factorization
property (cf. definition just before Theorem 2).

Several of the proofs in this paper require a discussion of rational
homotopy theory, in the form of Sullivan's theory of "minimal
models". A demonstration of the scope and depth of this beautiful
theory may be found in [3] and [9], while [4] is a clear, self-contained
introduction to this view of rational homotopy theory.

2. Splittings of minimal algebras. For the purpose of this
paper, the term "minimal algebra" is restricted to the following (some-
what limited) definition (cf. [4]): A minimal algebra M consists of a
simply-connected, free, associative, graded-commutative Q -algebra M,
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together with a degree one derivation d\M-*M (the differential) such
that:

(i) d - d = 0.
(ii) d(M) C D(M) = the ideal of decomposable elements of M.
(iii) H*(M), the cohomology of M (with respect to d) is a finitely

generated graded Q -algebra.
If / : M-*N is a map of differential graded Q -algebras (a degree

preserving algebra homomorphism which commutes with differentials),
then /*: H*(M)->H*(N) will denote the map of graded Q-algebras
induced on cohomology. Let M+ be the ideal of elements of positive
degree, let D ( M ) = M + A M + , the ideal of decomposables, and define
TT(M) = M+/D(M), the graded vector space of indecomposables of M
(cf. Theorem 3.12 of [4]). Define /*: TT(M)-> TT(N) to be the graded
vector space homomorphism induced by / : M—» JV.

End(M) will denote the set of all differential graded Q -algebra
(D.G.A.) endomorphisms of M. End(M) is a semigroup under compo-
sition and Aut(M) will denote the group of invertible endomorphisms
(i.e. automorphisms) of M. Thus, Aut(M) acts on End(M) by conjuga-
tion, producing the action of a transformation group. Recall that the
(graded) tensor product, (g) is the coproduct in the category of minimal
algebras. This category has an obvious zero object [8] and the zero
endomorphisms are denoted by 0. A useful characterization of the
coproduct for minimal algebras follows.

PROPOSITION 1. If {ex ,• • •, en) CEnd(M) satisfying
(i) ek-ek= ek for all k = 1 ,• • - , n
(ii) ek-ei = 0 i f k / l
(iii) 2n

k=1e*k = identity,
then M = (g)fc=1Mfc, on TT{M) where the minimal algebra Mk = e f c (M) .

The converse of this proposition is an obvious remark; the proof of
Proposition 1 is sufficiently routine to require only an outline here.

Proof For each D.G.-subalgebra Mk = ek(M),

(1)

(because ek is an idempotent endomorphism). Of course, (1) is equiva-
lent to the requirement that ik: Mk

c-^ M, the inclusion, induces a
monomorphism i£: 7r(Mk)-» TT(M) on the graded vector spaces of
indecomposables. In fact, the monomorphisms give a direct sum (co-
product) decomposition

(2)
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d(Mk)CMk Hd(M)CMk HD(M) = D(Mk), and so Mk has a decom-
posable differential.

Choose {mkj\j &Rk}CMk such that {mk;|/Gi?k} is a basis for
7r(Mk), where mk/ = mk] + D(Mk). Let mk/ = i *(mk/) = mk/ + D(M). By
(2), {mk/\j ERk;k = 1,— -,n} is then a basis for TT(M). NOW observe
that M is the free algebra generated by the set {mk] \j ERk; k =
1 ,• • •, n}. Therefore, Mk is the free subalgebra generated by {mkJ \j E
Rk}, and so Mk is a minimal algebra. Moreover, it is now easy to see
that the obvious D.G.A. map 0J = 1 M k -»M is an isomorphism of
minimal algebras.

Regrettably, the following definitions are required in order to state
the main result of this section (Theorem 2).

A minimal algebra is irreducible, if it is neither isomorphic to a
tensor product of two nontrivial minimal algebras, nor isomorphic to the
trivial minimal algebra. Let M be a minimal algebra. A set of
endomorphisms, {ei,- • -,cn}CEnd(M) satisfying conditions (i), (ii) and
(iii) of Proposition 1, will be called a splitting of M. A splitting will be
called irreducible, if each Mk = Image(ek) is irreducible (fc = 1 ,• • •, n).

Observe that if a E Aut(M) and {ex ,- • •, en} CEnd(M) is a splitting
of M, then conjugation by a gives another splitting of
M,{a • ex - a'1,- • -,a • en • a"1}, equivalent to the first splitting, in the
sense that Image(a • ek • a

-1) is isomorphic to Image(ek), for each fc.
Two splittings of M,{ex,- • -,en} and {/i,'''?/m} will be said to

commute, if et • /; = /; • e, for all i = 1 ,• • •, n and j = 1 ,• • •, m. Two
splittings will be called compatible, if a conjugate of one commutes with
the other. A minimal algebra M is called flexible, if any two irreducible
splittings of M are compatible. A category of minimal algebras will be
termed flexible, if each of its objects is flexible.

