CHAPTER II

6. Preliminary Lemmas of Lie Type

Hypothesis 6.1.

(i) p vs a prime, P is a normal S,-subgroup of PU, and U is
a non identity cyclic p’-group.

(i) Cy(®)=1.

(iii) P’ is elementary abelian and ‘B’ < Z(P).

@iv) |PBU| s odd.
Let U =<U), 1| =u, and |PB: D(P)| = p*. Let & be the Lie ring
associated to P ([12] p. 328). Then L= «* P & where &£* and
5 correspond to PB/P’ and T’ respectively. Let &K'= K */p<*. For
t=1,2, let U; be the linear transformation induced by U on 2.

LEMMA 6.1. Assume that Hypothesis 6.1 is satisfied. Let ¢, ---,
&, be the characteristic roots of U,. Then the characteristic roots of
U, are found among the elements e; with 1 <1< j < n.

Proof, Suppose the field is extended so as to include ¢, ---,¢,.
Since U is a p’-group, it is possible to find a basis x,, -+, ®, of &£
such that x,U, = e;x;, 1 < 7 < n. Therefore, «,U,-2,;U, = ¢,;2,-x;. As
U induces an automorphism of .&°, this yields that

;2 U, = 2, U, o2;U, = 852,025 .
Since the vectors z;-2; with 7 < j span &, the lemma follows.

By using a method which differs from that used below, M. Hall
proved a variant of Lemma 6.2. We are indebted to him for showing
us his proof.

LEMMA 6.2. Assume that Hypothesis 6.1 is satisfied, and that
U, acts irreducibly on <. Assume further that n = q i8 an odd
prime and that U, and U, have the same characteristic polynomial,
Then q¢ >3 and
u < 3"

Proof. Let ¢ be the characteristic roots of U, 0 <¢<m. By
Lemma 6.1 there exist integers ¢, j, k such that er'er’ = er*, Raising
this equation to a suitable power ylelds the existence of integers a
and b with 0 < a < b < ¢ such that g?®+»*-1 = 1, By Hypothesis 6.1 (ii),
the preceding equality implies »* + p* — 1 = O(mod u). Since U, acts
irreducibly, we also have p* — 1 = O(mod ). Since U is a p'-group,
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790 SOLVABILITY OF GROUPS OF ODD ORDER

ab # 0. Consequently,

p*+ p*—1=0(mod u),

(6.1) PP —1=0modu), 0<a<b<q.

Let d be the resultant of the polynomials f=2*+ 2> —1 and g =
2 — 1. Since ¢ is a prime, the two polynomials are relatively prime,
so d is a nonzero integer. Also, by a basic property of resultants,

(6.2) d=hf+kg

for suitable integral polynomials 2 and k.
Let ¢, be a primitive gth root of unity over &, so that we also
have

h (€ + &b — 1) :[1 € + 6% — 1)

(6.3)
—_ h {3 + es(u—-b) + et(b—a) e;b — e-.b _ 8—'“}

For ¢ = 8, this yields that d* = (8 — 1 + 1+1)* = 4% so that d = 4.
Since % is odd (6.1) and (6.2) imply that 4 = 1. This is not the case,
so g > 3.

Each term on the right hand side of (6.3) is non negative. As
the geometric mean of non negative numbers is at most the arith-
metic mean, (6.3) implies that

1 El i{a—b $ (b— i —4 1) —4b
dﬂ/llé?_.o{s_*_e;a )+€; a)_s;a_eqm_sq__eq }.
=

The algebraic trace of a primitive gqth root of unity is —1, hence
dhn<3.
Now (6.1) and (6.2) imply that
u=|d| < 8.

Since 8% is irrational, equality cannot hold.

LEMMA 6.8, If P is a p-group and P’ = D(P), then C(B)/C. (B>
18 elementary abelian for all n.

Proof. The assertion follows from the congruence

[Au 0y A”]p = [Al’ Ty An—l! Aﬁ] (mOd Cn+l(§B)) ’
valid for all 4,, ---, 4, in PB.

