CHAPTER V

27. Statement of the Result Proved in Chapter V

The following result is proved in this chapter.

THEOREM 27.1. Let @ be a minimal simple group of odd order.
Then ® satisfies the following conditions:

(i) p and q are odd primes with p > q. @ contains elementary
abelian subgroups P and T with |P|l= 2, |Q|=¢*. P and Q are
T.I. sets in ®.

(ii) N(P)=PUL*, where PU and NQ* are Frobenius groups with
Frobenius kernels P, U respectively. |Q*|=gq, |U|= (p* — 1)/(p — 1),
L*cland (*—-1D/p—-1),p—-1) =1

(iii) If P* = Cx(Q*), then |P*| = p and P*Q* is a self-normal-
1zing cyclic subgroup of ®. Furthermore, C(P*) = PL*, C(L*) =
QP*, and B* = NRQ).

(iv) C) is a cyclic group which is a T.I. set in @, Further-
more, L* S NI) = N(C()), NW)/C(M) i3 a cyclic group of order
pq and N() is a Frobenius group with Frobenius kernel C(1).

In this chapter we take the results stated in Section 14 as our
starting point. The notation introduced in that section is also used.
There is no reference to any result in Chapter IV which is not con-
tained in Section 14. The theory of group characters plays an es-
sential role in the proof of Theorem 27.1. In particular we use the
material contained in Chapter III.

Sections 28-31 consist of technical results concerning the characters
of various subgroups of @. In Section 32 the troublesome groups of
type V are eliminated. In Section 33 it is shown that groups of
type I are Frobenius groups. By making use of the main theorem
of [10] it is then easy to show that the first possibility in Theorem
14.1 cannot occur. The rest of the chapter consists of a detailed
study of the groups & and ¥ until in Section 36 we are able to supply
a proof of Theorem 27.1.

28. Characters of Subgroups of Type 1

Hypothesis 28.1.

(i) X is of Frobenius type with Frobenius kernel O and comple:
ment G.

(ii) € = AB, where A is abelian, B 18 cyclic, and (|L|, |B|) = 1.
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944 SOLVABILITY OF GROUPS OF ODD ORDER

(iii) €, 78 a subgroup of & with the same exponent as & such
that €, is a Frobenius group with Frobenius kernel 9.

LemMMA 28.1. Under Hypothesis 28.1, X has an irreducible charac-
ter of degree |€,| which does mot have D in its kernel.

Proof. If U is eyclic, then X is a Frobenius group and the lemma
is immediate. We may assume that % is non cyeclic.

Let ©./D(D) be a chief factor of AD with H, S H. Let A, =
Coy(9./D(D)). Then A/, is cyclic. Since X is of Frobenius type, the
exponent of /Y, is the exponent of A. Hence, |F:YU,|=|C,|. Let
%A, be the normal closure of U, in € Then %, is abelian., Let ¢ be
a non principal linear character of £,/D(9). Then () = HYU,, so
Lemma 4.5 completes the proof.

LEMMA 28.2. Suppose L is of type I, and & = X satisfies Hypo-
thesis 28.1. Suppose further that Z(€) contains an element E such
that Co(E) £ &' and Cy(E) # . Then the set & of irreducible
characters of & which do not have D in their kernmel is coherent.

Proof. By Lemmas 28.1 and 4.5, it follows that Hypothesis 11.1
and (11.4) are satisfied if we take =1, =8, d =|E,| and let
% play the role of &%

Since E' is in the center of €, it follows that 'Cg¢(E) < €. Thus,
by assumption, $/9’ is not a chief factor of €. Therefore,

(28.1) L:91>4(|E+1.

Let ()= {\i.l8=1,+--,m;;t=1, .--, k}, where the notation
is chosen so that A\,(1) =A;(1) if and only if ¢=J, and where
Aull) < <o < Au(l). By (28.1) we get that (11.5) holds with $, = 9’
and by Theorem 11.1 the lemma will follow as soon as it is shown
that .&#(9') is coherent.

Set 4 =Au(1)/d for 1 <41 < k. Then each 4 is an integer and
l=4< -+ < 4. By Theorem 10.1, the coherence of .$7(9') will
follow once inequality (10.2) is established. Suppose (10.2) does not
hold. Then for some m with 1 <m <k,

(28.2) Som, <24 .

=1

Every character in .5#(9') is a constituent of a character induced
by a linear character of . Therefore,

(28.3) 4566 .
Let '6 = $/9’ and let ‘61 = Cﬁ(E)’ '62 = [‘61 E]. Thus, 6 = 51 X 52
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and §:; # 1, ¢ =1,2. If 9, is the inverse image of P; in O, then EP;
is of Frobenius type and satisfies Hypothesis 28.1. Two applications
of Lemma 28.1 imply that n, = 4|€: E,|. Hence, (28.2) does not hold
for any m, 1 <m =< k. The proof is complete.

29. Characters of Subgroups of Type III and IV

The following notation will be used.

S = &Q* is a subgroup of type II, III, or IV. Q* plays the
role of %W, in the definition of subgroups of type II, III, and IV
given in Section 14. 9, U, and I, have the same meaning as in these
definitions. T = T'YW, is a subgroup of type II, III, IV, or V whose
existence follows from Theorem 14.1 (ii) (b), (e).

Let n(9) = {p,, ---, p} and for 1 <1 <¢, let P, be the S, -sub-
group of . Define

C.=uncep), 1=si=t,
€ =ME..

Let D=1, |B|=u, |0%|=¢q,|€|=c,1=7=tand [€|=c,
By definition, ¢ is a prime.

4 is the set of characters of & which are induced by nonprincipal
irreducible characters of &'/9.

%7 is the set of characters of & which are induced by irreducible
characters of & that do not have 9 in their kernel.

The purpose of this section is to prove the following result.

THEOREM 29.1.

(i) If & s of type III then & U5 18 coherent except possibly
if 19| = p* for some prime p and € =1,

(i) If © isof type IV, then ¥ U S5 18 coherent except possibly
af 1O = p® for some prime p, € =10 and & 18 not coherent.

Hypothesis 29.1.
& is a subgroup of type III or IV,

Throughout this section, Hypothesis 29.1 will be assumed. Thus,
by Theorem 14.1 (ii) (d), T is of type II. Consequently, T, has prime
order p. Let p=9p, P=P, and W, = P*. Thus, by 3.16 (),
NS CEPB) for 2=t <t Since U Z C(D), this yields that 1 Z C(P).
As 11 does not act trivially on PB/D(P), Lemma 4.6 (i) implies that
Cy(P*) =€, cl.

For any subgroup 9, of HE, let .&7(9,) denote the set of characters
in %4 U & which have the same degree and the same weight as some
character in %4 U .7 that has , in it kernel.
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LEMMA 29.1. Hypothesis 11.1 is satisfied if &7 in that hypothesis
18 replaced by S U &, $ 18 replaced by D€, O, is taken as {1, &
18 replaced by &, & and & are replaced by &, and d = 1,

Proof. By Theorem 14.2, Condition (i) is satisfied. Condition (ii)
follows from the fact that & is a three step group. Condition (iii)
is immediate and Condition (vi) is simply definition (consistent with
the present definition). Since UQ* is a Frobenius group, & contains
an irreducible character of degree q. Hence, Condition (iv) is satisfied.
The group © satisfies Hypothesis 13.2. Hence, by Theorem 14.2,
Hypothesis 13.8 is satisfied with € =&, X =@, and L=R=¢&, and
with & replaced by $5U.%”. By Lemmas 13.7, 13.9, and 13.10,
Condition (v) of Hypothesis 11.1 is satisfied. The proof is complete.

LEMMA 29.2. If SP((DC)) is coherent, then S U & i8 coherent.

Proof. As N Z C(P), U does not act trivially on P/D(P). Since
L* is a Frobenius group, 3.16 (iii) yields that [B: D(P)| = »*. As
either p=8 and ¢g=5or p=5 and ¢ = 3, (5.9) yields that

OC: (€)Y [z |B:DP) 29" >4'+1=4(S:&+1.

Hence, (11.5) is satisfied with $, = (£€).” By Lemma 29.1, Theorem
11.1 may be applied. This implies the required result.

LemMMA 29.3. If SZ((D€)) is nmot coherent, then &" = HE,

Proof. Letb=|H€:&”|. We have P* £ &”, as B* £ &' and O*
centralizes P*. Hence, &/&" is a Frobenius group. Let d, < --- < d,
be all the degrees of characters in S“((H€)) and let -, =d.fq for
1<m=k. Then for each m, 4 is an integer and 4 = 1. Every
character of &/&" is a constituent of a character induced by a linear
character of €. Thus, 4, < ufc for 1 < m < k. There are at least

(20-1

irreducible characters of degree ¢ in S#((9€)'). Thus, if SZ(HCY) is.
not coherent, inequality (10.2) must be violated for some m. In par-
ticular, this implies that

(@s-

q
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2/,

A
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Therefore, b — (cfu) < 2q, so b< 2¢ + 1, sincec < u. As H$E/S" is a
normal subgroup of the Frobenius group &/€"”, we have b = 1 (mod q).
Since b and ¢ are both odd, this implies that & = 1 as required.

LemMaA 29.4. If <2((9C)) i8 mot coherent, then H =P, P =
D), |B:P =2, P NDEP)=1and € =1

Proof. By Lemma 298, ©" =9€. If 2<i=<t then UD S
B.C(P.), so that p;||& :&”|. Hence, t=1and D=P. € =1 fol-
lows directly from the fact that $€ =&" S QU'. If |PB: DEP)| > »°,
then since Cx(Q*) = P* is cyclic, Lemma 4.6 (i) implies that some
non identity element of P/D(P) is in the center of PU/D(P). Thus,
p divides |19:©"”| which is not the case. Since 1 does not act
trivially on PB/D(P), 8.16 (iii) now implies that | P : D(P)| = p°. Since
P* has prime order and lies outside D(P), we get that D(P)UL* is
a Frobenius group. Hence, by 38.16 (i), D(P)l is nilpotent. Conse-
quently, D(P)/T is in the center of PU/P'. As the fixed points of
11 on P/P’ are a direct factor of P/P’, and since U has no fixed points
on P/D(P), we have P = D(P). The lemma is proved.

LEmmA 29.5. If S7((9€)') is not coherent then P is an elementary
abelian p-group of order p°.

Proof. In view of Lemma 29.4 it suffices to show that L' =1,
By 3.16 (i), U S C(P). Thus, if P’ # 1, there exists a subgroup B,
of P such that B, < PU and [P’ : PBy| =p. If U acts irreducibly on
B/®, then P'/PB, = Z(PB/B). Hence, P/PB, is an extra special p-group
and |P: P | = p® for some integer b contrary to Lemma 29.4.

Suppose that U acts reducibly on PB/P'. Since the irreducible
constituents of this representation are conjugate under the action of
£*, all constituents have the same dimension. As |[P:P'| = p* and
q is a prime, this yields that they must all be one dimensional. There-
fore, there exist elements P, -+, P, in P such that

PBIP = BPIPD> X -+ x KBBIPD
and
U-'PPU=P:o®, Uell, 15i=g,

where s, -+-, s, are linear characters of U (mod p) with s, (U) =
8,(Q*UQ) for Ue N and a suitably chosen generator @ of Q*. Since
|Q*| is odd, s8;8; # 1 for any 7,5 with 1 <4, § <q. Hence, if 7,7
are given, there exists U<l such that s(U)s(U)+# 1. For 1=sk=<¢q
let P, be an element of P’ such that
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U-P%BU = P P, .

Since P'/P, S Z(P/P,), we get that

[P;, P;] = U[P, P,JU = [P P, P{s P]]
= [Py, P;1 @] = [Py, Pl (mod By) .

Since 8;(U)s{(U) #+ 1, this yields that [P;, P;]Je®}, for 1 <1, j=<gq.
Since P =P, +++, P, we get that P’ S B, contrary to construction.
Thus, P’ = 1 as required.

LEMMA 29.6. If S2((DC)) is not coherent and € # 1, then % is
not coherent.

Proof. Suppose that € 1, Assume that &, is coherent.
Let =5 Let % ---,.% be the equivalence classes of
S(9C)) — &% chosen so that every character in &, has degree /,q
for2<m=<k, and 4 < -+ < 4. Suppose J:,.57 is not coherent.
By Hypothesis 11.1, and Lemma 29.1, all parts of Hypothesis 10.1
are satisfied except possibly inequality (10.2). Since .Z(($€)) is not
coherent, inequality (10.2) must be violated for some m.

Every character in J%., &4 is a constituent of a character induced
by a linear character of €. Thus 4, =< (u/c) for 1 < m < k. Hence,
violation of inequality (10.2) yields that

u—1_9, <2%,
q c

Since ¢ =1 (mod 2q) and ¢ # 1, this implies that

u_1§2ql=_(2q—+1)u—_1i§u—l<u-—1.

¢ c ¢ ¢
Hence %, . & is coherent. Since ((9€)) = UL,.s4, the proof is
complete.

The proof of Theorem 29.1 is now immediate. Lemmas 29.2, 29.4
and 29.5 imply statement (i). Lemmas 29.2, 29.4, 29.5, and 29.6
imply statement (ii).

30. Characters of Subgroups of Type II, III and IV

The notation introduced at the beginning of Section 29 is used
in this section. The main purpose of this section is to prove the
following result.
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THEOREM 30.1. Let © be a subgroup of type II, III or IV.
Then & 18 coherent except possibly if & is of type II,  is a non
abelian 8-group, HU/C 18 a Frobenius group with Frobenius kernel
OC/C, u < 8" |9:9 | =238 and T is a subgroup of type V.

All lemmas in this section will be proved under the following as-
sumption.

Hypothesis 30.1.

(i) © is a subgroup of type II, III, or IV,

(ii) &7 18 mot coherent ewcept possibly if & 1is of type II.
(iii) VW has exponent a.

For any subgroup 9, of & let S7(9,) be the set of characters in
% which have 9, in their kernel. Notice that this notation differs
from that used in Section 29.

LEMMA 30.1. The degree of every character in 7 18 divisible
by aq.

Proof. Every character in .5 is a constituent of a character of
& induced by a nonprincipal character of . For any character 8 of
5 let & be the character of DU induced by 4. Set U, =@ NU.
Let (N:U,|=0b. If & is of type II or III, then by Lemma 4.5 it
suffices to show that if 6 # 1, then a|b.

Let 8 be the kernel of 4 and let He © — & such that HR € Z(9/R).
Then £ < 9U, and U'HRU = HR for UeW,. As(u,h)=1,if Uel,,
then U centralizes some element in HR. Hence, I, & &. Let I, =
{U*|Uen}. Then 1, char U and U, S U, S &.

Suppose 1, #1. If & is of type II, then & is a T.I. set in ®
by Theorem 14.2, Hence, N(1) £ N(I1,) & & contrary to definition.
If & is of type III, then by Theorem 29.1, NQ* is represented irre-
ducibly on . Since U, q UQ*, i, is in the kernel of this represen-
tation. Thus, 1, & C(P) contrary to Theorem 29.1. Thus, I, =1.
Therefore U* =1 for Uell and so a|b in case & is of type II or III.

If & is of type IV, we will show that Hypothesis 11.1 and (11.2)
are satisfied with £, in that hypothesis being taken as our present
D, 8 being taken as &/9, D and & being taken as &'[/9, and @., being
taken as &', Certainly (i) is satisfied. Since &/9 is a Frobenius group
with Frobenius kernel &'/9, (ii) and (11.2) are satisfied, and the
remaining conditions follow immediately from the fact that &/9 is a
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Frobenius group. The present .&; plays the role of .%¥ in Hypothesis
11.1 iii).

Notice now that Hypothesis 11,2 is satisfied. By Lemma 11.2
and the fact that .55 is not coherent it follows that &'/ is a non
abelian r-group for some prime r whose derived group and Frattini
subgroup coincide. But U= &'/$. Since € =W, /€ is of exponent
r, 80 a =7r. As U has no fixed points on 9, it follows readily that
every non linear character of & has degree divisible by 7, as required.

LEMMA 30.2. For 1 <1<t |B::D(PB)| = p! and U/C; has ex-
ponent a.

Proof. If & is of type III or IV, the result follows from Theo-
rem 29.1. Suppose & is of type II. Then & is a T.I set in ® by
Theorem 14.2. Let a; be the exponent of U/C; for 1 <4 <t Let
W, ={U%|Uen}. Then I; € €, =& and I, char U. Thus, if U, #1,
then N() & N(I1;) € &, contrary to definition of subgroups of type II.

Suppose | PB; : D(P;) | > p! for some ¢ with 1 <4 < ¢. Since Cp(L*)
is eyelie, this implies the existence of a subgroup 9, with W, S H, C H
such that £/, is a chief factor of &. By 8.16 (i), HU/D, is nilpotent.
Thus, 1 & & and N ) & &, contrary to definition.

