
CHAPTER VI

37. Statement of the Result Proved in Chapter VI

The purpose of this chapter is to prove the following result.

THEOREM 37.1. There are no groups ® which satisfy conditions
(i)-(iv) of Theorem 27.1.

Once it is proved, Theorem 37.1 together with Theorem 27.1 will
serve to complete the proof of the main theorem of this paper. In
this chapter there is no reference to anything in Chapters II-V other
than the statement of Theorem 27.1. The following notation is used
throughout this chapter.

© is a fixed group which satisfies conditions (i)-(iv) of Theorem
27.1.

| U | u
v -1

U* = C(U) and \VL*\=u*.
U* = <C^>, U = Url% . Thus U =
Do = [£}, «p*] so that 0 = Q * x Q o .

P and Q are fixed elements of sp** and £}** respectively.
For any integer n > 0, ^n is the ring of integers mod n. If n

is a prime power then ^~n is the field of n elements.
U acts as a linear transformation on 5̂. Let m(t) be the minimal

polynomial of U on sp. Then m(t) is an irreducible polynomial of
degree q over J^ . Let co be a fixed root of m(t) in ^ » . Then a>
is a primitive uth root of unity in ^pq and Q),o)p, •••,<w»flr~1 are all
the characteristic roots of U on $p.

38. The Sets J ^ and &

LEMMA 38.1. There exists an element YefCfi such that $P* nor-
malizes

Proof. £}* normalizes U* and D* is contained in a cyclic sub-
group of JV(U*) of order pq. Hence some element of order p in C(Q*)
normalizes U*. Since C(Q*) = £$$* every subgroup of order p in
C(D*) is of the form Y-^*Y for some F e £ V Hence it is possible
to choose FeOo such that F"1^* Y normalizes U*. Since [ $ * , U ] E $ ,

ion
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SP* does not normalize U*, hence F G D J and ̂ p* normalizes YVL*Y'\

From now on let

(38.1) Z, = YU.Y-1, Z = YUY-1 = Zf1"

where Y satisfies Lemma 38.1. Notice that D* normalizes <Z2>, since
Q* normalizes 11 * and Y centralizes Q*. Define v, we%*u* by

(38.2) P-1Z1P = Z1\ Q-1Z1Q = Z?

LEMMA 38.2. / / Zo e <Zj>, ae3Tp, bearg then
unless a = 0 and 6 = 0.

Proo/. Zo-\P-aQ-%Q>Pa = 2J-1-1 . Hence PaQ6 acts trivially on
(ZoXZ;0"6-1). However if Zo # 1 then ^*d*<^o> is a Frobenius
group with Frobenius kernel <^0>. Thus <Z0> = (Zo1**1"1) as required.

LEMMA 38.3. Every element of $PU Aas a unique representation
in the form PmilU)Ua

f where ae%*u and m^t) is a polynomial of
degree at most q — 1 over %p.

Proof. There are upq ordered pairs (m^t),a) with a e ^ t t and
mx(t) of degree at most q — 1 over ^ , . Thus it is sufficient to show
the uniqueness of (m^t), a) in such a representation.

If pmiunfja = Pmnu)Ua>u T h e n reading mod ^yields that a = a'.
Since m(£) is irreducible we get that m^t) = m[{t) (mod m(t)). Thus
mx(t) = wl(t) as required.

LEMMA 38.4. Every element of $PU — U has a unique representa-
tion in the form U*PVU', where x9ze^u and ye%Tp, y =£ 0.

Proof. If X e $ U - U and

X= UXPVU'= U*iPv>U'i

then reading mod P̂ we get that x + z xx + zlm Hence

Since X&VL, y =£ 0. As (i6, p — 1) = 1 we have that x = xlf and so
y = yu % — zx. The representation is unique. There are u\p — 1)
ordered triples (x, y, z) with x,zz %*u and y e ̂ , , y =£ 0. Each triple
gives rise to an element of SPU - U and |*PU - U| = u\p - 1). The
result now follows.

LEMMA 38.5. Let x,z,ge2rp = ^ ; y,f,he %*u. Then
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p*UvP'UfP°Uh = 1

if and only if
( i ) V+f+h = 0
(ii) xcov + z + gcov+h = 0.