A category of minimal algebras V will be called productive, whenever
the following two conditions are satisfied.

(i) M G obj(r) and M = N => N G obj(r).
(ii) M,NE obj(O <S> M(g)N G obj(r).
A category will be said to satisfy the unique factorization (respec-

tively, cofactorization) property, if the set of equivalence classes of objects
is a free, commutative semigroup, under the binary operation induced by
the categorical product (respectively, coproduct). In other words, a
productive category of minimal algebras t satisfies the unique ^factor-
ization property if each object of T is isormorphic to the tensor product of
a uniquely determined, finite set of nontrivial, irreducible objects of F
(unique, up to isomorphism).

THEOREM 2. Flexible, productive categories of minimal algebras
satisfy the unique co factorization property.
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Proof Assume that F is a flexible, productive category of minimal
algebras. The existence of tensor product factorizations into irreducible
factors is obvious, and so it suffices to prove "uniqueness".

Suppose Mfc, Nt G obj(r), (k = 1 ,• • •, m and / = 1 ,• • •, n) are ir-
reducible factors in M = 0iT=iMfc =(g)"=1N/. This situation produces
two nontrivial, irreducible splittings of M, say {ex ,• • •, em) and {/i ,•-•,/„},
with Mk = ek(M) and Nt = f(M). Because these splittings are compati-
ble, it is possible to assume, without loss of generality, that they
commute.

Define eky. Mk-^>Mk by ekJ = ek •/, • ik, where Mk = ek(M) and
ik: Mfc <-> M. Similarly, define fUk: Ni-*Ni by fUk = fr ek - jh where N, =
fi(M) and //:N/

C->M. Next, apply Proposition 1, because {ekjh\h =
1 ,• • •, n} and {fUp \p = 1 ,• • •, m} are splittings of the irreducible minimal
algebras Mk and Nh respectively. Therefore, for each fc = l,---,m,
there is an integer <f>(k),l^<f)(k)^n, such that ekMk) is an automor-
phism and eKi is trivial for l^ <£(fc). Similarly, for each / = 1 ,• • •, n, we
have an integer \\i(/), 1 ̂  ij/(/) ̂  m, such that /U(/) is an automorphism and
fkk is trivial for k/il/(l). Now, an easy argument shows that ij/ =
(j)~\m = n, and Mk = N^(k).

3. Formal rational homotopy types. A minimal algebra
M is called formal, if and only if there exists a graded algebra map
c^:M-»Jf*(M) extending the canonical algebra epimorphism
Z*(M)-»H*(M) from cocycles to cohomology (cf. §4 of [3]). If
H*(M) is viewed as a differential graded algebra, with differential d — 0,
then M is the minimal model of H*(M) (by the above definition),
because the D.G.A. map <£: M->H*(M) induces an isomorphism on
cohomology. By the uniqueness and existence result for minimal mod-
els ([4], Theorem 2.5, or [3], Theorem 1.1) we have the following:

LEMMA 3. Cohomology is a bijection from the set of (isomorphism
classes of) formal minimal algebras to the set of (isomorphism classes of)
all simply-connected, associative, graded-commutative, finitely generated
Q-algebras. Moreover, this bijection preserves tensor products [Kunneth
relation].

The main result in this section is:

THEOREM 4. The category of formal, finitely generated minimal
algebras satisfies the unique cofactorization property.

(Theorem 4 will follow from Theorem 2 and from Propositions 5 and
7 below.)
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PROPOSITION 5, The category of formal tninimal algebras is produc -
tive.

Proof If M and N are formal, then there exist D.G.A. maps
a\ M-»ff*(M) and r: N-*H*(N) which induce isomorphisms on
cohomology. Moreover, a<g)T: M<g}N-*H*(M)®H*(N) is a
D.G.A. map, which induces an epimorphism on cohomology. This
induced epimorphism must be an isomorphism, because the Kunneth
relation tells us that H*(M(g) N) = H*(M)<g)H*(N). Thus, M®N is
formal, when M and N are formal.

Conversely, suppose M®N is formal. Then there exists an
algebra map

which extends the canonical map

Let i: M-*M(g)N and p:M®N-*M be the usual inclusion and
projection, respectively. Define i//: M-»/f*(M) by the commutative
square:

H*(M)

I ' '
H*(M<g)N)

An easy diagram chase shows that the algebra map if/: M-*H*(M)
extends the canonical map Z*(M)-+ H*(M).

Finally, a second characterization of formality will be needed.

DEFINITION. If each degree component of a minimal algebra M
decomposes as a direct sum of sub vector spaces, Mk — 0neznM

fc, for
each gradation k ^ 0 (N.B. n may take any integer values), such that
d(nM

k)CnM
k+1 and nM

k A mMl Cn+mMk+l, then it will be said that the
elements of 0ki>onMk = nM are of weight n in this weight decomposition
©neZnM of M.