LeEMMA 30.3. For 1 <1 <t either a|(p; — 1) or a|(p! — 1) and
(@, p; — 1) = 1. In the first case, P,/D(P;) is the direct product of q
groups of order v;, each of which is mormalized by 1. In the second
case, W€, is cyclic of order a and acts irreducibly on PB,/D(P;).

Proof. By Lemma 80.2, 1Q* is represented irreducibly on P,/D(%;).
As 11 q UQ*, the restriction of this representation to 11 breaks up-
into a direct sum of irreducible representations all of which have the
same degree d. By Lemma 80.2, d|q and so d =1 or d = q.

If d =1, the order of every element in 1/€,; divides (p; — 1)..
Hence, by Lemma 30.2, a|(p; — 1).

If d =¢q, then U acts irreducibly on P:,/D(PB;). Thus, W/E; is
cyclic. By Lemma 80.2, |[11:€;|=a. Therefore, a|(p! —1). Let
U/€; =<U)>. Then the characteristic roots of U are algebraically
conjugate over GF(p). Hence, this is also the case for every power
of U. If (a, p; — 1) # 1, then some power U, # 1 of U has its charac-
teristic roots in GF(p) and thus is a scalar. This violates the fact
that 1Q* is a Frobenius group.

LEMMA 380.4. Suppose (a, p; — 1) =1 for some 1, 1 £ 1 <t. Let
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O =P IB,
I

and let | B, : B;| = pr. Then m! = m.q for some integer m;. Further-
more, (9, contains at least

%{(M"‘ a— e, (p™ — 1)}

1rreducible characters of degree aq and at least (pP:i — 1) characters
of wetght q and degree aq.

Proof. By Lemma 30.3, U/€; is cyclic. By Theorem 29.1, © is
not of type IV, so U is abelian. Hence, $11/9.€; is a Frobenius group.
By Lemma 30.2, |U: €;| = a. Furthermore, since UQ* acts irreducibly
on B,/D(P,), D = /9, is the direct product of ¢ cyclic groups of the
same order pf. Thus, gm; = mi, and |C5R*)|= p. By 3.16 (iii)
every non principal irreducible character of 9€,/9,€; induces an irre-
ducible character of 9U/D,C; of degree a. Since U is abelian, this
implies that every irreducible character of $€;/9, which does not have
® in its kernel induces an irreducible character of S1/D, of degree
a. Hence, Y1/, has at least

(pr* — D)e;
a

distinet irreducible characters of degree a.

Since &/9, satisfies Hypothesis 13.2, Lemma 13.7 implies that all
but p™ — 1 non principal irreducible characters of Y11/9, induce irre-
ducible characters of &, The result now follows.

LemMMA 30.5. Suppose that a|(p; — 1) for some 7 with 1 <t < ¢.
Let

O, =B I B;
J#s
and let |P;: P! = :":‘. Then m; = milq is an integer and S7(9.)
contains at least

(Pri—1) u
a au

irreducible characters of degree aq, where |1’ | = /',

Proof. For any subgroup ¥ of &, let X = X9,/9,. By Lemma

30.3, ® contains a cyclic subgroup P;, which is normalized by U such
that
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| Bt | = 7

and such that © = P, x 9, for some subgroup , which is normalized
by U. Since UQ* acts irreducibly on P,/D(P.), it follows that m,; =
mi/q. Let U, be the kernel of the representation of U on B,,. Then
/Y, is eyelic and so [1:1,| < a. There are at least

_(2-’_'_‘_,;}l|nl|
"

distinet linear characters of U,/9, which do not have P, in their
kernel. Each of these induces an irreducible character of U of
degree (U :1,|. Thus, by Lemma 80.1, |1:U,| = a and there are at
least

@r —~1-u
a-a-u

distinet irreducible characters of D11 of degree a which have 9, in
their kernel, and as characters of & have ©, in their kernel. If one
of these induced a reducible character of & or two of these induced
the same character of &, then Q* would normalize , contrary to
the fact that NQ* acts irreducibly on P./D(B,).

LemMmA 30.6. If .7 contains no irreducible character of degree
aq, then t =1, By=D(P), a =% = (p{ — 1)/(p, — 1), and ¢ = ¢, = L.
Furthermore, .7 (9') is coherent.

Proof. By Lemmas 30.8 and 30.5, (@, p;, —1) =1 and a divides
(P! —1)/(p; — 1) for 1 <3 <t. Suppose that for some i,

W=D gr—n=o0.
a
Then
(pg"‘i - 1) e:<a
(pri—1 "7 7

Therefore, ¢; =1, m; =1, and @ = (p! — 1)/(p; — 1). Thus,

(30.1) ﬂ"’_‘aﬂ —(pr—1)=0.

Now Lemma 30.4 implies that (30.1) holds for 1 < ¢ <t. Thus, t = 1.
Hence,c=¢, =1, u=a=(p*"—-1)/(p — 1), p=p,. Also, m, =1, and
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so B, = D(P,).

If a character ¢ in & U.¥; is equivalent to a character in .7 (9'),
then its degree is prime to {9, so " & kerd. Thus, the equivalence
relation in Hypothesis 11.1 has the property that the present set
() is a union of equivalence classes. Therefore, .57(9’) consists
of (p — 1) reducible characters of degree aq. Theorem 14.2 implies
that Hypothesis 18.3 is satisfied. Hence, Lemma 13.9 implies that
(D) is coherent.

The remaining lemmas in this section will be proved under the
following stronger assumption.

Hypothesis 30.2.
(i) Hypothesis 80.1 is satisfied.
(i) &7 is not coherent,

LEmMMA 30.7. If S7(9') is mot coherent, then =%, € =1,
a=0p—-1)2 p=p, u#a, and D(P) = PB. The degree of every
character in 7 (9') is either aq or uq, and F (D) contains exactly
2ufa irreducible characters of degree aq.

Proof. Let d, < --- <d, be all the degrees of characters in
S((H€)). Define 4 =d;fag for 1 <1< k. By Lemmas 13.10, 30.1
and 30.6, all the assumptions of Theorem 10.1 are satisfied except
possibly inequality (10.2). Every character in .&2((9€)’) is a constituent
of a character of & which is induced by a linear character of 9HC.
Hence, d, < qu/c, and so 4 < ufac.

Choose the notation so that a|(p; — 1) for 1 <i<{¢,and (a, p; — 1) =
1 for t,+1<i<t. If SZ(HEY) is not coherent then inequality
(10.2) is violated. Lemmas 80.2 and 30.3 imply that for £, + 1 = ¢ < ¢,
¢; =uj/a. Thus by Lemmas 30.4 and 80.5, there exists m with

1 <m £k, such that

iﬁ. (pri —1) + 'Z {l. (pt™ — 1) _(p?i_l)}

=a au' a qa q

Therefore,

b (pmi — i _
(30.2) ﬁ(piaTl)“;. > uéz/m%é%ég.

= i=tg+1 qa

For
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1<ist, (pri —1) > 2pt™i-D |
a

By Theorem 29.1, ¢ = %'. Thus, (80.2) implies that
{30.3) tL,<1 Ift, =1 thenm, =1 ¢t=1,

Assume first that ¢{,=0. If ¢t=1, then since ¢ < p? and a <
@ —1)/(p, — 1), (80.2) yields m, =1. Thus, every character in
S((D€)) has degree aq. Therefore the definition of subeoherence
implies directly that .S7((9€)’) is coherent contrary to assumption.
Suppose now that ¢ = 2. Then (80.2) yields that (p, — 1) + (p, — 1) =
2q. Therefore,

(80.4) P, £1(modg), 2=1,2.
Further, (30.2) also implies that

_l (i —1) 1 (pi—1)
@05 a -0 am-D="

It follows from (30.4) that

(30.6) 1@-1 _1_1@-1 (mod q) .

Each term on the left of (30.5) is an integer. Hence, if », > p,,
(80.6) yields that :

1 @1 1 (-1
PR ki e

contrary to (30.5). Consequently, ¢, + 0.

Now (80.2) and (80.3) imply that ¢ = 1, so that © = B,.. We also
conclude that m, = 1, so that D(B) = P{. Furthermore, ¢ = ¢, = o/,
and (p, — 1)Ja £ 2. Since ap, is odd, we have p, — 1 = 2a. Finally
we get that 4, =ufac and so m=k. If k=m > 2, or if S ((HC))
contains more than 2u/a irreducible characters of degree ga, then (80.2)
is replaced by a strict inequality which is impossible as (p, — 1)/a = 2.
Thus, k=m =2, and so d, = ug/c and the degree of a character in
(D)) is either agq or ugfe. If &is of type II or III, then (HC) =
9’ and the result is proved.

Suppose that & is of type IV. Since the degree of any character
in SZ((9C)) is either ag or ug/c, U/€ is generated by two elements.
Since € = I, N is generated by two elements. Thus, if we set D, =
9, replace  and & by &'/9, and replace £ by & in Hypothesis 11.2,
then by Lemma 29.1, Hypothesis 11.2 holds and by Lemma 11.3 and
Theorem 29.1, we conclude that & = $7(9’) is coherent, contrary to
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assumption,
LEMMA 30.8. .$#(9') 18 coherent.

Proof. By Lemma 30.7, it may be assumed that =P is a p-
group for some prime p, that D(P) =¥, and that € = 1. Suppose
that .7(9’) is not coherent. Let .54 be the set of irreducible charac-
ters in S7(9’) of degree aq. Then by Lemma 30.7
80.7) =2, g=flp=1

a 2
Let .& be the set of irreducible characters in .57(9’) of degree ug. The
group &/9’ satisfies Hypothesis 13.2. Hence, by Lemmas 18.5, 18.7
and 30.7, there are (p — 1) reducible characters in & of weight ¢
and degree uq which have £ in their kernel. As the sum of the
squares of degrees of irreducible characters of /9’ is p'uq, we get
that

(30.8) ug + | Sl g'a’ + (0 — Ve’ + | S| g™ = p'ug .

Since U1 is abelian and is generated by two elements, we also have
(30.9) usa.

Now (30.7), (80.8) and (30.9) yield that

(80.10) REAE ik ¢ R I)Zq— 2qa — 1

ga—}q{@«—l)‘—(p—nq——‘”‘—”’}.

4

Hence, by (5.8), .54 is non empty.

Let “={\,|1=8=<mn} for i=1,2, The character A, is in-
duced by a linear character of some subgroup &, of index a in &',
Define

(30.11) a= (g — M),

where Tgo is the character of & induced by lg, Since & <&, it
follows that 1g, induces pg/g, on &'. Since LO* does not normalize
&,, (80.11) is seen to imply that

H
||a||'=a+1+(q—1)“7.

Since & is tamely imbedded in & and a vanishes on & — @3, we get
that
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2
(30.12) laclF=llall=a+1+@—1)-=.

Furthermore,
(ar, X;i - X;,) = (av k':i - X!J) =0

for all values of 7 and j.
Suppose that (a°, Ay;) # 0 for some ¢. Then (a*,Ay) # 0 for all
t. Henece (30.10) and (30.12) imply that

p"-—’l _(p—’l)_(p_l)§a+1+(q—1)£
qa a q u

—p“1+4+wq—n%%.

2
Thus
(30.18) 2{(1+ «++ + p* Y} = p"; 1
L]
2 \la q 2
(p—1) a?
< —
<q 82 (p+q
(p—1) p
<e-= (p+q2)
Therefore
7—3 p1—1 “--l:_q_
<4t — <pq(1+12)
Hence

31 < 4Pt < q(l + —g—) <.

Thus ¢ = 8 by (5.1). Now (30.13) becomes

4
p—1

N 8 5 2a*
2+p+P)S S 1){ +2@-p+1+ u}

Thus
%(1+p+p’)é4+p—1+%(p—1)’+3;L(p—1).

This implies that

4 . 5 ., 2a°
= + S+ = p,
3p P 6p % P
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Therefore (1/2)p* < p(1 + (2a*/u)), or equivalently (1/2)p < 1 + (2a°/u).
Thus (80.7) yields that
u< 2a® = 4a’ S(p_1)2<p+1<3a“

%p—l p—2  (p—2)

This is impossible since a |%, @ # % and both a@ and « are odd. Thus,
(30.14) (@, ;) =0 for r,€.%.

Define 8 = (uja)\,; — Ay € HA(S°). Suppose that (87, \5) = (w/a) — b.
As 7 is an isometry on _%(.%”), this yields that

(67, M) = % 8a—b for all i,
Therefore,
T ll’_. _ T T
(30.15) B _(a b)xn b M+ T+ 4,
where I is a linear combination of elements in .54* and 4 is orthogonal

to U S4°.  Sinee (B, A, — \) # 0, it follows that || I|]*= 1.
Since

(30.16) o= =(%)+1,

(80.7) and (30.16) yield
4P+ (% —b) + (2% -1)p < (-“-) .

a

This implies that

||A||’+2%b’—2-'-‘-bso,
a

or b» < b. Since b is an integer, b =0 or 1 and 4 = 0.
Suppose b = 1. Then (30.15) becomes

(30.17) g = (l - 1) Ny — S+ I
a A
As a, B vanish on & — @, we have

(30.18) (@, ) = (&, B) = —%.

Since (a’, AL, — AL) = —1, we get that
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(30.19) a =@ — 1D\, + 2 % A+ 4,

for some integer # and some 4, which is orthogonal to &4. Now
(80.14), (30.17), (30.18) and (80.19) yield that

_l=(%—1>(x—1)—x(2l—1).

a a

Reading this equality mod u/a, we get
0= —(a:—l)—i—:vsl(modi).
a

Thus u = a, contrary to Lemma 80.7. Hence, b = 0. Consequently
B° = (uja)\j; + I', and so I" = +\i; for some j. Since (87, A\ — A\j) # 0,
Agj = Ny OF Ay. This implies directly that &% U %4 is coherent. Lemma
13.10 and Theorem 10.1 now yield that .&#(9’) is coherent. The proof
is complete.

LeMMmA 30.9. & 18 of type II.

Proof. If & is of type III or IV, then Theorem 29.1 yields that
® =1. Thus, by Lemma 80.8, .5 is coherent, Hence, Hypothesis
30.2 implies that & is of type II.

LemMA 30.10. If &7 contains an trreducible character of degree
agq, then Hypothesis 11.1 is satisfied with =1, =6, 8 =6, R =
& and d = a.

Proof. By Theorem 14.2, Condition (i) is satisfied. Condition (ii)
follows from the definition of three step group. Conditions (iii) and
(vi) are immediate, while Condition (iv) holds by assumption. The
group & satisfies Hypothesis 13.2. Hence, by Theorem 14.2 Hypo-
thesis 13.8 is satisfied with 2 =6, 8 = &, £=6 and 8 =©. By
Lemmas 13.7, 13.9 and 13.10, Hypothesis 10.1 is satisfied. Thus,
Lemma 10.1 yields that Condition (v) of Hypothesis 11.1 is satisfied.
The proof is complete.

LeMMA 30.11. If & contains an irreducible character of degree
aq, then

|9:9 | =4’ +1.

Proof. By Hypothesis 80.2, .~ is not coherent. Thus, Lemmas
30.8, 30.9, and 30.10, together with Theorem 11.1 yield the result.
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LEmmA 80.12. For 1<i1<t, (@,p.—1)=1 and BU/E, is a
Frobenius group.

Proof. Suppose that a|(p; — 1) for some ©. Then Lemmas 30.2
and 30.11 yield that pI < 4a’¢*+ 1 < (p; — 1)’¢* + 1. Thus, pi* < ¢
Therefore, (5.1) implies that ¢ =8. Hence, p;, =5 or 7. Thus, @
divides 4 or 6. As ais odd and (a,q) =1, this implies that
a =1 which is not the case. Therefore, by Lemma 80.8, 11/€; is
cyclic of order @ for 1<i1<¢t If BU/E; were not a Frobenius
group, then for some b < a, {U?|Uell} = U, would lie in &. Since
U, # 1 and U, char U, this implies that N(I1) & N(1,) & &, contrary
to Lemma 30.9.

LEvMMA 80.18. t=1, p, =38, a < 8 and P = D(P).

Proof. By Lemma 380.8, © # 1. Choose the notation so that
Pr#1l. Let Po=Pu D Py O B = B D Brasi, where By/P, 4, is
a chief factor of & for 1 <4 <n. Thus, PB,/P.... I8 of class two
and so is a regular p-group. By Lemma 4.6 (i) Q* centralizes an
element of P; — Py, for 1 <4 <n. Since Cyp(V*) is cyclic, this
implies that %,/P,.:» has exponent p*. Let W/, =<U). Then the
regularity of P,/P,, ... yields that U has the same minimal polynomial
on B/D(PB) as on Pj/P,.... Hence, by Lemma 6.2, a < 8*. Now
Lemma 30.11 implies that if | B,: B! | = pr*, then

(30.20) o E P =43¢+ 1.
Since 8 =< p,, (30.20) implies that
pr Pl S 4+ 1.
Hence, by (6.9), m =1 and ¢ = 1. Thus, (30.20) becomes

(30.21) pI<43¢" +1.
If p, =11, (30.21) implies that

3«<(%)'§4q’+1.