Proof. Let R = P*UvP'UfP°Uh. Then

Thus by Lemma 38.3 12 = 1 if and only if

y + h+f=O, x + zt~v + gt~y-f = 0 (mod m(t)) .

The first equation allows us to rewrite the second as

xP + z + gty+h = 0(mod m(t)) .

Thus the lemma is proved.

DEFINITION 38.1. The set s/ is defined to consist of all ordered
triples (alf a2, a3) such that

( i ) a{ £ 3TUf a{ ^ 0 for i = 1, 2, 3.
(ii) ax + aa + a3 = 0.
(iii) PUaiP-*Ua>PUa* = 1.

DEFINITION 38.2. ^ is the set of all elements ax e ^ t t such that
(alf a2, a3) e j y for suitable a2f a3.

LEMMA 38.6. \ \ \ \

Proof. If (alf a2, a3) e J^ then by Lemma 38.4 a2 and a3 are de-
termined by Ox.

LEMMA 38.7. (alf aa, a3) ejV if and only if
( i ) a< G jTtt> a4 9fc 0 /or i = 1, 2, 3
(ii) a1 + a1 + a1 = 0
(iii) a)01 + G>°1+O» - 2 = 0.

Proo/. By Lemma 38.5,

PUaiP-*Ua*PUa* = 1

if and only if ax + aa + a3 = 0 and <wai — 2 + coai+a* = 0. This implies
•the result.

LEMMA 38.8. / / (alf a2, a3) e j ^ , f̂eew (—a3, — alf —a3) e j ^ .
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Proof. If (alf a2, a3) e s/ then by Lemma 38.7 or"2 — 2 + a)*1 = 0.
As ax = —a2 — a3 this yields that

o)-«2 — 2 + ty-°2-a3 = 0 .

As — a, — a1 — a8 = 0 the result follows from Lemma 38.7.

LEMMA 38.9. For 0 ^ i ^ p — 1 let ^ be the conjugate class of
SPU which contains P* and let ^ be the sum of the elements in E£

in the group ring of 5$U over the integers. Let

If q>3, then c2 ̂  2.

Proof. Let fi0, fJtlf • • • be all the irreducible characters of
and let Xu X*> ''' ^ a ^ the other irreducible characters of spit. It
is a well known consequence of the orthogonality relations ([4] p. 316>
that

Since II is cyclic, ^(P) = ^(Pa) = /^(l) = 1 for all i. By 3.16 %;(1) =
for all i. Thus

(38.3) s ^ \

By the orthogonality relations

^ I Xy(-P€) I" ̂  I C(P*) | ^ f̂  for U i S P » l .

Therefore

(38.4) | S ZiCP)2^^) I ̂  (max | %i(Pa) I) £ I Z,(P) I2 ̂  P3"2.

By (38.3) and (38.4)

I P'Ci - u* | ^ p 3 f f / 2 .

Thus

(38.5) p«c2 ^ %a - p3?/a .

Since u = p ' "" 1 > p*~l (38.5) yields that
p - 1

ca ^ — -
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As q > 3 and q is a prime we have q ̂  5, and the lemma follows.

LEMMA 38.10.

Proof. Assume first that q = 3. Consider the set of polynomials
of the form fa(t) = t* + at2 + (a + 6)t - 1 with a e %TP. There are p
of these and none of them has 0 as a root. Thus if fa(t) were re-
ducible for every value of a there would exist a =£ b such that fa(t)
and fb(t) have a common root c e J^~v. Then

ac2 + (a + 6)c = 6c2 + (6 + 6)c .

Since c =£ 0 this yields that a(c + 1) = b(c + 1), hence c = — 1. How-
ever /.(—1) = — 8 =£ 0. Thus there exists some polynomial fa(t) which
is irreducible over ^*v. Let a be a root of fa(t) in J^~v%. Then

= l f ( 1 + a)p«+F+i = - / . ( - l ) = 8 .

Therefore a = a>°3 for some a3 e ̂ , a3 ̂  0, and 1 + a = 2a)~ai for some
«i e %**, a>i * 0. Furthermore -coa* + 2o)"ai = 1. Thus <yO1 + a>ai+a3 - 2 = 0.
Since co^ ̂  1, ax + a3 ̂  0. Hence by Lemmas 38.6 and 38.7 | J ^ | =
j . ^ I > 0.