LEMMA 6.4. Suppose that o is a fized point free p’-automorphism-
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of the p-group P, P = D(P) and A = A* (mod P') for some integer
2 independent of A. Then P i8 of exponent p.

Proof. Let A° = A®.A* so that A* is in ¥’ for all A in PB.
Then

[y +-+, A =[A4f, -+, A = [Af-A;", eee, AZ-AY]
= [A:’ MRS A:] = [Alv "% A”]z" (mOd Cn+1(§B)) .

Since o is regular on P, o is also regular on each C,/C,..,. As the
order of ¢ divides p — 1 the above congruences now imply that cl(P) <
» — 1 and so P is a regular p-group. If J'(P) # 1, then the mapping
A —— A? induces a non zero linear map of P/D(P) to C.(P)/C..(F)
for suitable n. Namely, choose n so that &%(B) < C.(B) but F(P) &
C...(B), and use the regularity of ¥ to guarantee linearity. Notice
that n = 2, since by hypothesis §'(P) S P’. We find that z = 2" (mod p),
and so z*' = 1(mod p) and o has a fixed point on C,_,/C,, contrary to
assumption. Hence, J'(B) = 1.,

7. Preliminary Lemmas of Hall-Higman Type

Theorem B of Hall and Higman [21] is used frequently and will
be referred to as (B).

LEMMA 7.1. If % 18 a p-solvable linear group of odd order over
a field of characteristic p, then O0,(%X) contains every element whose
minimal polynomial is (x — 1)

Proof. Let 7 be the space on which X acts. The hypotheses
of the lemma, together with (B), guarantee that either O,(%X) #+ 1 or
X contains no element whose minimal polynomial is (z — 1)

Let X be an element of ¥ with minimal polynomial (# — 1)’. Then
0,(%) + 1, and the subspace % which is elementwise fixed by 0,(%)
is proper and is X-invariant. Since O,(%) is a p-group, % # 0. Let

& = ker (X — Aut 2%), K =ker(E— Aut (7 %)) .
By induction on dim #°, X€ 0,(Xmod &), i = 0,1, Since
0, (X mod &) N 0, (X mod &,)
is a p-group, the lemma follows.
LEMMA 7.2. Let X be a p-solvable g'roup of odd order, and U a

p-subgroup of X. Any ome of the following conditions guarantees
that A < O, ,(%):
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A i8 abelian and |%: N(A)| is prime to p.

p=5and [B, U A A, A =1 for some S,-subgroup B of X%.
[B, A, A] = 1 for some S,-subgroup P of X.

A acts trivially on the factor 0, , ,(%)/0,(%).

Ll .

Proof. Conditions 1, 2, or 8 imply that each element of 2 has a
minimal polynomial dividing (z — 1) on O, ,(%)/®, where D =
D(0,. (%) mod O,.(x)). Thus (B) and the oddness of |%| yield 1, 2, and
3. Lemma 1.2.8 of [21] implies 4.

LEMMA 7.8. If X 48 p-solvable, and B 1is a S,-subgroup of %,
then () is a lattice whose maximal element is 0,(%).

Proof. Since 0,(%) <X and BN O,(X) =1, 0,(X) is in UCP).
Thus it suffices to show that if e M(P), then < 0,(X). Since P
is a group of order |P|-|H| and P is a S,-subgroup of %X, O is a p'-
group, as is ©0,.(%). In proving the lemma, we can therefore assume
that 0,.(X) = 1, and try to show that © = 1. In this case, 9 is faith-
fully represented as automorphisms of 0,(%), by Lemma 1.2.3 of [21].
Since 0,(%) =%, we see that [D, 0,(X)]|=HN P, and H = 1 follows.

LEMMA 7.4, Suppose P is a S,-subgroup of X and A € &4 (P).
Then U(A) contains only p’-groups. If in addition, X is p-solvable,
then U(A) is a lattice whose maximal element is O,.(%).