Thus, 32 < ¢* and so ¢ < 5 by (5.1). Hence ¢ = 3 and (30.21) yields
1331 = 11® < 4.8 + 1 < 1000, which is not the case. If p», = 7, then
(30.21) and (5.6) imply that ¢ < 7. Thus, ¢g=5o0r¢=38. If ¢ =38,
then
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b SR

»n—1
and a < 3*< 9. Since (g,a) =1 and a |57, this cannot be the case.
If ¢ =5, then

Pl _ g
»—1

is a prime. Thus 2801 =a < 3”* < 27. Suppose now that p, = 5.
Then by (5.7), ¢ <18. Thus, ¢ =3,7, or 11. Let r be a prime
factor of a. Then » < 8*and 5 =1 (mod ). Thus, » =1 (mod 29).
If =38, then =1 (mod 6) and = < 8%, which is impossible. If
g="1T, then r< 8% <50 and r =1 (mod14). Thus r =29 or 43.
Since 5" = —1 (mod29) and § = —6 (mod 43), these cases cannot
oceur. If ¢ =11, then r < 8" < 437 and » = 1 (mod 22). Thus, r =
23, 67, 89, 199, 331, 353, 397, or 419. Since 5* =1 (mod r), the quad-
ratic reciprocity theorem implies that (r | 5) = 1, so that » = +1 (mod 5).
Thus, r =89, 199, 331 or 419. Since 5" =55 (mod 89), 5" = 92
(mod 199), 5" = —2 (mod 331), 5" = —40 (mod 419), these cases cannot
occur. Hence, p, = 3, and the lemma is proved.

If &7 is not coherent, then Lemmas 30.8 and 80.12 imply that
|, | is not a prime. Hence, ¥ is of Type V. The other statements
in Theorem 30.1 follow directly from Lemmas 30.9 and 30.13.

31. Characters of Subgroups of Type V

In this section T = ¥'W, is a subgroup of type V. Let S be the
subgroup of & which satisfies condition (ii) of Theorem 14.1. By
Theorem 14.1 (ii) (d) & is of type II. The notation introduced at
the beginning of Section 29 will be used.

.7 is the set of all characters of ¥ which are induced by non
prineipal irreducible characters of ¥'. For any class function a of '
let & be the class function of £ induced by «.

For0<i=<qg—1, 0=<7 < w,—1let 7, be the generalized charac-
ters of @ defined by Lemma 13.1 and let vy;; be the characters of £
defined by Lemma 13.3.

Hypothesis 18.2 is satisfied with 8 =%, = ¥’ and %, replaced
by %,. By Lemma 18.7 £’ has exactly ¢ irreducible characters which
induce reducible characters of £. Denote these by v; for 0 <71 =<q — 1,
where v, =1z, Let {,=9; for 0 <i<q—1. Since ¢ is a prime
the characters v, are algebraically conjugate for 1<1<q-—1.
Therefore

y(1)=y(1) forl=<i=<g-—1.
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LEmmA 81.1. (D) contains an irreducible character of & ex-
cept possibly if w, 18 a prime and DU is a Frobenius group.

Proof. If & is not a Frobenius group then there are strictly
more than w, classes of &'/9’ whose order is not relatively prime to
}©|. The result now follows from Lemma 13.7.

Suppose that & is a Frobenius group. By Lemma 6.2 and 3.16
(iii) 9 is abelian and || = wj if the result is false. Then Lemma
13.7 implies that & contains exactly w, — 1 conjugate classes which
are in 9. Therefore

19]=1 =qw, — 1.
%

Hence

_191-1_ 19]-1
u P |©|1/'_1>1/l—-§|.

‘This implies that  is an elementary abelian p-group for some prime
p. Since B, is eyclic w, is a prime as required.

LEmMMmA 81.2. Let

ai; = ((W)1g — L), os) -
Then a;; #0 for 1<i<q—1,0=j=w,— 1.

Proof. Lemma 10.3 implies that by Lemma 9.4
@LY) Wiz — G Tag) = (W1 — 6 %) = ass .
Since 7,, is rational on ¥’ by Lemma 13.1, a;; = a; is independent of

4. Thus (81.1) implies that

g—-1
(31.2) Nojigr = bz — ay .Z.} Viogr + Xig7 »

for some integer b, where a is an integral linear combination of
irreducible characters of ¥ each of which vanishes on .

Let Qe Q*. Let p be a prime dividing w,, let P be an element
of order » in L, and let » be a prime divisor of » in the ring of
integers of & . Let w;; have the same meaning as in Hypothesis
13.1. Thus by Lemmas 13.1 and 13.3

(81.3) NAPQ) = 0(PQ), a(PQ) =0, v,(PQ)=-cn(PQ),

where ¢ = +1 is independent of 7. Therefore
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BLY S rPQ=¢5 0u(PQ =¢ T 0u@ = —¢.
In view of Lemma 4.2 (31.3) and (81.4) imply that
7i(Q) = 70(PQ) = 0o (PQ) = 0y;(Q) =1 (mod p)
(31.5) gvm(Q) = —¢ (mod p)
a@) = a(PQ) =0 (mod p) .
Thus (31.2) and (81.5) yield that 1 =e¢a; (mody). Thus a; +# 0 as

required.

The main purpose of this section is to prove that .~ is coherent.
Theorem 12.1 will play an important role in the proof of this fact.
The lemmas in this section will from now on satisfy the following
assumption.

Hypothesis 31.1.
9 18 not coherent.

By Griin’s theorem %/’ is a2 Frobenius group. Hence by Lemma
11.2 ' = Q is a g-group. Define

(31.6) 120 =q, 1T:Q|=w,=e.

Let 1 =¢o< ¢g"1 < --. be all the integers which are degrees of
irreducible characters of Q. Let

(81.7) v,(1) = ¢’», n>0,.
By Lemma 13.10 Hypothesis 12.1 is satisfied. Let .7, be defined
by (12.3) for 0 < s < t.

LEMMA 381.8. Suppose that b = 2¢ for some integer ¢. Then e
is mot a prime power.

Proof. Suppose that e = p* for some prime ». Then by Lemma
115 ¢°+1=2p*, fi=c and L contains a subgroup Q, which is
normal in ¥ and satisfies |Q': 0| =¢ and Q* € O — Q. Therefore
n =1 and .7 contains 2(¢g° — 1) irreducible characters A\, X\, <<+ of
degree e. Define

a=Tg-N, B=eMm—10.
By Lemma 9.4 we have that
(B8L8) Jla|f=e+1, |[BI'=¢"+e, (@, B)=—¢.

Furthermore
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(ar, A': - h;) = 8:'1 - 36! ’
(B, M — A = ¢%(0i, — 0y) .

Suppose that (a7, A7) +# 0 for some 7 with 2 <1 < 2(¢° — 1). Then
(31.8) and (31.9) imply that

(31.9)

Ll t1=eti=joPzl+ar -1 -1,

Hence ¢° + 8 = 4¢° — 4, or 7 = 3¢° which is not the case. Therefore
(31.10) a=1lg—M+TI, ('K\)=0 for151=<2(¢~—1).
Equation (31.9) also yields that for some integer

2(g%~1)

(31.11) B =¢N —= ‘Z_I A+ 4,
~()»f,41)=0 for1s%=<20¢-1).
Furthermore Lemma 13.8 implies that for 2<s8=<¢q —1,
(31.12) 4,8-0=6,0-=6,—-0)=e.
Since S8° vanishes on ® and (8, 1g) = 0 Lemma 13.2 yields that

e—1 e—1

g1 —1
(31.13) 4=500 %+ 3 0u S+ 4,

=

where (4, 7:;;) =0for 0<1<q—1,0=<j=<e—1. Now(31.12) and
(31.13) imply that

Ao —Qpy==x1 for2<s8=<q-—-1.

Define @ = a,. Then (31.13) implies that
@LlY) (@x1P+@—2a*+ S a
=1
—1
+ Sl £1+a)+@-Da+a)} s 4P,

For any value of j the term in the last summation in (31.14) is non
zero. Furthermore (@ + 1)* + (¢ — 2)a®* # 0. Thus (81.14) implies that
if there are exactly k values of j with a,; # 0, then

(81.15) k+e=<|4|*, kis even.

The last statement follows from the fact that (9,;, 4) = (7., 4) since
B* and thus 4 has its values in &7. By definition

(qcin - &)= qcﬁn — M)+ (@M — M) =¢gar + B

Lemma 381.2 implies that for any value of j with 1<j<e—1
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(31.16) @, ;)0 or (B N;)#0.
Now (31.8), (31.11) and (31.15) yield that
(—2)+22¢° -1 -1} = ¢*,
or
20¢° — o = 2¢°x .

Therefore

0<z=-—9% <2,
¢ -1

Suppose that # + 0, then z = 1. Now (81.8) and (31.11) imply
that ||4|*=g¢*+e—{(¢— 1)+ 2(¢°—1)— 1} =e+ 2. By (31.15)
this implies.that k=0 or k=2. Assume first that £ = 0, then
(81.10) implies that ||I"|? = e — 1. Hence by (31.16)

e—1

Fzzi-noj-
=1

This implies that (87, I') = 0. Consequently (31.8), (31.10) and (81.11)
yield that

—¢=(@,B)=(-\,8)=2—¢=1-¢

which is not the case.

Assume now that k =2. Choose 1,2 with 1=1'<2=<e¢—-1
so that a,, # 0 for j = 1,2, Thus 7o = D, G = G = =1 and by
(81.16)

a=1g—M+ 5 *xpi+ T, [G]P=2.

1#17,27,0

Since 8 has its values in &, and 7, has its values in &, (9,;, 87) # 0
for any algebraic conjugate 7,; of 7,.. By Lemma 13.1 7, has at
least (p — 1) algebraic conjugates. Hence p = 3, therefore q + 3.
Since @* vanishes on T Lemma 13.1 implies that for 1 <s<¢q—1

0=(a, 1y — N — o + M) =1+ (Lo, — Do + N} — (L'gy Tn’) -
Hence if (I, 7,,) = 0 then
2= |IrFz@-1>2.
Therefore (I'y, ') # 0. Hence

e—1

F=52=livoj-

Consequently (31.8), (31.10) and (81.11) yield that
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—¢=(@,B)=(—\,B)t2=2—q¢+t2=1—-¢" %2,

The assumption that # # 0 has led to a contradiction in all cases.
Therefore (81.8), (31.11) and (81.15) imply that

B =¢\+ 4, 4|P=e.
Thus a,; =0 for 1 < j < ¢ — 1. Thus (81.14) implies that
(@a+1)Ye+(q—2)ae=e.

Hence a =0 or =8 and a =1 =0. Thus 87 =¢\i —{f or ¢ =38
and 87 = ¢°\f + {i. In either case this implies that the set of charac-
ters consisting of \;, 1 £t <2(¢° —1)and {,, 1 £ 8 £ ¢ — 1 is coherent.
This includes all characters in .7~ which have L, in their kernel.
Since |Q:Q,| = ¢** > 4p® the result now follows from Theorem
11.1 with $=2=R=9, 9, =X, and £ =g,

LEMMA 81.4. . s coherent,

Proof. By Theorem 30.1 w, is a power of 3 if .&” is not coherent.
By Lemma 31.8 b is odd. Thus the lemma follows from Lemma 11.6.

LEMMA 381.5. For 0 <i1<n — 1 let \; be an irreducible charac-
ter of T with \(1) = eq”s. Let Q, be the normal closure of L* in
X, Let 1 =g < +++ < q'n be all the degrees of irreducible characters
of L/, Then I/, is a Frobenius group. For any value of j with
0=<j=<m let 6; be an irreducible character of X[Q, of degree eq’s,
Define

a = io, - M ’
Bi=¢q i, — N\ forlsis=n-—1,
Vi = q% %0, —0; for1<j=m.
Then
(.8:’770:)=0 fOTOétée—l, léién_ls
("5 %) =0 for 0=t=e—1,1<j=m.

Furthermore if e i a prime then one of the following possibilities
must occur:

& =1g =N+ 57,
@ =lg+ N+ 5 and 26+ 1=D: 0],

-1
a'=1@+q§.‘|_17].o+r’



966 SOLVABILITY OF GROUPS OF ODD ORDER
with (I 7,)=0for 0£8<q—1,0=t<e— 1.

Proof. Forl1=i1=n—-1,155<m let
&' =T+ dyw, Bi=Tun+ 4y, Y;=1Ty+ 4o,

where each d4;; is a linear combination of the generalized characters
7,. and each [I';; is orthogonal to each of these generalized characters.
Since for 1 =<8=q—1, ({, — ()" is orthogonal to a*, B; and 7v; and
all of these vanish on %, Lemma 13.2 implies that

q—1 e—1 e—1 q—1 e—1

(31.17) 4i; = aplg + a .gl ;7}.4 + ‘g{aot ‘:Z;oﬂlt — Qg .Z='1 ‘glu Dot »

where {a}U {a,} is a set of integers depending on (¢, j). Since
A — X5, a)# 0, [[4ol* <e. Since (\j — X, B5) # 0, (65 — 65, 75) # 0,
Theorem 12.1 implies that

(31.18) [|4;; 1P = e for all (3, 7) .

Assume first that (¢, §) # (0, 0). Then a, = 0. Thus (31.17) and
(31.18) imply that

(q—1)a’+(q—1)g(a+am)’+ ga&ée.

If a = 0 then for each value of ¢ either a,, + 0 or a + a,, # 0. Thus
(¢ — Da’ £ 1 which is not the case. Hence ¢ = 0 and so

—1 g1
(31.19) 4i; = ‘_gaot ?:'o Vot »

As (&) is orthogonal to #4(.7 ) Lemma 31.4 yields that for all
9
&(1)¢0 — &E(1)6L, 4:;) =0 for L=k, K <e—1.
By (31.19) (4,;, &) = +a,q. Hence
E(Dag: — & (L)ag, = 0.
Suppose now that a, # 0 for some t. Then a, # 0 for all ¢ with
1<t<e Hence (81.18) and (81.19) imply that
gle—1) = qgaz. Ze

which is not the case. The result is proved in case (%, ) # (0, 0).
Let (¢, 7) = (0,0). Then a, = 1. By assumption £.(1) = &(1) for
1<k=e—1, since ¢ is a prime. By (31.17)
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(4o &) = H{alg — 1) + aug —an(g — 1)}, forl1sk=<e—1

where the sign is independent of k. Since (4y, &L — &) = 0 this yields
that a, =a, for 1 <k <e — 1. Hence (81.17) and (81.18) imply that

@—Da’+(—Dan+(€—1g—-1)e+an—1)'=e—1.

If a, # 0 this yields that ¢ =0 and @, =1 and the result follows.
If a; = 0 then we get that

@—Da*+(e—1)g—1)a—-1)y<e—1.
Hence @ = 1 and the result is proved also in this case.

LEMMA 31.6. Let A = \,_, have the same meaning as in Lemma
31.5. Define

By=B=¢q" s\ - (.
Then (B, M) =0 for 0=t <e—1,
Proof. Let &, be the equivalence class in .7~ defined by (12.3)
which containg M. If ¢, is in .7, then the result follows from the

coherence of . 7,. For any 1, let a;/¢e be the number of characters
of degree ¢”i¢ in .7, and define ¢ as in (12.4) by

(31.20) ¢ = S agim

where ¢'me¢ is the minimum degree of any character in . 7;.
Let

(31.21) BF=4+4+17I,

where 4,€ _# (77°), 4 is an integral linear combination of the gener-
alized characters 7,, and I" is orthogonal to .7," and to every 7,,.
Theorem 12.1 yields that

(31.22) WA+ P = 2.

B* vanishes on ® and (87, 1g) = 0. Furthermore ({; —{{, 4) =e for
2<s8=<q—1. Therefore Lemma 13.2 implies that

(31.23) d=¢ g The + Gy

q—1e—1 —1
L)

22%+§%gm,

=1t=0

where ¢ = +1.
Since _7(.S”)" is orthogonal to _7(.77)" Lemma 31.4 yields that

G — &5, ) =0 for 1=k, K <e—1,
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By (31.23)
¢ 4) = £{e + (¢ — L)ay + qau},
where the sign is independent of k. Therefore
§ul) {e + (¢ — Day + qau} = &(1) {e + (¢ — Day, + gau}
for 1 <k, k¥ <e. By (81.22) and (81.23) we see that

(BL24) S0k + @+ & + (@ — 2)0h + 3 (6 + 0 + )
+@—2F @t a =4[ S 2.