Assume now that q > 3. Then Lemma 38.9 implies the existence
of a, be %*„, with a =£ 0 or 6 =£ 0 such that

jj-aPUaU-bPUb = P 2 .

Therefore

<38.6) puip-tu-apua-b = !

Let ax = 6, a2 = —a, a3 = a — 6. Then ax + a2 + a3 = 0. If 6 = 0
then (38.6) becomes P~lXJ-aPUa = 1; as ̂ 511 is a Frobenius group this
implies a = 0 contrary to the choice of a and 6. If a — 0 then (38.6)
implies that PWP^U^ = 0, hence 6 = 0. I f a - 6 = 0 then (38.6)
yields that PUaP-2U~aP = 1 or Ua commutes with P2. Thus a = 0,
hence also 6 = 0. Therefore alf a2, a3 are all non zero and by Definition
38.1 and Lemma 38.6 \J*\ = \&\>0.

The following result about finite fields is of importance for the
proof of Theorem 37.1.

LEMMA 38.11. For xejrpq define N(x) = x^^"'^'1 and for

x =̂ 2 let x" = — - — . If ae J^* - ^ , then for some i, Nia**) ̂  1.
£t — X

Proof. Assume that the result is false and N{ofx) = 1 for all i.
We will first prove by induction that
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(38.7) of* = - ( / - l)g + * for i = 1, 2, • • •
-%OL + (% + 1)

If i = 1 (38.7) follows from the definition of a. Assume now that
(38.7) holds for i = k - 1. Then

«•* =
o f-(fc-2)« + A;-l

I -(k -l)a + k
__ -(fc - l)a: + A;

-2(/k - l)a + 2k + (k - 2)a - (k - 1)
-(A; - 1)« + A;

This establishes (38.7).
Now (38.7) implies that for j ^ 1,

Therefore

Thus

(38.8) N(-aa + a + 1) = 1 for a e jrv .

Define /(*) by

(38.9) / ( * ) = (t - a ) ( t -a>)-..(t- a""1) .

Thus /(«) has coefficients in J*~r an<i (38.8) yields that

(38.10) o*/(-5L±i) = a'ivf-^-±A - a) = AT(o + 1 - oa) = 1
\ a / \ a /

for a e ̂ , a ^ 0 .

Let 6 = a + 1 for a ^ 0, then a = — i — . Hence (38.10) yields that
a 6 — 1

for 6 e ^ , 6

Therefore

(38.11) /(6) - (6 - 1)' = 0 for 6 e ̂ , 6 * 1 .
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f(t) — (t — l)q is a polynomial of degree at most q. By (38.11)
f(t) — (t — I)9 has at least (p — 1) roots. As (p — 1) > q we must
have that f(t) = (t - \)\ By (38.9) a is a root of f(t), hence a = 1
contrary to the choice of a. The proof is complete.

39* The Proof of Theorem 37.1

LEMMA 39.1. There exist functions f, g, and h such that
( i ) / and h map 2TP x 2TU x 3£p into %*„,
(ii) g maps 3?px 3?ux %rp into 3?p,
(iii) p*UyP'Uf{x-v'9)P9{x'y'a)Uh{x'v'M) = 1 .

Furthermore for x^O, y=£0, z=£0 (iii) determines f(x, y, z), g(x, y, z)
and h(x, y, z) uniquely and f(x, y, z), g(x, y, z), h(x, y, z) are all non-
zero.

Proof. By Lemma 38.4 the functions exist and are uniquely de-
fined by

P*UvP'UfP°Uh = 1

provided that PXUVPK does not lie in U. It is easily seen that if
x =£ 0, y =£ 0 and z ^ 0, PXUVP* does not lie in 12.

Suppose that f(x, y, z) = 0. Then PxUyPt+0 = U-heVL. Then
y = -h and UvPg+9U-y = P~x e 5p*. Therefore either y = 0 or x = 0.

Suppose that g(x, y, z) = 0. Then PXUVP' = U~f-k. Thus y =
- / - A and UvPgU~v = P~x. Hence s = 0 or y = 0.