Observe that a weight decomposition on M makes H*(M) =
0nezH*(nM), the cohomology algebra, a bigraded algebra.

LEMMA 6. A minimal algebra M is formal, if and only if it possesses
a weight decomposition for which
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(3) H"(nM) = 0 if

Moreover, in this case,

(4) nMp=0, if p>n.

(cf Theorem 4.1 in [3].)

Proof The "if" part is proved by inductively showing that (3)
implies (4), and then observing that the algebra projection
M —> 0ni>onMn -» H*(M) extends the canonical projection

Conversely, if M is formal, then the homomorphism of groups

H*:Aut(M) -> Aut(H*(M))

/ -> H*(f) = f*
is an epimorphism (by Theorem 2.13 of [4]). Consider the grading
automorphism at E Aut(H*(M)), where at(x) = tn • x, x E Hn(M) and t
is any nonzero rational number. Since M is formal, there exists an
automorphism / E Aut(M) for which /* = ctt. Moreover, / may be
chosen to be semisimple (by the remarks immediately following Lemma
B on page 96 of [6], / may be chosen to be the semisimple Jordan part of
any lifting of at into Aut(M)). An induction argument (on the Post-
nikov sections of M) shows that if / is semisimple and f* = at, then / is
diagonalizable, with eigenvalues tn, for various integers n. litj£l, then
the eigenspaces of / in Mk give a direct sum decomposition

nEZ

where nM
k is the eigenspace, with eigenvalue tn. Moreover, this is a

weight decomposition of M satisfying condition (3).

4. Formal, finitely generated, minimal algebras are
flexible. If M is formal, with weight decomposition Mk = 0ni»fcnM*
(by (4)), and t E Q * = {all nonzero rational numbers}, then define
at EAut(M) by setting at(x)=tn-x, for xE.nM

k (for x of weight
n). Moreover, as • at = a5t = at • as.

In fact, if M is finitely generated, then End(M) is an affine variety,
Aut(M) is an algebraic group, as well as a subspace of End(M) with the
Zariski topology, and Aut(M) acts morphically on End(M), by conjuga-
tion (cf. §8.2 of [6]; also Proposition M.7 and §A in [9]); all defined over
the rational field Q.
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Suppose S is a subset of a topological space T, and suppose x E T i s
the only accumulation point of S which does not lie in S. In this case,
we will simply say that S converges to x in T.

In case M is formal, a: Q*-> Aut(M) {t -> at) has been constructed
as a one parameter multiplicative subgroup of Aut(M) converging to 0 in
End(M) in the Zariski topology (cf. [6], page 103). (Alternatively, see
Theorem K.2 of [9] and Theorems 1 and 2 of [1]).

At last we are ready to prove:

PROPOSITION 7. Formal, finitely generated, minimal algebras are
flexible.

Proof. Suppose M is formal and {ex,- • •, en} is a splitting of M, with
ek (M) = Mk. Each Mk is formal, by Proposition 5, and there exist one
parameter subgroups (for each fc = 1 ,• • •, n)

ak:Q* -> Aut(Mk)

t -* ak
t

converging to the basepoint endomorphism 0GEnd(Mk).
Let (f)k(t)E Aut(M) be defined by

for tEQ*. Then <j>k (t) • <fc(s) = <fr (*) • <h (0 for all s, t G Q * and fc, / =
1 ,• • •, n. Moreover, {<^k(f)| fc = 1,- • •, n; t G Q *} is contained in a maxi-
mal Q-split torus in Aut(M) (see §34.3 in [6]), and <t>k(Q*) converges to
ek in End(M). Thus, we know that each splitting {el9

m"9en}of3. formal
minimal algebra M lies in the Zariski closure of a maximal Q -split torus
T in Aut(M), {ex ,• • •, en) C f CEnd(M).

However, any two maximal Q -split tori in Aut(M) are conjugate
([2], Theorem 15.9). Thus, given any two splittings of M, {ex ,• • •, en] and
(fi?"' *»/mK there exists j8 G Aut(M) and a maximal Q -split torus T C
Aut(M), such .that {ex ,• • •, en, j8 • fx - jS"1,- • -, ]8 • /m • /T1} C f C
End(M). Now, {ex ,• • -, en} and {)8 • / t - jS'1,- • -, j3 • /m • jS"1} commute,
since the Zariski closure of a commutative set in End(M) is again
commutative.

5. An application to topology. Finally, the topological
interpretation claimed is recorded.
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COROLLARY 8. The unique factorization property is satisfied by the
rational homotopy category of formal, simply-connected topological spaces
with finitely generated rational homotopy.

Proof. This follows from Theorem 4 by Theorem 3.3 of [3].
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