If a, # 0 and a, + ¢ + 0 then for each ¢t at most one of a,, a,, + a,
€ + @y, + a, vanishes. Hence (81.24) yields that

(a'm + 5)’ =+ (q - 2)0'?0 _S_ 2.

This is impossible as either a, or a, +¢ is even. If a, # 0 then
(31.24) implies that

e—1

25+ @-D+@— 2 S-S 2.

Ifq+8,then2a} + (¢ —2)a, — e =2forl1 <t <e Henceq—2=
2 which is not the case. Thus a,, =0 or ¢ =8 and a, + ¢ =0. Thus
we get

(31.25) € 4) = £{*e + qay}
81 £e + qan} = &u(l){xe + qay} for 1<k, K <e.

Assume that the result is false. Then a, # 0 for some value of
t. We will next show that a, 0 for 1 <t <e. If this is false
then there exists 7 such that a,; =0. If v is any character in .&¥
then (v(1)&5 — &;(1)y', 4 + I') = 0. Thus (81.25) implies that

: a4+ =210
(81.26) Or 4+ 1) = 205

Thus £,1)|v(1) for every v in .&”. Let a be the exponent of 1I. By
Lemmas 80.1, 30.4 and 30.5 £;(1) = aq. Thus 9 is in the kernel of
&;. Define

o={ti1 st <e &)+ &}
By (31.25)

) =&} pr1<t<e.
D eristse

Ay =
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Thus (31.22), (81.23) and (31.26) yield that
2000 2 2901 + = S {60 - HOF 2 v + Z s ey,

where © = 4/9 if ¢ # 8 and # =16/25 if ¢ =8, and v ranges over
the irreducible characters in . By Lemma 13.7 there exist irre-
ducible characters ¢, of & which induce the characters &, for1 < ¢ <e.
Consequently

2ea’q 2 SV + @ 3D 2 2 {20 + 5 )

where ¥ ranges over the irreducible characters of € which are distinet
from all g, and do not have D in their kernel. Therefore C(D) S
otherwise since |®| is odd there are at least 2eg characters X of
degree at least a. Furthermore

2ea’q = x{u(h — 1) — a’(e — 1)} .

This implies that

(31.27) yeqa® = {_221 teo— l}a’ > uh — 1),

where y =4 if ¢ =8 and ¥y =5 otherwise. Let 1C 9, c 9, where
£ 48, Leth, =%, ha=[9D: %, & = [Cy (") | and ¢, =] Cg5 (L) |
Since & is of type II ae, < 2h, and a < u. Thus (81.27) implies that
h, — 1 < 2yqge,. Since h, = p*'e, for some prime p dividing h, we get
that »*' < 2yq. Thus ¢ =8 by (5.1). Hence »* < 24 which is not
the case as p = 5. Hence no such group 9, exists. Thus  is an
elementary abelian p-group for some prime. Therefore ¢ = p is a
prime and £,(1) = &,(1) for 1 < ¢ <e. Consequently a, = a,; =0 for
1 £t < e contrary to assumption.
Returning to (81.24) we see that

e—1

ay,<e+1.
t=1

Therefore a3, =1 for 1 <t <e¢— 1., Thus
(31.28) a,=+1 forl=st<e—1.
Now (81.24) implies that

(31.29) (@ + €)Y + (@ — 2)al,
+ (¢ — Di(a, + ¢+ ay,)' + (g— 2)(a,y + aOI)’}
Se+1,
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Suppose that ¢ +#3. Thus ¢ =5 and @, =0. Then (81.29) im-
plies that (¢ — 1)(¢ —2) < e+ 1. As g = 5 this implies that 3¢ — 3 <
¢+ 1 or e <2 which is not the case. Therefore

(31.30) g=3.
By (81.29) either a,, =0, @y = —(@y, +6)Or @y + & =0, @y = —ay,.
Now (31.23) and (31.28) imply that

4= '—*'{E: e — ._i i 77-:}

=0 t=

or

-

4= :i:{.i’?:c - 'fli 77-:} .

t=0 t=1 a=0

This is equivalent to

4= '—*'{7710 - :2; (o + 77::)}
(31.31) or

4= i{’?m - g (0 + 77u)} ;

Since (87 — B7, I') = 0, I' is a real valued generalized character. Thus
IC|*+ 1. By (81.81) || 4| = 2¢ — 1, hence by (31.22) I' = 0. Now
(81.21) implies that

n—1 &gl

(31.32) Br=qivmn — @ 3 5 g TN + 4,

where for m =1 <% — 1, \;; ranges over the characters of degree
eq’s in 7.

Suppose that .~ contains an irreducible character v. Then by
Lemma 31.4

Q)& — A, B)=0 forl1<t<e—1.

As v is rational valued on elements of Q, v* # Aj; for all 7, 5. Thus
(31.81) and (381.32) imply that

+2v(1) = (v(1)é;, B7) = G, 87) = 0.

Therefore .5 contains no irreducible characters. Hence by Lemma
31.1

(31.33) e=9p, P a prime,

Now Lemma 81.8 implies that b is odd, where b is defined in
(81.6). As ||4]?=2p — 1> 2p — 2 Theorem 12,1 implies that if c¢ is
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defined in (81.20) then
(81.34) ¢c=0(modgqg) orc=p.

Assume first that m #+ 0 in (81.32). Let a be defined as in Lemma
31.5. Suppose that

-1
af=1®iM+.Z=lvogo
Then (81.31) and (81.82) yield that

0= (,B)=x(—1).
Thus by Lemma 381.5

(31.85) @ =lgtM+ NN+, [[H|P=p—38.

Then

n—1 o4/P

(31.36) IN=rIy+y Z Z q!"—f"'xst:' ’

1=m j=1

where (I', M) =0 for m<i1<n—1,1=<j = (a;/p). Suppose that
y = 0. Then (81.31), (81.32) and (81.86) yield that 0 = (ar, 8°) = *1.
Hence ¥ # 0. Thus by (31.35) and (81.36)

Thus (81.34) yields that
(31.37) ¢=0 (modgq).
Equations (31.31), (31.32), (31.35) and (81.36) imply that

0= (@), §) = £1+ yg's/m1g/rrrm — 2y 2.

Hence (31.37) implies that 0 = +1 (mod ¢q). This contradiction arose
from assuming m # 0.
Assume now that m = 0. Then

e=¢q¢"—14 §a,-q”*’ .
=1
Hence ¢ = 0 (mod q). Thus (31.34) and 3.15 imply that

(31.38) c=p, ¢+1=0 (modg”»).
Now (81.31) and (81.32) yield that
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@I 4 p = || 87 ||} = @V Tn1) — 2pq7n + P -%— +2p-1.
Therefore
(31.39) x%e + p(p — 1) = 2xq"»p .
By (81.38), (¢ + 1) > pg’». Thus (31.39) yields that
f(®) = 2*pg’» — 1) — 2z¢’*p + p(p — 1) < 0.

It is easily verified that f(x) is a monotone increasing function for
222 and f(2)=p(r—1)—4>0. Thus # < 2. By (31.39) 2 > 0.
Hence z = 1. Now (31.39) becomes

¢+ p@—1)=2¢"p,
or equivalently
(31.40) P—p0+2¢)Y+c=0.
Therefore (1 + 2¢’+)' — 4¢ = 0, hence
4c < 4¢V* + 49" + 1 < 8¢~

Thus ¢ < 2¢*». As ¢ is even, (31.38) now yields that ¢ = ¢¥» — 1,
Now (81.40) becomes

¢ —2¢p+p'—p—-1=0,
or

@~—p—-1@*—p+1)=p.

As p is a prime one of the factors is +1 and the other is +p. As
the factors differ by 2 this implies that »p =1 =2, Hence p = 3.
Since p # ¢ (81.30) implies that p # 8. This contradiction establishes
the lemma in all cases.

TueoREM 31.1. 9 18 coherent.
Proof. Suppose that .7~ is not coherent so that Hypothesis 31.1

is assumed. Let a, 8;, 7;, \;, 8; have the same meaning as in Lemmas
31.5 and 31.6. Choose Ay = 6,. Then

(81.41) (@1 — &) = g'a" + S g™ regy
(31.42) (@™ — G = 3L a™ 7487 .

(31.43) @30, — 0 = Sy, for 1<jsm.
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Lemmas 81.2, 31.5 and 81.6 together with (81.41) imply that

e—1
@ =1g— %+ %7

or

—1

af=lg+x§+t2_1%¢

and 2¢ +1=|Q:Q'|. If the latter possibility occurs then by Lemma
10.1 it may be assumed after changing notation that in any case

e—1

(81.44) = 1@ — N+ ¢§1 Noe -

Now Lemma 31.5, (31.43) and (31.44) imply that

(31'45) —q° = (ar’ (qhﬂo - 01)7)
= (—0;,(q6,—0,))), for L<s=<m.

Since || (¢°*6, — 6.)° |' = ¢** + 1 and ((¢°*6, — 6.)", (6 — 6)) = —1, (81.45)
implies that

(31.46) (@0, — 6, = q°05; — 0 for 1<s=<=m.
Lemmas 31.2 and 31.5 and equations (31.42) and (381.44) yield that
(31.47) —q" = ("M — &) a”) = (@7 N — 5y — M)«

By Lemma 138.10 {{;|1 <7< q — 1} is subcoherent in .7~. Since
(@7 — &) 11 = ¢ + e it follows from (31.47) that

(31.48) @ — Q) =" - (.

Let Q, have the same meaning as in Lemma 81.5. Then there
exists a subgroup L, of L, such that Q,/%, is a chief factor of T
and |Q,: Q| =¢q. Let 7 (Q,) be the irreducible characters of ¥ of
degree eq%, 0 < j < m. Then (81.46) implies directly that .7 (Q,) is
coherent. Hypothesis 11.1 is satisfied with = €=8=9 and T =
8. If 7 is not coherent then Theorem 11.1 implies that |Q:Q,| <
40’ +1. As I/Q, is a Frobenius group this implies that Q, =<'
Therefore /O, is an extra special g-group. Thus |Q: Q| = ¢* for
some integer ¢. Define

T ) =T Q)U{Il=sisqg—1}.

Then . (X),) consists of all characters in .7~ having the same weight
and degree as some character in .7~ which has Q, in its kernel. By
(81.48) .97 (),) is coherent, Thus if .7~ is not coherent Theorem 11.1
implies that
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(31.49) ¢ ={0:0,|<4e’+ 1.

Lemma 13.6 applied to the group W, Q/Q), implies that e|¢g°+ 1 or
e|g°—1 and |W,| =e. As ¢ is odd this yields that 2¢ < ¢°+ 1 in
any case. Thus by (31.49)

=4+ 1=+ 1) +1<2".

This contradiction suffices to prove Theorem 31.1.

COROLLARY 81.1.1. If )\, s an irreducible character of T of
degree w, then

(i’z"_xo)r=1@“7\';+ ‘}:770:-

Proof. Let a = i,., — X and let a, = (a7, ). By Theorem 31.1

(81.50) GWlg — &) = vl + @A, — L)
= v — & + vi(la" .

As 7, is rational on T', (M, M) =0. By Lemma 13.9 (9., £i) = 0.
Thus (31.50) implies that

(Wlg — &), ) =apy() for 1<t<w,—1.

Hence by Lemma 31.2 (@, 7)) #0 for 1 st=w,— 1. As |9 |>2
(@,1g) =1, (@, A — X)) = —1 and ||a”|]* = w, + 1 we get that

wy—1

a'=1m—7\.ﬁ+i§iﬂ°..
As a° vanishes on B Lemma 13.2 now implies the required result.
COROLLARY 81.1.2. &' 18 a Frobenius group and w, is a prime.

Proof. Suppose that .&” contains an irreducible character 6.
Choose ¢&; in S7(9). Then (BQ)E: — &(1)67) e A(S”). If & is not
coherent 4 may be chosen in $7(9') by Theorem 30.1 and Lemma 31.1.
Hence by Corollary 31.1.1 and Lemmas 13.9 and 30.8,

0 = (BL)E; — £:1)67, (g — M)
= 00)(£ 57, 3 ) = 260D

Therefore . contains no irreducible characters. Lemma 31.1 now
implies that &' is a Frobenius group and w, is a prime,
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32. Subgroups of Type V
THEOREM 32.1. & contains no subgroup of type V.

Proof. Suppose that the result is false and £ is a subgroup of
type V. T is tamely imbedded in & by Theorem 14.2. For 0 <1< n
let 8, have the same meaning as in Definition 9.1 and let A, be
defined by (9.2). Let &, be the set of elements in & which are
conjugate to some element of ¥U; for Le Y7..&. By Lemma 9.5

1
(82.1) 1@ (8]

= 7 Serle(D = - (1~ 7).

Let M be an irreducible character of degree w, in .¢~. By Theo-
rem 31.1 and Lemmas 10.3 and 9.4

(32.2) M(T) =a + MT) for TelT",

where ¢ is independent of 7. Now Theorem 31.1 and Corollary 31.1.1
imply that @ =0 in (82.2). Thus A (T) = MT) for TeIT* Hence
Theorem 31.1 and Lemmas 10.3 and 9.5 imply that

(823) 3, IV = S MO P =1 -

I@I IEI If"C’I '

Let B be defined by Theorem 14.1 (ii) (a) and let B=B—BW, — O*.
Define

=UG'RG .

ee®
Thus Theorem 14.2 (ii) (a) implies that

(82.4) A g =111, 1
|8 | wy, ¢ quw,

Let @, be the set of elements in @ which are conjugate to some
element of $*. Since » is a T.I. set in G,

(32.5) 116, =

1 —
6] PAETIAARE

Define
®o=©_®1_®’—@3o
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Then (32.1), (82.4) and (82.5) imply that

1 1 1 1 1 1
— |zl (1l -4 — ) [ — — ——
I(SII ol 2 ( w, q+qw,) (w, w,[i”[)
1 1 1 1 1 1
) (qu qul@l) g wg qu w|T|
1 1 1 1 _ 1
qu| 9| g 8 8 8¢
By (32.3)
1 w. w
32.7 —_ V@ P<s1-—(1- )= % |
(32.7) &7 SwINEr s ( II,l) -

By Corollary 81.1.2 w, is a prime and HU is a Frobenius group.
Hence by Lemma 13.1 7y, :-+,%,., are algebraically conjugate
characters whose values lie in «#,,. Every element whose order is
divisible by w, lies in ®, U ®,. Thus 7,;(G) = 1,(G) is a rational integer
for Ge®, and 1<j=<w,—1. Now Corollary 81.1.1 implies that
1 —A(G) + (w, — 1)a(G) = 0 for Ge®,. Hence A (G) = 1(mod 2) for
Ge®, Therefore |\ (G)|=1forGe®, Now (82.6) and (32.7) imply
that

W, 1
— > =
|Z'| © 3¢
or
(82.8) 3qw, > |T'].

Since " 1, (32.8) yields that 8w, > |¥':3"”| and |T”|=g¢. Thus,
T, acts irreducibly on '/, Therefore ¥’ is an extra special group.
Let |2’ :%”| = g¢*. Then by Lemma 13.6, w, < (¢° + 1)/2. Thus (32.8)
implies that ¢* < (8/2)(¢° + 1) < 2¢°. Hence ¢° < 2 which is not the
case. The proof is complete.

COROLLARY 32.1.1. Let & be a subgroup of type II, III or 1IV.
Let & have the same meaning as in Sectton 29. Then &7 18
coherent.

Proof. This is an immediate consequence of Theorems 30.1 and
32.1.

33. Subgroups of Type I

LEMMA 33.1. Let & be @ maximal subgroup of & and let £ have
the same meaning as in section 14. If 8 is of type 1 with Frobenius
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kernel © let < be the set of all irreducible characters of & which
do not have © in their kernel. If £ 1is of type II, III or IV let &
be the set of characters of 8 each of which 18 induced by a non
principal irreducible character of ' which vanishes outside Q. Let
Q; have the same meaning as in section 9 and let A, be defined by
(9.2). If ne & then A\ can be defined. Furthermore \° is constant
on A; for Le Y, &.

Proof. Since |®| is odd Lemmas 10.1 and 13.9 imply that A\°
can always be defined as {)\, X} is coherent.

If Le& then %, = {L} and there is nothing to prove. If Leg;
with 7 # 0 let 9, be a supporting subgroup of € such that CLYeEN; =
N(©). If N, is of type I then the result follows from Lemmas 4.5
and 10.3. By definition N; cannot be of type III or IV. If R; is of
type II then the result is a simple consequence of Corollary 32.1.1.

The main purpose of this section is to prove

THEOREM 33.1. Ewery subgroup of type 1 is a Frobenius group.

All the remaining lemmas in this seetion will be proved under
the following assumption.

Hypothesis 33.1.
® contains a subgroup of type 1 which is not a Frobenius group.