Suppose that h(x, y, z) = 0. Then UvP'UfP0+x = 1. Hence
2/ + / = 0, then UvP'U-y = P"'—. Thus 2/ = 0 or 2 = 0. This com-
pletes the proof of the lemma.

Throughout the rest of this section / , g, h will denote the func-
tions defined in Lemma 39.1. For x e ^P9 Fas in Lemma 38.1, define

Yx= Y-XP-XYPX .

LEMMA 39.2.

( i ) Y9 = Y-'P-X YPX = P~x YPX y - 1

(ii) YP'Y-'= YziP'
(iii) YP'Y-1 = P'Y0 ,

for x,z,ge %p.

Proof. Since Pe 5̂* g JV(JDo) and Do is abelian, ( i ) is immediate,
(iii) is a direct consequence of ( i ) . By definition Y-B = Y^
Thus Yzl = P'Y~1P-Y= YP'Y-'P-' which implies (ii).

LEMMA 39.3. For aejT,, p-*UPx = Y~lUmmYm.
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Proof. By (38.2) P*ZP~* = Z°s. By (38.1) Z = YUY~\ Hence

Y-1PmYUY-1P—Y= Uv~x .

Conjugating both sides by P*f we get that

If both sides are raised to the i^th power, the lemma follows.

LEMMA 39.4.

Proof. Substitute (38.1) into (iii) of Lemma 39.1 to get

P* Y'ZV YP" Y-'Z' YPg Y^Zh Y=l.

Conjugate by Y"XPM to get

Now use the results of Lemma 39.2 to derive that

YsZ
vYilP'Z*P°YgZ

hP* = 1

which implies the lemma.

LEMMA 39.5. / / (alf a2, a3) e s/\ then

Proof. In the definition of j y conjugate (iii) by P2. Then

p-Hjaip-2U«*PUa*P2 = 1 ,

or

Hence Lemma 39.3 yields that

(Y^U^Y^Yf'

Since O is abelian, this implies that

Conjugating by T"1 implies the result by (38.1) and the fact that O
is abelian.

LEMMA 39.6. For (alf a2, a3) e s/ define
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91 = 9(2, a,v9 - 3 )
92 = 9(1, -a3v\ - 3 )
9s = 0(1, a%v\ - 2 )
kx = h(2, axv, - 3 ) - h(l, -azv\ -
k7 = - / ( 2 , alV, - 3 ) - h(l, a,v\
kz = - / ( I , a2v\ -2)v-*+f(l, -a,v\ -3)

k = - f l f s - 1 .

Proof. Use Lemmas 39.4 and 39.5 to obtain

,-3) y - i p-gca.a^.-s) ̂ -/(a.onj.-s) pa

a.-S) y - i p_&(1>_o3

-1 »(1 -o3t»2,-3)*

Multiply on the left by Y^^^Z^^'^P2 and on the right by

to get

where

C =

or equivalently

A = p-*iZk*P2, 5 = PkZk*P°*, C =

The lemma follows.

LEMMA 39.7. Let (alt aa, a3) G j ^ . C/se the notation of Lemma
S9.6. / / &! =£ 0, ifeen there exist elements clf cB e %*p such that

( i ) fcs*0
(ii) k2

Proo/. Conjugate (39.1) by Q. Since SP*Q = C(Q), this yields
that
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Y^Z^PY-1 = p-'LZwk*P2Y-1PkZv>k*P°>.

Taking inverses we get

Y^P-'Z-^Y-1 = p-oiZ-^P-xY^P-'Z-

Multiplying this by (39.1) on the left yields

2 i 7 = p i Z % p Y P Z * P Y p-*Z~wk*P01 .

Conjugating by P~01 yields

P9lY Z{1~w)klY~1P~Oi = zk2P2Y~1PkZa~~w)k*P~kY p-*z~xok*.

Use Lemma 39.2 (iii) and (38.1) to get

YP91 Y'1 YUa~w)kl Y~l YP~Qi Y~x

Conjugate this by Y to obtain

~1P~kY p-*

Multiply on the left by U~k* and on the right by Uwk* to obtain

U-kipOijja-w)k1p-Olii'wk2 = y^JJHa-w)^-!
(39.2)

Wx= Y-lP*Y-lP*Y.