Proof. Suppose A normalizes D and AN H =1). Let A* be a
S,-subgroup of AP containing A. By Sylow’s theorem, P, =A*N
is a S,-subgroup of . It is clearly normalized by %, and A N P, ={1).
If P, # 1), a basic property of p-groups implies that 2 centralizes
some non identity element of P, contrary to 8.10. Thus, P, = 1D
and $ is a p’-group. Hence we can assume that X is p-solvable and
that 0,.(%) =<1) and try to show that = {1).

Let %, = 0,(X)9%. Then O,(%)A is a S,-subgroup of %, and
Ae FAZ 47 (0,(X)¥). If %, %, then by induction D<0,(%,) and so
[0,(%), ] =0,(%) N 0,(%) =1 and D = 1. We can suppose that %, =
%,

If A centralizes O, then clearly A < %, and so ker (¥ — Aut ¥) =
A x &, by 810 where 9= 9,. Hence, $ char A x , < %, and
9, <%, so that , = 1. We suppose that €A does not centralize 9,
and that © is an elementary g¢-group on which 2 acts irreducibly.
Let B = 0,(%)/D(0,(%)) = B, X B,, where B, = Cgx(®) and B, = [B, $].
Let V€%, and Xe V, so that [X, A] < A. Hence, [X, A] maps into
B,, since [[X, A], D]S D N O0,(X) = 1. But B, is X-invariant, so [X, A}
maps into B, N B, = 1. Thus, A S ker (X — AutB,), and so [, D]
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centralizes B,. As U acts irreducibly on 9, we have $ = [9, Y], so
B, =1. Thus, $ centralizes T and so centralizes 0,(%X), so $ =1, as
required.

LEMMA 7.5. Suppose $ and 9, are S, -subgroups of the solvable
group &. If BSO0,D) NP, then BS0L9).

Proof. We proceed by induction on [&|. We can suppose that
© has no non identity normal subgroup of order prime to pq. Suppose
that & possesses a non identity normal p-subgroup . Then

SE0,9) N0,D) .

Let =6/J, B=BI/J, D=9/, &:=9/J. By induction, B 0,(9),
80 BSO0,(DPmod I) = 0,(D), and we are done. Hence, we can assume
that 0,(8) = {(1>. In this case, F(®) is a g¢-group, and F(S)< D,.
By hypothesis, B<S0,(9.), and so B centralizes F(&). By 3.3, we
see that B = (1), so BS0,(D) as desired.

The next two lemmas deal with a S,-subgroup 8 of the p-solvable
group X and with the set

& = {9|1. 9 is a subgroup of %X .
2. Po.
3. The p-length of  is at most two.
4. |9| is not divisible by three distinet primes .}

LEMMA 7.6. X ={D[|De .

Proof. Let %, = {9|Hec o). It suffices to show that |%,|, = | %],
for every prime ¢q. This is clear if ¢ = p, so suppose ¢q # p. Since
¥ is p-solvable, X satisfies E,, so we can suppose that X is a p, ¢-
group. By induction, we can suppose that X, contains every proper
subgroup of X which contains P. Since PO, (X)e.s”, we see that
0,X)<S%,. If NBNO, (X)) cX, then N(PBNO,(X))=%,. Since X =
0,%)-N(BNO, (%)), we have X =%,. Thus, we can assume that
0,%) =B NO, ,(X). Since TO,, (X)e.s”, we see that 0, (X)) =%, If
RO, (%) = %, we are done, so suppose not. Then N(P N 0, (%)) C %,
so that %, contains N(PB N 0, , ,(¥))0, (%) = X, as required.

LEMMA 7.7. Suppose M, N are subgroups of £ which contain P
such that 9 = (O N MO NN) for all  in S~ Then X¥=MRN.

Proof. It suffices to show that |[MN|, = |X|, for every prime gq.
This is clear if ¢ = p, so suppose ¢ # p. Let Q, be a S,-subgroup of
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M NN permutable with P, which exists by E,, in M NRN. Since %
satisfies D,,, there is a Sisubgroup Q of ¥ which contains Q, and
is permutable with B, Set R = PLO. We next show that

R=@RNIWERNN) .