If Hypothesis 33.1 is satisfied the following notation will be used.

o is a set of primes defined as follows: p;eo if and only if @&
contains a subgroup IM; of type I with Frobenius kernel &; such that
a S,-subgroup of M;/K; is not cyclic.

p = p, is the smallest prime in 6, M =IM,; & = K,.

B, is a S,-subgroup of M.

P is a S,-subgroup of & with P, & B

® is a maximal subgroup of & such that N(2,(B,)) & &.

% has the same meaning as in Lemma 33.1.

If 8 is of type I let 1 be the Frobenius kernel of 8 Let & =
U€ with UNE =1.

If 8 is of type II, III or IV let  be the maximal normal nilpotent
S-subgroup of . Let U be a complement of  in ¥ and let T, be
a complement of & in € with T, & N).

LEMMA 388.2. £ is the unique maximal subgroup of & whickh
contains N(2,(B,)). Furthermore R is either a Frobenius group or
L is of tyve III or IV and B can be chosen to lie in 1.



978 SOLVABILITY OF GROUPS OF ODD ORDER

Proof. By Theorem 32.1 2 is not of type V. If 8 is of type II,
IIT or IV then B, S ¥ since P, i3 not eyclic, Since  is a T.I. set
in @ it may be assumed that P, S U.

There exists Pe 2,(%,) such that C(P) S M. Thus either P =
P, or Z(P) is cyclic and Z(P) & By. If a S,-subgroup of 1 is abelian
then P, is the S,-subgroup of Ul. Hence 2,(B,) char Ul and so N() &
N(Q2(P)) = & Therefore £ is of type III or IV and ¥ =P, & U.
By definition ¥ is the unique maximal subgroup which contains
N(Q2,(B,)). If the S,-subgroup of U is not abelian then L is of type
IV and it may be assumed that L < 0. Then 2,(P,) S £ and in this
case also L is the unique maximal subgroup of & which contains
N(2,(Bo).

Suppose that 2 is of type I. Let ¥, be a S,-subgroup of 8 with
B & Bi. If pen(€), then P, is abelian. Thus, P, = P, and so P, =
PB. Hence, P is an abelian S,-subgroup of &. By construction,
N(B) & 8. Hence, P < ¥, by Burnside’s transfer theorem. Since
| 8] is odd, if an element of N(P) induces an automorphism of P of
prime order ¢, then ¢ < ». By the minimal nature of p, a S,-subgroup
of € is cyclic. Let P*=PNCA). Since L is of type I, P* is
cyclic. We can now find a prime ¢ such that some element N(P)
induces an automorphism of order ¢ on P/P*. Let T be a S,-subgroup
of & permutable with ®B. Since ¢ < p, L normalizes P, and Q is
cyclic. Since LU is a Frobenius group, £,(X) centralizes P/P*. Let
By = Cy(4(2)). Then P = P*P¢, and [Q, BF] & P*.

Let 2* be a maximal subgroup containing N(2,(Q)). The minimal
nature of p implies that Q &£ 2*. Hence, by Lemma 8.18, Q centralizes
every chief p-factor of £*, so L centralizes P, which is not the
case. We conclude that p ¢ n(€). Therefore pen(ll). Hence PSU.
U is not a T.I. set since P is not a T.I. set in @, This yields that
either penf or m() = 2. In either case this implies that every
prime divisor of |€| is less than p. The minimal nature of » now
implies that € is a Frobenius group.

The previous parts of the lemma imply that if £, is & maximal
subgroup of @ which contains N(2,(3,)) then &, is a Frobenius group
and p divides the order of the Frobenius kernel of &,. If B is abelian
then =P, and L=, = N(2,(By). If P is non abelian then L =
L, = N(Z(®3)). The uniqueness of £ is proved.

LEMMA 38.8. There exists an irreducible character \ € & which
does not have P in its kernel such that M1)|(p — 1) or M1)|(p + 1).

Proof. Let M be a character of £ which does not have P in its
kernel and is induced by a linear character of 11 if £ is a Frobenius
group and by a linear character of ¥ if £ is of type III or IV,
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Either P = B, and so m(P) =2, or Z(P) is eyclic. In either case
this implies that if ¢ € = (N(B)/C(P)), ¢ # » then g |(p + 1) or ¢|(p—1).
If & is of type III or IV then A(1) = || is a prime and the result
follows. Suppose that L is a Frobenius group. If pexn} then €| =
A1) has the required properties by assumption. If p ¢ n¥ then O is
abelian since  is not a T.I. set in &. Thus P =P, and m(P) = 2.
Suppose that g, ¢,€ n(€) where q,|(p — 1) and ¢,|(p +1). Then an
element of € of order ¢, acts as a scalar on P. There exists Pe Pt
such that N((P>) & M. Thus M contains a Frobenius group of order
pq, which is not the case. Therefore every prime in #(€) divides
(» — 1) or every prime in 7(€) divides (p + 1). Since (p+1,p —1) =
2 this yields that |€||(p + 1) or |€||(p —1). The lemma follows
since M1) = | €.

LemmA 33.4. Let N be the character defined in Lemma 383.3.
Then

AM(L) = ML) for Le®

Proof. Set e=|2:%|. Observe that if £ is a Frobenius group,
then since pen*, it follows that ¥ =1, so that A1) =e. This
equality also holds if & is of type III or IV.

Set a = (fg, — ) so that a* = 15 — A\ + 4, where 4 is a gener-
alized character of & orthogonal to 1g. Let A=\, -+, N\, be the
characters in .&” of degree e. Since e divides (p + 1)/2 or (» — 1)/2,
it follows that f >e+ 1, and so (4,\)) =0, 1 <1< f.

We next show that & is coherent. If £ is a Frobenius group,
the coherence of & follows from Lemma 11.1 and the fact that
is of type I.

Suppose & is of type III or IV. Then Hypothesis 11.1 and (11.2)
are satisfied with the present £ in the role of £,  in the role of
9, and /D in the role of . By Lemma 11.1, we may assume that
|&:8"|<4|2: ¥+ 1. Hence, |:%"|=9" and e = (p + 1)/2, so
that P=U. If P is non abelian, then e divides (p — 1)/2. Hence,
we may assume that B is abelian of order »* and £ is of type III.
By Theorem 29.1 (i), no element of P! centralizes . This implies
that if g, ---, &, are the characters in .&” of degree pe, then f’ = 2p.
Hence, (4, 5) =0, 1< 5= f'.

Let 8= (p\, — tt), so that B = pAf — & 3\ — ¢ + 4, with
(4, \7)=0. If =0, the coherence of & follows from Theorem
30.1. As ||BA|P=9"+1, and f = 2(p — 1), it follows that 0 < z < 2,
and || 4,[?< 2. Hence, 2 =1 and (4, ¢;) = 0. But now (a*, 87) =
@ B)=—p=—(—1)+ (4, 4), so that (4, 4) = —1. This is not
the case as 4 and 4, are real valued generalized characters of @



980 SOLVABILITY OF GROUPS OF ODD ORDER

orthogonal to 1g. The coherence of . is proved in all cases.
Since (4, \7) = 0, the lemma follows from Lemmas 9.4 and 33.1.

LEMMA 383.5. Let )\ be the character defined in Lemma 33.3. Then

I MK < )T%T .

liml

Proof. Let @, be the set of all elements in @ which are conjugate

to an element of A, for some Le®. Let ®, be the set of all ele-

ments in @ which are conjugate to an element of A, for some K € &,

No subgroup of ® can be a supporting subgroup for both 8 and M.

If & were a supporting subgroup of M then p would not be minimal

in the set 6. Thus @, is disjoint from @,. Therefore by Lemmas 9.5,
4.5, 10.3, 33.1 and 33.4

1 T ] 1 T Hl — 1 r H
WZMX(K)I |®|EmllN(G)l <1 l@lz‘%l @]
=1—T§—|Z§||7\,'(G)|’=1-—l—;|—2§!|7\.(G)|’
C1 (1o MDYy MY
( ISI) EY

LEMMA 33.6. Let M = KF where F = M N L. Then there exists
Fin (BN Z(F)) such that Co(F) L &. Furthermore MM satisfies
Hypothesis 28.1.

Proof. If & isof type I, then § S U, Thus, ¥ is nilpotent and
hence abelian. The result follows from 8.16 (ii) and the fact that
P, is not cyelie.

Suppose & is not of type I. If § L UD, then we may assume
that W, S §. Then WP, is a Frobenius group and WP, = F. By
3.16 (ii), T, centralizes an element of K. Since |W,| is a prime,
this contradicts the fact that I contains a Frobenius group of order
[W,R|. Thus, FSUD. Let F.=FNH. Since $ is a T.I. set in G,
we get that &, is a cyclic normal S-subgroup of . If &, = 1, then
% is abelian and the result follows from 3.16 (ii).

Assume now that §, # 1. We may assume that § = F(F N U).
If 92,(%P,) does not centralize ¥,, then there exists P* & 2,(B,) such
that §,P* is a Frobenius group. Hence, Co(B*) # 1 by 3.16 (ii). But
in this case, * lies in no normal abelian subgroup of ¥ contrary to
the definition of groups of Frobenius type. Thus, 2.(%,) centralizes §,.
Since N U is abelian and § = F.(F N U), this implies that 2,(B,) &
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Z(%). The lemma now follows from 3.16 (ii).

LEMMA 33.7. Let _# be the set of all irreducible characters of
M which do mot have R in their kermel. Let N be the character
defined in Lemma 83.3. If _# 18 coherent themn \* is constant on &*.

Proof. Let O, - D, be a set of supporting subgroups of M in
©, and let N; = Ng(H:). By definition,

Mt = U, Cn(K) .

Suppose MeT¥ and Cy(M) L M. We will show that Me®. For
otherwise, some power of M is M-conjugate to an element A of RFF.
Since & is a supporting subgroup of some tamely imbedded subset of
®, it follows that Cy(4) S M. Hence, M is in &

We next show that R;is of type I or II, 1 < ¢ <s8. Suppose N;
is not of type I. Then N, = Hi(It; N M), and we assume that N, N M =
LNV NF). Since P; is a supporting subgroup of ‘.th, we may
choose M in S so that Co(M)EN;, Cx(M)ZL M. By the first paragraph,
Me®*. Hence, ®; N8 = 1. If Nxg(N: N ®) & N, then by a well known
property of nilpotent groups, we have 8 =R, N K, so that M= N,
which is not the case. Hence, Ngx(R; N ®) £ N, so N; is not of type
III or IV; M; is of type II.

Let a be the least common multiple of the orders of all elements
of & We will show that (@ |RD)=(, | D:)=11=<1=<s. If 8 is
of type I, then € is a Frobenius group, so a divides |1I|, and we only
need to verify that £ is not conjugate to MM or N,,1 <71 <838 As
none of the groups M, N, ---, N, is a Frobenius group, this is clear,
Suppose L is of type III of IV, so that & = %11281,33 = U, Since
none of M, N, ---, N, is of type III or IV, we have (||, |8]) =
(9L, 19:)=1,1=<1=<s. Since Ng(ll) < &, it is trivial that (|1, |R() =
(quj, %) =1

We appeal to Lemma 10.4 and conclude that \* is rational on &
and on every supporting subgroup of o,

Let 9; be a supporting subgroup of 9% and let @ be a character
of 9; with (@, 1) = 0. Let z, ¢, be irreducible characters of R; with
M9, = M9, = @. Then ||(#t, — ££)*||" = 2 and no irreducible character
of ® appearing in (¢, — (t,)* is rational on ;. Thus, (A7, (¢, — £)*) = 0.
If N, is of type I, then Hypothesis 10.2 is satisfied with our present
s in the role of & If N, is of type II, then a complement to 9; in
N is abelian, and again Hypothesis 10.2 is satisfied. Hence, by Lemma
10.2, \° is constant on the cosets of 9; in M\; — O;, and in particular
is constant on all the sets UA,, Me M. As _# is assumed coherent,
an appeal to Lemma 10.5 completes the proof of this lemma.
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Theorem 33.1 will now be proved by showing that Hypothesis 33.1
leads to a contradiction.

Choose Pc P! and KeC(P)N &. By Lemmas 33.1 and 33.4

(33.2) N (KP) = N(P) = MP) .

Let p be a prime divisor of p in &&. By Lemma 4.2
(33.3) A(K) = A(PK) (mod p)
(33.4) MP) =nM1) (mody).

Now (33.2), (33.3) and (33.4) yield that
A (K) = AN (PK) = MP) = M1) (modp).
By Lemma 10.4 A*(K) is rational. Thus
A(K) =M1) (mod p) .
Since M1) = (p + 1)/2 by Lemma 33.3, we get that
(33.5) IV(E) | =2M1) —1 for Ke®, Cp(K)+1.

If every element in & commutes with an element of ¥ then (33.5)
implies that

(33.6) IAV(K)| =M1) —1 for Kef*.

If not every element in & commutes with an element of ¥ then
A* is constant on £ by Lemmas 28.2, 33.6 and 33.7. As (33.5) holds
for at least one element in & we get that (83.6) holds in any case.
Now Lemma 33.5 and (33.6) imply that

MU S 1R 1= 1 6
EIIR T

This can be written as

[T: R {i®—1}/e—1) _
(833.7) 2] > %] ( . ), where ¢ = (1) .

Since [£:2NM|>1 and LN WM is a complement to & in I, (33.7)
yields that

150820 (i 1y 5 (8- 2y

3
Hence 8|R]/4> 8| —1lor|8| < 4. Thus |®]| =3 and a S;-subgroup
of ® is eyclic contrary to the simplicity of ® and the fact that |G|
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is odd. This contradiction completes the proof of Theorem 33.1.
THEOREM 33.2. @& contains a subgroup of type II.

Proof. Suppose false. Then by Theorems 14.1 and 33.1, every
maximal subgroup of ® is a Frobenius group. Let I be a maximal
subgroup of ® and let & be a complement to the Frobenius kernel of
M. We will show that & is abelian. Suppose false.

Let o be the set of primes p such that for some maximal subgroup
M, with Frobenius kernel 9, and complement &, a S,-subgroup of €, is
not in Z(€,). Let p be the least prime in 6. We may suppose that
a S,-subgroup P of € is not contained in Z(€). Then PN E = 1. Let
I, be a maximal subgroup of & containing N(2,(%)). Since 2,(P) =
Z(€),E = M. If P is contained in the Frobenius kernel & of M,
then so is [P, €] + 1. This is impossible as & does not centralize B,
while & is nilpotent. Hence €N K =1. Since W & &, it follows
that B is not contained in M, and that a S,-subgroup of M, is eyelic.
Hence, by Burnside’s transfer theorem, @ is not simple. Since this
is not possible, € is abelian.

Let Ge®* Let M be a maximal subgroup of & containing C(G).
It follows that C(G) is nilpotent. Hence, ® is solvable by the main
theorem of [10]. The proof is complete.

34, The Subgroups & and ¥

By Theorems 382.1 and 33.2 & contains two subgroups & and T,
each of which is of type I, III or IV and which satisfy Condition
(ii) (b) of Theorem 14.1. The following notation will be used throughout
the rest of this chapter. This differs slightly from that introduced
previously.

=0, T=PT, || =q, |P'I=p.

‘Thus p and ¢ are both primes. Let P be the S,-subgroup of & and
let © be the S,subgroup of ¥. Then P* S P, Q* € 0. Let

W=P*Q*, W=/ — P* —Q*.

Let I be a complement of P in &' and let VL be a complement of O
in ¥'. By 8.16 (i) U1 and B are nilpotent, thus

Uucp=86,
re?

if & is of type II and
Uce==2,

eel?
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if T is of type II. Let
€ =Cy®), D =Cx(R) .

If Sis of type IIl or IV let U* =1, If & is of type II then
a maximal subgroup I which contains N(1) is not conjugate to T
since M is not g¢-closed. Hence by Theorem 33.1 I is a Frobenius
group. Let U* be the Frobenius kernel of M. Thus 1 & U*, Define
B* similarly. Let

€j=c, [D|=d, [Ul=u, |B|=vd,
[u*|=wu%, |B*|=ov*d, |B|=g.

&7 is the set of characters of & which are induced by irreducible
characters of & which do not have 9§ in their kernel.

7" is the set of characters of ¥ which are induced by irreducible
characters of £’ which do not have Q in their kernel.

The set .5” as defined here is a subset of the . as defined in
Section 29. Thus by Corollary 32.1.1 .5 and .~ are coherent.

%, %, are the sets of irreducible characters of N(1*), N(B*)
respectively which do not have 1*, B* respectively in their kernel.

For0<1=<g—1,0=<j=<p—1, 9; are the generalized characters
of ® defined by Lemma 13.1; f,; are the characters of & defined by
Lemma 13.3; v;; are the characters of ¥ defined by Lemma 13.3. For
0=7=<p-—1,& is the character of & defined by Lemma 13.5. For
0=1=q—1, is the character of & defined by Lemma 13.5.