Suppose that Uk*{1-W) = 1. Then (39.2) implies that

-gi __ fj{\-w)k2 ^

By Hypothesis kx ̂  0, hence by Lemma 38.2, U{1-W)kl =£ 1. By Lemma
39.1 & =£ 0. Thus the above equality cannot hold in the Frobeniua
group $PU. Hence Uk^~w) 4=- 1. This proves statement ( i ) of the
lemma.

Let Uo= WlU
k^'w)Wr\ By (39.2) Uo is a conjugate of Uk*a-W)

which lies in spit. All conjugates of Uk^l~w) which lie in 11 are of
the form

with c3 e 3TP, c' e 3?g. Hence

(39.3) u0 = WJJW-** wr1 = wa-
1^rt3(1-|O)ijC3ll'c' w2

for some W,e^. Thus W2W1eN(U). Since QeiV(lX), we get that
Q-'W.W.Q e N(U). By (39.2) W& = QWlf thus Q~YW2WXQ = Q"1 W2QW^
Hence

&-1 WflQ = W2 W^Q-1 Wr1 W^Q) e N(U) .



39. THE PROOF OF THEOREM 37.1 1021

However W2Q-1W2~
1Q e ^. Since 5pnJV(U) = l, this yields that

Q e C( W2). Hence W2 e $ n C(Q) = $*. Thus

(39.4) W2 = Pc*

for some c2 e 2TP. Now (39.2) and (39.4) show that

Since P e i V « Z » , we have Y'lPY e N(0), thus £VP* n N(U) =
<y-1PF>. Therefore

(39.5) tr 2 w;= r-ip«or

for some coe 3T9. Consequently

(W2W1)-
1Uk*{1-w)vC3v)GtW2Wi = i/*3(i-«

If this is compared with (39.3) we see that

(39.6) c0 + c3 = 0, c' = 0 .

Using (39.4) and (39.6) in (39.5) leads to

(39.7) Wx = P~e* Y-lP"* Y.

Comparing (39.2) and (39.7), we get

p-c2Y-ip-ciY = Y~1P*Y-1PkY.

Conjugating by Y~x gives

(39.8) yp-Ciy-ip-c3 = piy-ip* .

If we substitute (39.7) into (39.2) we get

Multiply on the left by XJ-^P'* and on the right by
to get

Since the right hand side is the left hand side conjugated by Q, we
see that Q centralizes the left hand side. Hence

(39.9) u-k*vC3Pc*U-k*P°iUkl = PCl

for some cx e %v. Reading (39.9) mod ty yields that

kx = k2 + kj)c*

which proves (ii) of the lemma. Substituting ( i i ) of Lemma 39.2
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into" (39.8) we get that

(39.10) P*Y£Pk = Y~

Substituting (39.10) into (39.1) leads to

Y ZklPY~x = p-^Zk*Yr

Multiply on the left by P01 and on the right by P~g*. Then using
Lemma 39.2 (ii) and (iii) this becomes

Use Z = YUY-1 to get

YP9lUklY"1PYP"°*Y~1 = YUk*Y~lYr1P~~er~c*YUk*Y~1 .

Conjugate by Y and multiply on the left by U~k2 to get

(39.11) tf-*ip*tf*iy-ipyp-t« = Y^Y^P-r-

Conjugate by Q and take inverses, then

Multiply by (39.11) on the right to get

Conjugate by Wr1 to get

~XP~X YU~klWP~01 Uk*{w~x)Pgi Ukl Y-

Using (39.2) and (39.3), this yields

'^P-1 Y{ U-klWP~91 Uk*{w-l)P01 Ukl} Y-

Now by the second equation in (39.12)

Thus the first equation in (39.12) implies that

By (39.3) and (39.4), C(U0) = p-°*VL*Pc\ Hence

(39.13) U'k^P9lUh^Y'lPYP'9*Wcl

for some U2eVL*. We wish to show that UaGU. To do this con-
jugate (39.13) by Q to get
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(39.14) u-k*w*Poi Ukiw2 Y-'PYP-o* W,-1 = P~c* U?PC*

by (39.7). Multiply (39.13) by the inverse of (39.14) on the right to
get

(39.15) u-**>p9iUkvU-klW*P-9lUk*°* = p-c*Ul-wPC2.