If =@, c®, where &, is a maximal subgroup of @ and if «
is a class function of &, then & denotes the class function of &, induced
by @. Whenever this notation is used &, will be uniquely determined
by the context.

Throughout this section no distinction is made between & and T.
Any result in this section about one of these groups is automatically
valtd for the other by symmetry.

LEMMA 34.1. Either

pr—1
u pra

and U/€ s cyclic or U/€ i8 the product of at most ¢ — 1 cyclic groups
and w|(p—1)y* For 1<j=<p—1 & i3 induced by a linear
character of P&, £(1) = uq. Either PU is a Frobenius group with
|B| =p" and
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or & contains an irreducible character of degree uq which s induced
by a linear character of PE.

Proof. If P* & D(P) then by 3.16(3) PU/D(P) is nilpotent. Thus
PU is nilpotent contrary to assumption. Hence ¥ contains a subgroup
PBo such that P* NPy =1 and P/PH, is a chief factor of S. Hence
UL* is represented on the elementary abelian group L/%,. By 3.16 (i)
P11 is nilpotent. Therefore UQ*/€ is faithfully and irreducibly
represented on P/P,. By 3.16 (i) | P: By | = »°

Let P/B, = BP*/By X PB./Po, where Q* & N(P,). By Lemma 4.6 (i)
Ny(B) S Cy(B/Bo). Thus Ny(P.) S Cy(P) = €. Hence any non principal
linear character of PE/P,€ induces &; for some j with 1 <57 =<p— 1.
As p is a prime the characters &; are algebraically conjugate for
1=7=<p-—1. Thus &;(1)=uq for 1 <57<p—1. Let & =+, for
+r; & linear character of PE/PB,E.

Suppose that |PE: D(PE)| > p°. Then PE contains a subgroup
9 # B, such that PE/D is a chief factor of &S. Let A be a non
principal linear character of B€/9. Then . induces an irreducible
character of & of degree ugq.

Suppose that U is represented reducibly on B/P,. Since U g NQ*
the irreducible constituents of this representation all have the same
dimension. This dimension is 1 since ¢ is a prime. Thus 11/€ is the
direct product of k eyclic subgroups for some integer k, each of which
has order dividing (»p — 1). No element of /€ is represented as a
scalar as UQ* is a Frobenius group. Therefore k¥ < q and « | (p — 1)*%.
The irreducible constituents of the representation of /€ on P/P, are
distinct since ULQ* is irreducibly represented on B/PB,. Let P/P, =
Py X «o+ X P, where PB;.;, = Q*P,Q° for some generator Q of V* and
such that U normalizes each PB;. Let

P=1:[1P‘

with P,e B}, P, = Q'P/'Q and QP,Q' = P,,, for 2<i1=<q 1. Sup-
pose Uell and UQ centralizes P for some 5. Let UP,U P#¢ then

P (UQ)'P(UQ) = Q] Prq.

Then QP»@Q’ = P,.;. If j + q then P,.; is conjugate to P,. Hence
Ppi is conjugate to P;* which is impossible as |I1Q | is odd. Therefore
j=gq. Then UP,U=P, for 1<1=<q and so Uc@. This proves
that no element of (1Q/C)! leaves P fixed. Let /4 be a non principal
linear character of /P, with ker £, = B, x -+ x B,. Let 1, = p2'™;
then g = ge,p7*1; - - - 12, induces an irreducible character of & of degree
ug.
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Assume now that U is irreducibly represented on P/P,. Then /€
is cyclic since 1/€ is abelian. If a subgroup of /€ acts reducibly on
BB, then it is represented by scalar matrices. As UQ* is a Frobenius
group every non identity subgroup of /€ acts irreducibly on PB/P..
Thus U/€ permutes the subgroups of order » in PB/P, and no element
of (N/C)* leaves any such subgroup fixed. Hence

p—1
up-—l.

Suppose now that & contains no irreducible character of degree ug.
By an earlier part of the lemma this implies that | B€ : D(PC) | = p°
Thus € =1 and |PB: D(P)| = p°. Since D(P) N P* = 1, we must have
D(P) =P. By 8.16 () P'U is nilpotent. If P’ #1 then there exists
a subgroup P, of P’ such that | P’ : B,| = ». Hence P'/P, is the center
of PB/PB, since N acts irreducibly on P/P'. Thus P/P, is an extra special
p-group. This implies that ¢ is even which is not the case. Thus
P’ = 1. Hence PU is a Frobenius group. Consequently Pl contains
(p* — 1)/u irreducible characters of degree u. Lemma 13.7 now implies
that

LEMMA 34.2, Either PU is a Frobenius group with | P| = »" and

p—1
p—1

or OB is a Frobenius group with |Q| = q° and

¢ —1

v = o

Proof. If the result is false then Lemma 34.1 implies that .&*
contains an irreducible character A of degree ug and .7~ contains an
irreducible character 8 of degree vp. Every character in .7 * is rational
valued on P by Lemma 10.4. Since |® | is odd this implies that every
generalized character of weight 1 in .&#° is orthogonal to .77 *. Define

a=k—€1; B=0_C1-
Then a(l) = 8(1) =0 and (a7, 8°) = 0. Thus

q—1 -1
0= (v — 6,07 — ) = (£ 5 % £ 3, 7)
= i(vu’ 7y = £1.
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This proves the lemma.

LEMMA 84.8. For 12j=<p—1

S A X) P 2z ue | B —w
XE(RE

Proof. Since PE is a T.I. set in @ and .&” is coherent the Frobenius
reciprocity theorem implies that for 1 =j<p—1

0i(X) = e(t(X) + (X)) for Xe(PE),
where « is a generalized character of &'/, and & = 1. Therefore
2 (X = 2 (X Ja(X) + phoi(X)a(X)}
(ﬂs@) (*@)

+ E‘Iﬂo;(X)I’+ Z‘.‘F (X)) .
(B (BE

This implies that
(84.1) (q%;’ [7X) " = —2£4,(1)a(1) + cu| B| — u’
+IB1 3, 1(O)F — ety
By Lemma 34.1, 2u + 1 < ||, thus
—24;(Dx(1) + | B %T. |a(C) | — a(1)*
2 |B| %‘. la(C) ' — 2u + Da(l)
= I%I@Si‘.la(c)l’g 0.

The result now follows from (34.1).

LEMMA 344. For1£1<qg—-—1
> @z B - e,

xeRE

Proof. Since PC is a T.I. set in @ the coherence of .5 and the
Frobenius reciprocity theorem imply that 7,(X) = a(X) for X e PC —€,
where « is a generalized character of &'/, Therefore for1<i<¢-—1

(34.2) S 1 7(X)=_ 3 |aX)[
xePE—C XERE—C

={|§BI—1}%I“(C)I’-

If PeP*, QeQ@** and q is a prime divisor of ¢ in &,, then by
Lemma 4.2
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7:(P) = 7:(PQ) = 1 (mod q) .

Thus the expression in (84.2) is non zero. The result now follows
from the fact that

Eé‘.la(C)I’ =0 (modc) .

LEMMA 34.5. Suppose that & contains an irreducible character
A of degree uq which is induced by a character of PE. Then

S IMX) P> uge | B — (ug)' — 2ug®.
xewpe?

Proof. As PE€ is a T.I. set in & the coherence of & and the
Frobenius reciprocity theorem imply that

AV(X) = MX) + a(X) for Xe(PE),
for some generalized character « of &'/P. Therefore

S IMX)P= 2 IMO) P+ S MXAX) + MX)a(X)}
got pe pe?
(34.3) + E.‘ |a(X) |* = uge | P| — (ug)’ — 2n(D)a(1)
(B
+{P -} X|a(C)' + Xl
41 11

If |a(l)| = ¢ then by Lemma 34.1
2M(1)| (1) | = 2uqg| (1) | < 2ua(l)* < {|B| — 1} a(1)*.

Hence the result follows from (84.3) in this case. If |a(l)| < ¢ then
201)| a(1) | < 2uq® thus (34.3) also implies the result in this case.

LEMMA 34.6. Let &, be the set of elements in & which are not

conjugate to any element of PE, L or . Suppose that & contains
an irreducible character ) of degree uq. Define

A, ={G|Ge®, \(G) + 0}
A, = {G| G € B, 7(G) = 0}
A ={G|G e, Pu(G) # 0, 7n(G) = 0 (mod (¢ — 1))} .
Then
G=AWUA,UY,.

Proof. Suppose that Ge@®, — (A, UW,). Let a=¢ — . Then
¢ —2M(G) =0 and

G =)y = 'J::Z;.,’?u — A
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Since G € @,, 7,,(G) is rational. Thus 7,(G) =N(G) for 1 <i<q 1.
As Ge¢ U, U A, we must have that

(34.4) 0= Z 7:(@) = 7a(G) + (¢ — D7u(@)
= 7u(G) (mod (g — 1)) .

Suppose that 7,(G) = 0. Then since a’(G) =0 we must have that
Na(G) =0 for 0 <+ =<q—1. Hence by Lemma 138.1

0= (1@ — o — Nu+ M) (G) = 1 — 7,(G)

contradicting the fact that G¢U,. Hence 7,(G) # 0 and by (34.4)
G €U, as required.

LEmMMA 34.7.

(i) If ¢ =5 then |PB| = p* and uje > 9p'/20q.

(ii) If p,q="5 then ¢ =1 and u = (18/20) p*/q.

(ii) If p=8and ¢+ 1 then u =121,q =5, ¢ = 11.

(iv) Ifq=38thenc=1o0rc="T. Furthermoreu > (p* + p + 1)/18.

(v) If q =3 then P is an elementary abelian p-group and |P| =
pPorp=Tc=1and |P|="T.

(vi) If q=38 and ¢ =T then u > (p* + » + 1)/2.

Proof. If Plisa Frobenius group with |P| =% u = (p*—1)/(p — 1)
then all the statements in the lemma are immediate. Suppose that
this is not the case. Then by Lemma 34.1 & contains an irreducible
character A which is induced by a linear character of €. By Lemma
34.2 OB is a Frobenius group with |Q| =¢* v =(¢" — 1)/(q — 1),
d=1.

PE, L and ® are T.I. sets. Let ®,, A, A, A, have the same
meaning as in Lemma 34.6, Then

1 1 1 1

2@ =1—-(1—-2> - =4+ —

yl d ( P q pq)

1
34.5 Ble — {2 -1
(34.5) qucl‘Bl{Il 1} - vaDI{I | — 1}
_1,1_ 1 11, 1 .1
P g pg qu pv  quc|P|  pvg*

Since \* is rational valued on &, by Lemma 10.4, Lemma 34.5 implies
that

1 1
LI == INX) Pl - —— (X))
| % | g%‘:l (X)] I‘BI @%I (X)|
(34.6) uq 2
<

®le T TBle
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If Lemma 34.3 is applied to ¥ then Lemmas 18.1 and 34.4 yield that

g s lsipx)p
g g U,

1 1 1 1 1
) =1—(1-1_1,1)_ p_—— 1 gemig
LD = ( P q+pq) p'UQ"{vq } |?13]uqc{lqSI fo
v

1 1

1,
P pg*  uq | Plug

Lemmas 13.1 and 34.3 also imply that

1 1 1
— | S —= Nu(X) [*
| I-—( 1) Z;l (X)|

sl fi-(1-1-1,1)

(34.8) T (-1 P 494 D9
1 o
~ ey e %1 — w0}
(q—1)'{ - +qcl‘«Bl}

Lemma 34.6 and (34.5), (84.6), (84.7) and (34.8) now imply that

1 1 1 1 1 1 uq
-+ — @-1)+————-—=
P quc|P] pve? ) ¢ pa qu |Blec
2q 1 ) 1 1 1
+ + + = - - =
|Bje |Blug p¢®> ¢ p¢ qu
1 u

R e

Since v = (¢* — 1)/(g — 1), this can be simplified to

1_ (u+29 , =1 1 1
p =" I®lc ' 1Blauwe  pa—1) pr@-1D
(¢-1) 1 u
" + q° +m(q—l)+qcl‘fBl(q—-l)’
(84.9) _(u+2q_, (-1 u

|B|e |Bque  ge|Bl(@—1)

(@+1) , @—-1'—1
re(qg — 1) pe*(q — 1)
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By Lemma 34.1 4 < (p* — 1)/(» — 1) and | B| = p°; thus (34.9) implies that

_I_S(u+2)q+ g+ 1) 1
~ 1Ble -1 elp —1 -1y
110) P I?BII inq(q ) ep—1ag—1)
+ —.
p'q  pg™!
Let |PB| = p°» then
(34.11) 2 =c¢ = 1(mod 29) .

Suppose first that p, ¢ = 6. Then (34.10) implies that

1. w 29 3 1 2
p = pe + pize + 10p + 80(p — 1) + 5'p°

Hence by (5.2)

1_ ug 1 3 .32 , 12
P < pwe  40p + 10p + 80p + 80p °
Therefore .
34.12 9 » 138
( ) xc P° > 20p
Therefore
(34.13) 1, 18p2 o

rry 20q 2q °

Suppose that ¢z # 1. Then by (34.11) cx > 2¢. Thus (34.12) implies
that

18 1% 1 1
20 2 2 (p—1)°
Thus 13(p — 1) < 10p or 3p < 13 which is not the case. Hence ¢ =

2 = 1 and (34.13) completes the proof of statement (ii) of the lemma.
Suppose now that p = 3. Hence (34.10) yields that

1 _(u+2q ., (@+1) 1 1,1
4.14 — = T 55
(34.14) 3~  exd + 3g(g — 1) 2q(g — 1) + 3% + 3¢

As g = 5 this implies that

log» 1.1 ,@'+1) 1
3=cx3"+10+160+ 3q +75'

Hence by (5.3)
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160 —48—-3—-24—-10 _ 75 3

> 480 =280 20"
Thus
38 g
4, ICESO I
(34.15) - > 20 g

This yields that

Hence 4q > cz.
Assume that cx # 1. Then (34.11) implies that

(34.16) cx=2¢+1,
Suppose first then ¢ = 11. Then (34.14) implies that

1 q % 2 1 1 2 1 1
—< 4 %, 4 L S S S
3 ex 8 + 55 + 2.10° + 10.3® cx 3° 300
Henece
9 uwy,1 2 1,1 3 _5
cx3">3 55 60>3 54 18 °
Therefore
4 .85 .26 1
cx u 18 > 18 > 2

contrary to (34.16). Suppose that ¢ = 7. Then c¢x =15 by (34.16).
Thus # =3 and ¢ =5 since « is a power of 3 and (¢, 8) = 1. This
contradicts (34.11). Hence ¢ = 5. Thus by (34.16) ¢z = 11. Hence
# =1 and ¢ =11 since z is a power of 3. Thus statement (i) of the
lemma follows from (34.15) and statement (ii). If ¢ # 1 then ¢ =05
and ¢ = 11. By (84.15)

11.8°
34.1 =2 >2=(p 1)y,
(34.17) w> o> (»-1)
Hence by Lemma 34.1 w|(3* — 1)/2 =121. Thus % = 121 by (84.17).
This completes the proof of statement (iii) of the lemma,
Assume now that ¢ = 3. Lety = (»* 4+ » + 1)/u. (¥ is not neces-
sarily integral) Then (34.9) implies that
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1 < 3(p+p+1) + 6 " 1
p cxyp® cxp? 3p’u
»P+p+1) 2 1
+ L .
12¢xyp® + 3p + 2p3*
Therefore
1 _381p"+p+1) 6 1 1
3p < 12c2yp® + cxp*  3p'u + 2p3e-1 "’
or
3(p*+p +1) 18 1 1
34.18 1 .
( ) < 4dexyp® + cxp’ + Pu + 2.872

Suppose that cxy = 13. Then (34.18) implies that

ST @P+p+1) 4 19 1
52 s P 52

Therefore 37(p* + » + 1) > 51p* — 52-19, or
14p* — 87p — 5219 - 87 < 0.

Therefore, p < 11. Hence p =5 or p="7. Since (6, u) =1, Lemma
84.1 now implies that |9+ p + 1. Thus «|31 if p=5 and u|b7
if p =7. Hence one of the following must occur:

p=2>5, u = 31, y=1, cx =18

or

By (34.11)
cx =1, p=T orce=13.
If ¢z = 13 then by (34.18)

ST @P+p+1) 19 ., 1
52 P + 13p* + 52 °

1<

Hence » < 5, which is not the case. Therefore we have shown that
either cxy <18 or p =T, u =19,y =8 and ¢x = T7. If cxy < 18, then
4 <18, and by (84.11) ¢x =7 or cx = 1. Thus in any case

(34.19) u>—7-’:—'%—"—'i,cx=1 orcx =1T.

This proves statement (iv) of the lemma.
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If # + 1 then (84.19) implies that c=1 and =7, hence p =17
and |B|=T. Since (u,6) =1, Lemma 84.1 implies that « |57, thus
u =19. If D(P) +# 1 then N acts irreducibly on B/D(P) and centralizes
D(P). If P is non abelian this implies that D(P) = Z(PB). Hence P
is an extra special p-group contrary to the fact that |B: D(P)| = »°.
Thus B is abelian. Hence |P:2,(B)| =< p. If 2(P) # P this implies
that UL is represented on 2,(P) and so U acts irreducibly on 2,(B)
contrary to D(P) & 2,(P) and U € C(D(P)). Thus P is elementary
abelian. Statement (v) of the lemma is proved.

Suppose that ¢ =7 and ¥ = 2; then (34.18) implies that

37T P+ p+1) 19 1
1< 2L -
<56 P + 7p’+54

Therefore, p < 5 which is impossible. Hence if ¢ =17 then y < 2.
This proves statement (vi) of the lemma and completes the proof of
Lemma 34.7.

LEMMA 34.8. If q=5 then PU/C i3 a Frobenius group and
u|(®* —1)/(p —1).

Proof. By Lemma 34.7 (i) |P|=2° Thus if PU/E is not a
Frobenius group then by Lemma 34.1 « |[(»p — 1)/2]**. Thus by Lemma
34.7 (i)

9.p*?
9ot 20 °

Therefore ¢ > 2-2-(9/10) which is not the case, since ¢ = 5.

LEMMA 34.9. If p,q=5 then c=1, |B|=p" and either u=
(»*—1)/(p—1) or p =1(mod g) and w = 1/q [(p* — 1)/(p — 1)].

Proof. By Lemma 34.7(ii) ¢ = 1. Lemma 34.8 implies that | B| =
p*and u|(»* — 1)/(p —1). Letux =(p*—1)/(p —1). If p#1(modg)
then

w=2"1 _ 1 (mod2g).
p—1
Thus 2 =1(mod 29). If p=1(modq) then (p*—1)/(p —1) =0 (mod q).
Hence # =0(modq) as (u,q) =1. Thus in any case « = 2¢ if the
result is false. Now Lemma 384.7 (ii) implies that

P =1 _yr>oquz 13 g

p—1 10

Hence
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lzla_p‘l—ﬁpq"l.

- 10 10
Thus 18 > 3p contrary to the fact that p = 5.

pq>pq_

LEMmA 34.10.

| N(B*):B*C(B*)| = p or pq if p,q=bor p=38,¢q=1
=8o0rl1l50r 3 ifp=8,¢q=5
=p,3p or Tp tf ¢ =38.

Proof. Let € be a complement of B*C(B*) in N(B*) which contains
P*. Every Sylow subgroup of € is cyclic and every subgroup of prime
order is normal in € by 8.16 (ii) and Theorem 33.1, Thus € & N(P*) =

Q*PE. Hence € =P* or |€| =pg or € = P*€C. The result now
follows from Lemma 34.7.

By Theorem 83.1 1* is tamely imbedded in @ unless UI* = U and
C‘_B(II) # 1. By Lemma 34.7 this can only happen if p = 7 and ¢ = 8.
In that case let 2/ be the set of characters of & which are induced
by non principal irreducible characters of &'/%3. In all other cases let

#, =% . Define 7" similarly. Then .%(%)" and _%(¥°)" are always
defined.

LEMMA 84.11. Suppose that ¥~ is coherent and p >q. If

dv* —1 > v»—1

| N(B*) : B* | P
and
dv* —1 S %= 1
| N(B*) : B*| q

then | N(B*):B*| = nq. If furthermore | N(B*):B*| = pq then 1/p <
pglv*d.

Proof. Let e = |N(B*):B*|. Let e with (1) =e. Let
a= iszs‘ — 4, Then ||a’ | =]||a]?=e¢e+ 1. Define :
B@ = Tn'g;@ — Mo 133 = ‘ilap'om = Yy .

Bg, B¢ vanish on & — &, — §, respectively. As @1 and ¥, are T.L.
sets in ®

@4.20) 11851 = 1186 ' = 22 +2, I8P =18l = 2L + 2.
Furthermore by Lemma 13.8
(34.21) Bs=1lgxm+ Iy, Bi=1lgtnu+ Ty
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where I'g, I'g are real valued generalized characters of & which are
orthogonal to 1y. The assumed inequalities and (34.20) imply that
(v7,88) =0=(y",B83). Thusif a" =13+ ¥ + 'y then

0=(a",88) =1+ (P, I'y) (mod 2)

0=(a,B3) =1+ (D, I'y) (mod2).
Since I'y is rational valued on ® this implies that

(Mior I'g) = (1os, I'gp) = 1 (mod 2)
for121=<¢q—1,1<j=<p—1. Hence by Lemma 13.1
(g — o — Tos + %5 @) = 1 + (7o, I'p)
+ oss I'g) + (i3, ') (mod 2) .
Thus (7, I'gy) # 0 for 1=41<¢—1,1<j=p—1. Hence
e+l=|a|P=pg+1.
Suppose now that ¢ = pq then

-1

(84.22) =lgty % Z N + Z N £ 23 2

Let ®&, be the set of elements in @ which are conjugate to some
element of A, with VeB**. Since 2 is coherent by assumption,
(34.22) Lemmas 338.1 and 9.4 imply that +*(VC) = (V) for VCe ¥,,
VeB*, Furthermore Lemma 9.5 and (34.22) imply that

1 T 3 3
G428) L S| OF = e S W@ P =1 B
By Lemma 9.5
= (@v -1
(34.24) —‘I@ol——'Z@o (5( ) = *dg'.:' @( ) = W

Let &, be the set of elements in @ — @&, which are not conjugate to
any element of B, PE or UD. Now (84.22) implies that if Ge@,
then +*(G) is rational and

0=a(@) =1+ ¥(G) (mod 2) .
Thus |¥*(G)|*= 1 for Ge®,. Hence (84.28) implies that

vd* — 1) 1 1 1
>y -1 4 1 _1_,1
I@‘| pqv*d ( P q pq)

_IB€C|—-1 (09D -1
qu | Ble pv|Qld

'v"‘d
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“Therefore
pg o1, 1 1 _ 1, 1 _ 1., 1
v*d  p q pg pg pevd qu qu|Plec
1 1
v w|Qld’

‘Since v >2¢, v >2p and p >¢=3
L D T
pv

1 1 3
P4 P qu !

<1,
q q
thus the required inequality follows.

LEmMMA 84.12. If U* is cyclic then U* i3 a T.I. set in @ unless
N*=u and NU) & S.

Proof. Since U* is a cyelic S-subgroup in N(11*), U* is a S-subgroup
«of @. Suppose that U* is not a T.I. set in ® and let 1 #U* N G'U*G =
1, &u*. Then {NMU*), N(GU*G)} & N(,). Since N(11*) is a maximal
:subgroup of & this implies that {U*, G-N*G} & N(U*). Thus GT'U*G =
N* and N* is a T.I. set in G.

35. Further Results About & and £

The notation of Section 84 is used in this section. However we
‘will destroy the symmetry of & and ¥ by choosing the notation so that

(85.1) g<p.

The next three lemmas are restatements of Lemmas 84.7, 84.8,
84.9 and 34.10.

LEMMA 85.1. If gq=b6thenc=d=1,v=(g"—1)/(¢—1), |B|=2"
amd || =q?. Either u=(*"—1)/(p —1) or p =1(mod q) and u =
1/q[(»* — 1)/(» — 1)]. Furthermore PU and OB are Frobenius groups.

| NU*):0*| =q or pqg and | N(B*):B*| =p or nq.

LEmMA 35.2. Suppose that ¢ =8. Then |Q| = 8°,

»S 9 387
d 20 »

and QBID is a Frobenius group with v[(8* —1)/2. Either d =1 or
d=11,p=05 and v =121. Furthermore ¥ = %; and

| N(B*):B*| = 2,3p or Tp.
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LEmMmA 35.3. Suppose that ¢ =8. Then

| NU*):u*cu*)| = 8 or 3p ifp=T
=38,1560r 83 i p=5H.

Furthermore one of the following possibilities occurs:

(i) e=1,u>@+p+1)/18, P is an elementary abelian p-group
with [P =2 or |P| =T

) ec=T,u>@+0+1)2 P is an elementary abelian p-group
with |P| = p°.

LEmMmA 35.4. FEither q =8,p=5,v=11,4 = 81 or

v»—1 >u——1.
p q

Proof. By (56.12)

¢ (¢ -1) > p? »*-1) .
q—1 p—1

Therefore if v = (¢* — 1)/(¢ — 1) then by Lemma 84.1
v—1 _1+---+¢g"—-1_ q@¢-1)

P D p(g — 1)
pq—l_l
p(p* —1) p—1 u—1
> Tap—1 = q =7y

Suppose now that v # (¢* —1)/(¢ —1). Then ¢ =8 by Lemma 85.1, By
Lemma 85.2 v|(8" — 1)/2 and v > 9/20-(8"Yp). Thus if (v —1)/p =
(w — 1)/g then by Lemma 34.2

9 g8
20 p P+ p
p = 8 -

Hence p < 11. Thusp=5orp="7T. If p=7 then v»|(3 —1)/2 = 1093.
As 1093 is a prime this implies that v = (8" — 1)/2 and the result follows
from the first part of the lemma. If p =5 then v|(8° — 1)/2 = 121.
Thus v =11 and %|81l. Thus % = 81. The proof is complete.

LEMMA 35.5. & s coherent.

Proof. Suppose that & is not coherent. Then by Lemma 11,2
v*d is a power of some prime . As B/D is eyclic r = 1 (mod p). Thus
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(35.2) r>2p>2q.
Let |B*: D(B*)| = r*, then n = 8 by Lemma 11.8. By Lemma 11.1
(85.8) r* < 4|NB*):B**+1.

Suppose that | N(B*) : B*| = Tp. Then p # 7 and (85.2) and (85.3) imply
that r* < 200p* < 507°, If n = 4 this yields that » < 7. Then p =8
by (35.2) which is not the case as p > q. Hence n = 8. Thus Lemma
11.4 implies that r* < 2r(7p) + 1. Hence by (85.2) r* < 14p < 7r and so
r < T which is impossible.

By Lemmas 35.1 and 35.2 we may assume now that | N(8*): 8*| <
pq. Thus (35.2) and (85.3) imply that

™S 4p'¢ +1<@p) <,
thus » = 8. Hence Lemma 11.4 implies that
7.3
'r’§2'rpq+1<?.

This completes the proof in all cases.,

LemMA 35.6. d=1. If | N(B*):B*| < pq then v* = v or p =5,
q=3,v=11,»* =121,

Proof. If | N(B*):B*| > pgthenc+ 1. Henced =1 by Lemma
34.2. Assume now that | N(8*):8*| < pq.

Assume first that d +# 1. By Lemmas 85.1 and 35.2 d =11,¢q¢ =
8,p=>5 and v=121. By Lemma 34.2 u=(5°—1)/(5 —1)=81. Thus

do* -1  11°—1 11’ —1 v—1

N - 15 ° 5
and

do*—1 -1 81-1_u-1

IN@Y: 8| — 15 3 q

Hence by Lemmas 85.5 and 34.11 1/p < pq/v*d.
Thus

1< v*d < p¢="175.

Therefore d = 1.

Assume now that ¢ =8,p=5,v=11,u =381, Let v* =vz. 2 =
1(mod10) as v = v* = 1(mod 10). If v* #11 and »* # 121, then
2 =21. Thus »* = 21.11.
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-1 2111-1 11-1 _v—1

| N(B*):B*| — 15 > 53 D
and
v —1 g21.11—1>31—-1=u——1.
| N(B*): B* | 15 3 q

Thus Lemmas 35.5 and 34.11 imply that 1/p < pg/v*. Thus 21.11 <
v* < p’¢ = 75 which is not the case. Therefore » = v* = 11 or v* =
121, and we are done in this case.

By Lemma 385.4 it may now be assumed that (v —1)/p > (u —1)/q..
If v* = vz, then  =1(mod 2p) since v* = v = 1 (mod 2p). Thus

(35.4) v*=xv,2>2p>2¢ ifx£1l.
Therefore

v*—1 v* —1 2vg — 1 v—1 uw—1
= > > > .
| N(B*): B* | g g D q
Hence by Lemmas 35.5 and 384.11 1/p < pg/v*. Hence (85.4) and
Lemmas 35.1 and 35.2 imply that

<&p/ysl(lfv* §_12.p’q.

p—1
e g V= 9
Thus ¢** < 2p’. Hence p < 7 by (5.4). Thus p =5. Hence # = 11,
¢ =3 and v|121. By assumption v # 11, hence v = 121. Thus 11* <
v* < p’¢ = 75. This completes the proof in all cases.

LemMMmA 35.7.
| N(U*):0*C(*) | =q or pg.

Proof. This follows directly from Lemmas 35.1, 35.2, 35.3 and 35.6..

THEOREM 85.1. If N(1*) is conjugate to N(B*) then the conclusions
of Theorem 27.1 hold.

Proof. By Lemma 35.6 if B* = B then p =5, ¢ = 3 and v* = 121.
Thus % = 31. Hence u does not divide »*. Thus by Lemmas 35.1
and 35.2, B* = B is cyclic. By Theorem 33.1 N(L*) is a Frobenius
group with Frobenius kernel B*. Hence by Lemma 34.12 B* is a.
T.I. set in @. Since Q* & NU1*) and »|| N(B*):B*| Lemma 385.7
implies that N(U1*)/1* is a cyclic group of order pg. Thus condition
(iv) of Theorem 27.1 holds. Since B* is cyclic so is 1. Thus € char
U. Hence if € #1 then NU) &S which is not the case. Hence
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¢=1. By Lemma 35.6d = 1. Thus C(*) = QP* and C(P*) = PO*.
Hence condition (iii) of Theorem 27.1 holds. If |P|+# »° or || + ¢7,
then NI) & & or N(B)S T respectively. This implies that P is
elementary abelian of order »* and L is elementary abelian of order
g*. Hence condition (i) of Theorem 27.1 holds.

Since U is cyclic and € =1, PU and NO* are Frobenius groups
and N(P) =& = PU. Since U* is cyclic every divisor z of |U*|
satisfies ¢ = 1 (mod pg). Thus (11|, p — 1) = 1. Hence by Lemma 34.1
a1 (@ —D/(p—1). Let (»—1)p—1)=y||. Suppose that
p# 1(modq). Then y =1 (mod pq) since

P—1 _ 1| =1(mod pg) .
p—1

Thus if y # 1, then ¥ > 2pq. Furthermore Lemma 35.1 implies that

in this case ¢ =38. Thus by Lemma 35.3 (i)

13>—2’+Tlf]i—1— =y > 2pq = 6p

which is impossible as » > 8. Thus ¥y =1and so|U| = (p* —1)/(» —1). Sup-
pose that p=1(mod g). Then ¢|(»*—1)/(p—1). Henceu|1/q[(p*—1)/(p—1)]
since (u,9)=1. Asg< pand u=(p"—1)/(p—1)=1(mod p) we see
that w # 1/¢[(»* — 1)/(» — 1)]. Thus if ¥ # 1, Lemma 35.1 yields that
¢ =38. Since ¢ =1, Lemma 85.3 (i) implies that u > (p*+ p+ 1)/13.
This is impossible since w = 1 (mod 3p). This verifies condition (ii) of
Theorem 27.1 and completes the proof of the theorem.

36. The Proof of Theorem 27.1
In this section the study of the groups &€ and £ is continued. All

the lemmas in this section will be proved under the following assumption.

Hypothesis 36.1

(i) ¢<o.
@ii) NQU*) is not conjugate to N(B*).

The following notation is used in addition to that introduced in
Section 34.
pew , veZ
and
¢(1) = | NU*):u*cu*)|, (1) =|NB*):B*|.

If ¢,€ 77 then ¢: is defined since |@| is odd. Let T = {¢}| ;€ %}.
Then
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(gu.—¢)f=1@,—¢'+ru+su, if o =%

Qg — ¢y =1g—¢"+ Ty + 8y if %+ %

(86.2) Qg — V) =15 — v + Iy + Sy

(36.3) (ggp — M) =1g =%+ Mg+ 5y forl<sjsp-—1,

(36.1)

36.4) (gp —V)* =14t o+ Tg+ 8y forlsis<g-—1,

where 5y, Zg are in _#(%/7), #(77") respectively, I'y, I'y are orthogonal
to Z7, 7°" respectively. &g, B, are linear combinations of the
generalized characters 7,, and I'g, I’y are orthogonal to each 7,.
Then I'y, I'y, I'y and I'y are real valued generalized characters each of
which is orthogonal to 1. Thus

(36.5) Ty, M) + (I'g, ¢°) % 0 (mod 2),
(36.6) (I M) + (L'gy ¥7) # 0 (mod 2) .
(36.7) 'y M) + (L, ¢°) # 0 (mod 2) .
It is a simple consequence of Lemma 13.1 that
(36.8) (s o) + Ty o) + (L, ) # 0(mod 2) .
(36.9) Iy o) + (I'gs o) + (', M) % 0 (mod 2) .