By Lemma 38.2 U2 and U^ have the same order. Since the left
hand side of (39.15) is in SPU, this implies that the order of U2 divides
u, thus U2eVi.

Multiply (39.13) on the left by U^P** and on the right by
WXP'*Y-1P-1Y to get

(39.16) U^P** U-k^P°l U^w = Pc* WxP
g* Y^P-1 Y.

By (39.7) the right hand side is in C(Q), while the left hand side is
in %n. Since C(Q) n W = P̂*, this yields that

(39.17) u-ipc2jj-k*wPOlUkiv> = Pc"

for some c" e 3Tpm Conjugate by Q~x to get

U2-
w~lPC2U-k*P°iUki = Pc" .

Comparing this with (39.9) yields that

so that

J7,-'1 = Uh*91, d = c"

Using (39.16) and (39.17) this yields

pCl =

or

Hence by (39.7)

This immediately implies (iii) of the lemma and thus completes the
proof.

LEMMA 39.8. Let (alf a2, a3) e s/> and let kx have the same meaning
as in Lemma 39.6. Then kt = 0.

Proof. Suppose that k± =£ 0, so that Lemma 39.7 may be applied.
Let
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h, = h(2, a,vf - 3 )

h2 = A(l, a2v\ - 2 )

h5 = ha, -a,v\ -3) .

By Lemma 38.5 (i)

, a,vf - 3 ) = -axv - h,

/ ( I , a2v\ - 2 ) = - a ^ - h2

/ ( I , -azv\ - 3 ) = a3i>
2 - fc3 .

Hence in the notation of Lemma 39.6

k1 = h1- Jk.tr1

k2 = axv + hx — hiV*

Since ax + a2 + a3 = 0, this yields that

k5 = —dtV* + hiV"1 — h3

kx — k%= —axv + h2v~2

Thus

or

k2

By Lemma 39.7 (ii) this implies that kz{y
c* - v~x) = 0. If c3 ̂  - 1 ,

then by Lemma 38.2, (vc* — v~x) has an inverse in ^ . Thus k3 = 0
contrary to Lemma 39.7 (i). Therefore c3 = —1. Now Lemma 39.7
(iii) becomes

(39.18) Y-'PYP-0* = P-c* Y^PY.

Reading (39.18) mod O implies that flr2 = clB Thus (39.18) yields that
Y~XPY and P"^2 commute. Since g2 ̂  0 by Lemma 39.1, this implies
that

Thus yeOo fl C(P) = {1} which is not the case. Therefore kx = 0 as
required.

LEMMA 39.9 Let (au a2, a3) e j y , Ze£ &2 and A;3 have the same
meaning as in Lemma 39.6. Then k2 = k3 = 0.

Proof. Since ^ = 0 by Lemma 39.8, (39.1) becomes
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<39.19) Y^PY-1 = p-°iZk>P*Y-

•Conjugating by Q and using (38.2) we get that

{39.20) Y9lPY£ = P-*Z"h*P*Y

Now (39.19) and (39.20) imply that

Y

Therefore

(39.21) par-\p*z*s ( i-w)p-*r,3p-a =

Suppose that fc3 =£ 0. Then by Lemma 38.2 fc3(l - w) =£ 0. As
<Z> is a T.I. set in ©, (39.21) now implies that P a r- \P*e AT(<Z>).
As P e i V « Z » this implies that

y-ip-,3yp,3 = Ygz e N{(Z» n Qo = <1> .

Therefore POi commutes with Y. Hence g3 = 0. This is contrary to
Lemma 39.1. Thus &3 = 0.

Now (39.21) implies that k2(w — 1) = 0. Therefore by Lemma
38.2 k2 = 0.

LEMMA 39.10. Let (alf a3, a3) e sf and g3 have the same meaning
•as in Lemma 39.6. Then g3 = 1.

Proof. In view of Lemmas 39.8 and 39.9 equation (39.1) becomes

(39.22) YOlPY~l = P-°iP2Y-1PkP0* .

Reading (39.22)}nod Do implies that

1 = - 0 i + 2 + k + g2

•or using the definition of k

(39.23) - 1 - & = k = - 1 + gx - g2 .

Hence g3 = g2 — gx and (39.22) becomes

<39.24) Y^PY-1 = P2-'1 Y-L,^-1.

P acts as a linear transformation on Do. It is convenient to use
the exponential notation. Thus Yp = P^YP, so that Ys = Y~1+p\
(39.24) can be rewritten as

In exponential notation this becomes
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(39.25) y(-i+p&1)p+u-p*a) __ ya-pw-f i jpn- 1

Define

(39.26) A = ( - 1 + P^)P + (1 - P") - (1 -
= (1 - P) + P ' I - ^ P 2 - 1) - P°*-\P - 1) .

Since Sp*O0 is a Frobenius group with Frobenius kernel Do, 1 — P is
an invertible linear transformation on OQ. By (39.25) A annihilates
Y. Hence also A(l - P)"1 annihilates Y. By (39.26)

- P)-1 = 1 - P°i-\P + 1) +
= 1 - P'1 + 1 - P'1"1 - 1 +

Therefore

V V"1 V"1 — yt

Thus

(39.27) y ^

By Lemma 39.3

By (39.27) this yields that

(39.28) y-ix y-1 ̂ -f*"x y

Lemma 39.2 also implies that

Raising this to the v99r9l~1th power we get that

(39.29) y - 1 Uv°2'1 Y9l = P-'1 ̂ •gi~gi"1P

Now (39.28) and (39.29) yield that

(39.30) Y-^P-'iCT-'i-'i-'p*ygi_x =

Another application of Lemma 39.3 gives

(39.31) F-I^-X-i = P-^

Thus (39.30) and (39.31) imply that

Since & =£ 0, P - ^ ^ ^ ^ P ^ g U . Therefore
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As ty is a T.I. set in © (39.32) now implies that

Therefore P*1"1 commutes with Y and so g1 = 1. Now (39.27) yields
that Y§r.i = Y19 or

y-ip-(ga-i)yp(aa-i) = Y'~1P"mXYP

Consequently p-<n-» yp<n-» = F. Hence & = 2. Now (39.23) implies
that & = 1 as required.

LEMMA 39.11. Let & have the same meaning as in Definition
38.2. J / a e ^ then — a e ^ .

Proof. Let 0 = ^ 6 ^ and suppose that (a19 a2, a3) e j y . By
Lemma 38.8 (—aa, — alf -a 3) G j / . Let (—a2, — aif —a3) play the role
of (alt a2, a3). By Lemma 39.10 g3 = g(l, —a^v*, —2) = 1. Thus Lemmas
38.5 and 39.1 imply that

(39.33) -ay + / ( I , -axv\ - 2) + *(lf - a ^ 3 , - 2 ) = 0

(39.34) <w-aitj3 - 2 + a>-«i«l+*tt--^8.-» = o .

Let b, = - a ^ , 62 = / ( l , - a^ 3 , - 2 ) and 63 = h(l, - a ^ , - 2 ) . By
Lemma 39.1 6< ̂ = 0 for i = 1, 2, 3. By (39.33) 6X + 62 + 63 = 0. Now
it follows from (39.34) and Lemma 38.7 that (6lf 62, 63) e j ^ . Thus

Since a was an arbitrary element of & we get that for any
integer n, a(—v*)n£&- Thus in particular, a ( - v 3 ) p e ^ . Hence
by (38.2), —a = — av*pe & as was to be shown.

It is now very easy to complete the proof of Theorem 37.1.
Define the set <£f by

Since | ^ | = 1^1, Lemma 38.10 yields that <gf is not empty. The
definition of & and Lemma 38.7 yield that l g ^ and a e ? if
and only if 2 - a G ^ 7 . Lemma 39.11 implies that a e ^ if and only

if a~x e <£r. Therefore if a e & then —=— e <if. Since u = 1 + p H
2 - a :

+ pf~\ we have N(a:) = a1+p+m"+pQ~1 = 1 for a: e <£f. Thus if a has the
same meaning as in Lemma 38.11 then there exists a e ^~v* — ^
such that N(a"%) = 1 for all values of i. This contradicts Lemma
38.11, and completes the proof of the main theorem of this paper.