By Hypothesis 36.1 (ii) 27 is orthogonal to #"*. Thus
(36.10) Iy, ¥7) + (I, ¢°) # 0 (mod 2) .
Since 7 is an isometry (36.1), (86.2), (86.3) and (36.4) yield that
(36.11) [ g ll* = | NU):u*CU*)| -1
(36.12) Mgl = [ N(®B*):B*| —1
(36.13) Iyl < 222
(36.14) 1Tl < 2= L3

LeMMA 86.1. % 18 coherent.

Proof. If & is of type IV then by Lemmas 35.2 and 35.3¢=1
or 7 so by Lemma 11.1 the result follows from Theorem 29.1. If &
is of type III then 1 =U* is abelian and the result follows from
Lemma 11.2. Suppose that 27 is not coherent. Then % = %, and
by Lemma 11.2 11* is an r-group for some prime . Furthermore &
is of type II. Let e =| NU*):1*| then by Lemmas 11.1,11.3 and
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114 U¥ = DU*) # 1,
(36.15) |q*: 0¥ | =r* withn=3,
(36.16) rr<4e+1,n=4 or r*=<2re+1and n=38.

Suppose first that U is not cyclic. Then by Lemma 35.1 ¢ = 3.
If ¢ # 1, then by Lemma 35.3 € is cyclic and

P+p+1 p—1Y)
u > 2 >( 2 ) .
Thus by Lemma 384.1 /€ is cyclic. Hence U is generated by two
elements. If ¢ =1 then Lemma 34.1 implies that 1 is generated by
two elements. Thus U+ U*. As & is of type 1I & is a T.I set in
@. Consequently there exists an element R of order r such that
0 = Cy.(R). Thus Z(1*) is cyclic. Hence » =1 (mod e). This contradicts
(36.15) and (36.16).

Suppose now that U is cyelic. Thus » = 1(mod ¢). By (36.16)
NU*)/0* is irreducibly represented on 1*/D(11*). Thus O* acts as a
group of scalar matrices on U*/D(1*). Hence by Lemma 6.4 * has
prime exponent. Since U is a eyclic subgroup of 11* this implies that

(36.17) |0 =1r.
If ¢ > 8 then Lemmas 385.1, 85.7 and (86.15) and (86.16) imply that

pﬂ—l&
(7 ) S |UP<dl+1<dpg+1.

Hence 9*° < 5¢°® and so
534—10 é qu—lo < psq—xo < 5 .

Thus 3¢ — 10 < 1 which is not the case.
Suppose that ¢ =3: If » = 4 then (86.16) and Lemmas 35.3 and
35.7 imply that

(’”’—4’1’;-4+—II< 1| < 36p + 1.
Hence
PP< (P + p+ 1) < 13360 + 1) < 3.18%p*.

Thus »° < 8.13°. Hence p < 18. If n =3 then (86.16) and Lemmas
35.3 and 85.7 imply that

W<|ul’§6p.

Hence
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PL<(P+p+1)12<186p< 18p.

Therefore p < 13 in this case also. Thus p =5,7 or 11. By Lemma
34.1 and (36.17) either |[U||(p — D or |U||p*+p+ 1. If |U||(p—1)
then p =11 and || = 5 since (JU|,6) =1. However in this case

EJrlg_-Fl)>1o>|u|

which is impossible by Lemma 85.1. Thus |11]||p*+ p + 1. Hence by
(36.17) if p=5,|{U| =381, ifp="7,|U| =19 and if p =11 then || =
Tor |U|=19. If p=>5 then (36.16) and (86.17) imply that

31° < 86.25 + 1
which is not the case. If p =7 then (86.16) and (86.17) imply that
19° < 36.49 + 1 < 1800 .

Thus 19 < 100 which is not the case. If p =11 and |1| =19 then
(36.16) and (86.17) imply that

15.360 < 19° < 36.121 + 1 < 4800

which is not the case.
Assume now that p =11 and (0| =7r="7. Then (36.15) and
(36.16) imply that

(86.18) ™<3611'+1, 7 =1 (mod1l).
Since
™ >10* > 5000 > 36.11* + 1

we must have n < 4. However
7=5"7=2"T=8 (mod11)
contrary to (86.18). The proof is complete.
LEMmA 36.2. ¢ = 8.
Proof. Suppose that ¢ # 3. Then by (36.10) either (I"y, ¥7) # 0

or (I'g, $°)#0. If u=1/q[(»*—1)/(p—1)], then u £ 1 (modp). Hence
by Lemmas 35.1, 35.5 and 36.1,

g’ —1 1 -1 _
—1 —1

g <pg—1 or 2—> _ <pg—-1.
nq

Therefore by (5.11) p* < (»*—1)/(p —1) < p’¢®. Hence p"*<¢’< p*
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which is impossible for ¢ = 5.
Lemma 36.3. ¢ =1, | N(B*):B*| =»p or 3p.

Proof., If ¢+ 1thenc=T7and v > (p*+ p + 1)/2 by Lemma 35.3.
Since [(p —1)/2)* < (»* + p+ 1)/2 Lemma 34.1 implies that »|p* + p+ 1.
Thus # = p*+ p + 1. By Lemma 34.2 v = (3* — 1)/2.

Suppose first that | M(U*):11*|=38. Then by (36.8) I"y= £ (0 7a).
Thus (I'y, 7,) = 0. Hence (I'g, ¢7) #+ 0 by (36.5). Since 7/ is coherent
(36.13) implies that

-1 _ s -1
8 = 8 '’

Tu* — 1 u
LA [ A L
3 S| gl' =

which is not the case.

Suppose now that |N(1*):U*|# 3. Then by Lemma 35.7
| NU*):0* | = 8p. Let cu* =azu = 2(1 + p + p*). Then z = 1 (mod 6p)
since

cu* =u =1 (mod 6p) .

As 1< ¢ <« this implies that = 6p + 1. Hence by Lemma 35.2
and (36.12)

(36.19) 0“;; LN 6;’;‘ 22u>Tp—12|Igl.

Since Z is coherent this implies that (', ¢°) = 0. Thus by (36.10)
(36.20) (I'y, ¥7) # 0.

Since % is coherent (86.18) and (86.19) imply that (I'g, ¢) = 0. Thus
by (36.5)

(86.21) (I'ys M) Z 0 (mod 2) .
Since 7 is coherent (86.11), (36.20) and (86.21) imply that

w—1)+——2 —1

- - <8y -—-1.
IN@Y 8| 7

Hence by Lemma 35.2
3 —1

—1=9v—-1=5v*—-1=<2p|NB*):B*| < 14p°.

Therefore 37 — 8 < 28p’. Hence » =5 by (56.5). Thus % = 81 and
v =121, If the S,-subgroup of 1* has order 7*, then 7* = 1 (mod 5).
Thus » = 4. Therefore
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uw* -1 7381 -1 v—1
= — 24 = .
3 15 > P
Thus the coherence of Z~ implies that (I, ¢°) = 0. Hence (36.7) yields

that (I'y, %) # 0(mod 2). Therefore (36.8), (36.11) and (36.21) imply
that

contrary to (36.20). Thus ¢ =1 and consequently |N(B*):38*|=1»p
or 3p.

LEmMMA 36.4. | NUI*):1*CU1*)| = 3p.

Proof. If the result is false then | N(1*): 1*C(1*)| = 3 by Lemma
35.7. Thus (36.8) implies that I'y = £(7 + 7). Therefore by (36.5)
and (36.10) (I'g, ") + 0 and (I'g, ¢°) # 0. Since u* = u (36.13) implies
that u* =« and

(36.22) I'y= 340,

where ¢; ranges over 7. Thus by (36.6) (I'g, ) is odd. Hence by
Lemma 36.3 and (36.12)

—1
r53=b2¢§i’z=,lﬂnj+458,
where b is odd and 4 is orthogonal to all ¢;, 7,;. Therefore by (36.22)

0= (Fge — ", Gg — ) =121 23820

Since b = 0 this implies that |b|(w — 1)/8 = 2. Hence u = 7. Thus
by Lemma 35.3 (i) 7 = (p* + » + 1)/18, hence » < 10. Hence p =5
or p="1T. In either of these cases u|(»*+ » + 1) by Lemma 34.1
since (u,6) =1. Thus 7|31 or 7|57 which is not the case.

LEMMA 36.5. || = p"

Proof. If |P|+# p* then NU) S Sas Pisa T.I. set in &. This
contradicts Lemma 36.4.

LEMMA 86.6. U s cyclic.
Proof. By Lemma 34.1 if 1 is not eyelic then 1 =11, x 1,, where

each U, is cyclic and |U;||(p —1)/2. Let |U;|= (p — 1)/2y; for ¢ =
1,2. If v, = 4 then Lemma 35.8 (i) implies that
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P Ptptl -1 _@-1 _ o
13 < 13 < 4y -~ 16 < 16

which is not the case. Thus ¥y, < 4. If ¥, = 2 then p =1 (mod 4)
and so [U|=(p—1)*8 is even. If 74, =8 then p =1 (mod 8) and
so 8|u which is not the case. Thus %y,=1 and u = [(p — 1)/2].
Therefore ((p —1)/2, 6) =1. Thus p =11. Furthermore u = 1/4 (mod p).
Since u* =1 (mod ») by Lemma 86.4 we have that u* = ux and =
4 (mod p). By Lemma 34.2 v = (8° — 1)/2. Hence Lemma 36.3 and
(36.10), (36.11) and (36.12) imply that

3 -1

-1
~1
<8 -1 or g~ <3-1.

(36.23) 3p

The first possibility implies that 3* — 8 < 18p* — 6p. Thus 87 < 2p°,
Hence » < 7 by (5.4). The second possibility in (86.23) yields that

-(pz—l),—x—1§9p’—3p.

Therefore

(p—1) 2 =<36p"— 12p + 4 < 36p° .
As p = 11 this implies that

H 2
36.24 36(—P _Y=326(1+ -1 V=36(12L) < y5.
@624 w< <10—1) ( +p—1)— (Fa0) <
Let # = 4 + zp for some integer z. Then since p = 11 (36.24) yields
that z < 4. Furthermore

(36.25) p<4l; if 222, p<20; if z=8, p<1l4.

As p<4land ((p—1)2,6)=1, p=11or »p =23. If p = 23 then by
(36.25) » = 27 which is impossible as # =1 (mod 3). If p = 11, then
=15, 26 or 87. As 2 =1 (mod 6) this implies that # = 87. Then
% =25 and so 37 =1 (mod 11) by Lemma 36.4 which is not the case.

LEMMA 36.7. u=2+p+1 or u=(@+»+1)/8 or u=
@+ p + 1)/7.

Proof. If u|[(» —1)/2]* then by Lemmas 34.1 and 36.6 u|(» —1)/2.
Thus by Lemma 3858 () (» —1)/2 > (» + » + 1)/13. Hence
2p* — 11p + 15 < 0 which implies that » < 5. Therefore by Lemma
841 "+ p+1=uy, ¥ an integer. By Lemma 35.8 (i) ¥y < 13. If
r is a prime such that »*°+ p + 1 =0 (mod r) then either »r = 3 or
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r=1 (mod8). Hence y=1,8,7T0r 9. If y=9then p*+p+1=0
(mod9). Hence p =1 (mod8). Thus p=1,4 or 7 (mod9). In none
of these cases is P+ P+ 1 =0 (mod9). Hence y=1,3 or 7.

LEMMA 86.8. u=u*=9p"+p+ 1.

Proof. Let u* = ux. Assume that £ #1. u* =1 (mod6p) by
Lemma 36.4. If u=2'+p+1, then u=u*=1 (mod6p), thus
=1 (mod6p) andso =1+ 6p. If u=(@® + p+ 1)/8, then x =3
(mod p). Furthermore # =1 (mod6) since v =u* =1 (mod 6) and
p =1 (mod6) since p*+ p+ 1 =0 (mod8). Thus if x = 3 + zp then
1=8+2 (mod6). Hence x =8+ 4p. If w= (" + p+ 1)/7 then
=7 (modp). If 2=7T then by Lemma 86.6 the S,-subgroup of
n* is generated by two elements. Hence 7 —1 =0 (modp) by
Lemma 36.4. However 7" — 1 =48 and (p,48) = 1. Thus« # 7. Let
2=T7+2p. Then P+ p+1=u=1 (mod6). Hence p =5 (mod 6).
Thus 1=2 =7+ 5z (mod6), hence z =0 (mod6). Therefore z =
7 + 6p. Thus in any case

(36.26) u* = ue, r=4p+3.

Therefore (u* —1)/8p > (u—1)/3. Hence by (36.13) and the coherence
of v

(86.27) (¢, I'g) = 0.

Assume first that (¢°, I'y) # 0, then by (36.12) and the coherence
of v

u* —1

6.28
(36.28) 3

<8 —-1.

Suppose now that (¢°, I'g) =0. Then by (36.10) (y*, I'y) # 0.
Hence the coherence of 2~ and (86.11) imply that

p* —1
3p

By (36.27) and (86.5) (9, I'y) # 0 (mod 2). If also (9, I'y) were odd
then by (36.8) (0, 'y) #0for1si<¢—-1,1=<j=<p-—1. Thus
by (36.11) (¥*, I'y) = O contrary to what has been proved. Therefore
(Mo» T'y) = 0 (mod 2). Hence by (86.7) (I'g, $°) # 0. Thus by (36.14)
and (36.29)

(36.29) =3p-1.

w1l _v=1_v-1_9, 3.
3p P P

Now (36.28) implies that in any case
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* 1
36.30 Ll <8 —1.
( ) T 74

For any prime r let 11, be the S,-subgroup of 11*.
Suppose first that « = »* + » + 1, then « > 6p. Hence (86.30)
implies that

6 +p+1)—-1=<27p—-9.

Therefore 2p* — 7p + 4 < 0 which is impossible for p = 5.
Suppose now that u = (p* + » + 1)/3 then = = 4p + 3 by (36.26).
Hence (36.30) implies that

4P+p+1)<8lp.

Thus 4p < 81 or p < 22. Since p =1 (mod 3) this yields that p = 7,
p=13 or p=19.

If p=1T7 then u=19. If [U,|=19" then n=6 as [U,|=1
(mod 7). Thus (86.30) implies that 19° < 27.7* < 19'. If » = 13 then
% =261. Let |U;|=61", then n =8 as |U,| =1 (mod13). Hence
(86.80) implies that 61° < 27.13* < 61°%. If »p =19 then u = 127. Let
| | = 127", then n = 3 a8 |U, | =1 (mod 19). Hence (36.30) implies
that 127 < 27.19° < 127,

Assume finally that v = (' + » + 1)/7 then 2 =6p + 1. Thus
(86.30) implies that

$@+p+1) o7,
7 <

Therefore 6p < 27.7, so p<32. Since P+ p+1=0 (mod?7),
p=2(mod7) or p=4 (mod7). Thus p =11 or p = 23.

If p=11 then ¥ =19. Let |U,|=19" then n =8 as |U,| =1
(mod 11). Hence (36.30) implies that 19° < 27.11° = 287.11 < 19°. If
p=23thenu=179. As|U,] =1 (mod28), |U,|= T79°. Hence (86.30)
implies that 79° < 27.23* < 79°.

Therefore # = u* in all cases. Hence u =1 (mod p) by Lemmas
36.4 and 36.5. Since (p,6)=1, T 1 (modp) and 8 =1 (mod p).
Hence by Lemma 36.7 u = p*+ p + 1.

The proof of Theorem 27.1 under Hypothesis 36.1 is now im-
mediate.

Let ¢ = 8 and p have the same meaning as in the earlier part
of this section. By Lemma 85.2 [Q| = ¢°. By Lemma 386.5 | B| = »".
The other properties of Condition (i) follow from the structure of &
and T and Theorem 14.1. Thus Condition (i) is verified. By Lemma
35.6 C(Q) = Q. Hence C(L*) = B*Q. By Lemma 86.83 C(P) = P,
hence C(P*) = PO* by Lemma 36.5. The other properties of Condi-
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tion (iii) follow from the structure of & and £. Thus Condition (iii)
is verified. Lemmas 36.6 and 36.8 imply that 1 = C(1) is cyclic. By
Lemmas 34.12 and 36.4 U =1U* is a T.I. set in @, Hence Lemma
36.4 completes the verification of Condition (iv).

Lemmas 84.1, 86.3, 36.5 and 86.8 imply that PBU is a Frobenius
group. Lemma 36.8 implies that {U| = (p* —1)/(p — 1). Lemmas 36.4,
86.6 and 386.8 imply that if u,[|U| then %, =1 (modpq). Thus
({0],» —1)=1. The other statements in Condition (ii) follow from
the structure of & and Z.

By Theorem 35.1 this completes the proof of Theorem 27.1 in
all cases.