If Re .o~ this is the case by hypothesis, so we can suppose the p-
length of R is at least 3. Let B, =P N 0,,,(R), and L = Ny(B).
Then £ is a proper subgroup of R so by induction on |X|, we have
L=E@NIWENN). Let & =PB-0,,,(R) = PO, (R). Since & is in
% we have = (& N MR NN). Furthermore, by Sylow’s theorem,
R =82 Let ReR. Then R= KL with Ke R, Le 8. Then K = PK,,
with Pin B, K, in 0,,R). Also, L=MN, Min2nNWM, Nin2nN,
and so R = KL = PK,MN = PMK*N, Since KXc0,,R), we have
K* = MN, with M, in RN &, N, in RN K. Hence, R = PMM,-N,N
with PMM, in M N R, NN in RN R.
Since R= (RN TR NN), we have

_ _ IR M 1 RNN|,
=R = v )
£l = [Rl, [RNMNNR,

By construction, (RN M N N|, = | M N N|,. Furthermore, | RN M|, <
(M|, and RN N|, = [N],, s0

o), = LRARl o (RO [ROR], _ |y
TRl = T m AR EREGEDD 1%,

completing the proof.

LeMMA 7.8. Let X be a finite group and  a p’-subgroup of %
which is normalized by the p-subgroup A of X. Set A, = Cy(9).
Suppose L is a p-solvable subgroup of % containing AD and  Z 0,.(Y).
Then there is a p-solvable subgroup 8 of UCLA,) which contains A
and & 0,.(R).

Proof. Let § = 0,.,(8)/0,(%). Then © does not centralize §.
Let B be a subgroup of ¥ which is minimal with respect to being
AH-invariant and not centralized by . Then B = [B, §], and [B, A,| =
D(B), while [D(B), 9] = 1. Hence, [B, A, $] =¥, $,B] =1, and so
[9,8B, %,] =1. Since [, B] =B, A, centralizes B. Since B is a sub-
group of &, we have B = £/0,.(2) for suitable £,. As 0,(2) is a
p’-group and B is a p-group, we can find an A-invariant p-subgroup
PBo of ¥ incident with B. Hence, A, centralizes B,. Set

=B, HHr<8.
As 8 is p-solvable so is & If 9 £ 0,.(8R), then
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[Be, 0] S & N 0,(R) S 0,.(8)

and 9 centralizes B, contrary to construction. Thus, $Z 0,(R), as
required.

LEMMA 7.9. Let $ be a p-solvable subgroup of the finite group
X, and let P be a S,-subgroup of O. Assume that one of the follow-
ing conditions holds:

(a) |X| s odd.

(b) »=5.

(¢c) p=238 and a S;subgroup of ® is abelian.
Let B, = 0,.,(9) NP and let P* be a p-subgroup of X containing P.
If B is a S,-subgroup of N (B,), then B, contains every element of
FEN(PB*).

Proof. Let Ae A2+ (P$*). By (B) and (a), (b), (c), it follows
that ANP=ANP, = A, say. If A, A, then there is a B,-invariant
subgroup B such that A, B, |B:A| = p. Hence, [B,, BN, &
Py, 80 BS N (P) N P*. Hence, {B, P) is a p-subgroup of N (Py),
so BEP. Hence, BESAN P = A, which is not the case, so A = A,
as required.

8. Miscellaneous Preliminary Lemmas

LemMmA 8.1, If X i8 @ m-group, and & 18 a chain X =¥%2
%2-.-2%, =1, then the stability group A of & i3 a w-group.

Proof. We proceed by induction on n. Let Ac . By induction,
there is a m-number m such that B = A™ centralizes ¥,. Let Xe¥%;
then X# = XY with Y in %,, and by induction, X* = XY". It fol-
lows that B% =1,

LEMMA 8.2. If P i3 a p-group, then P possesses a characteristic
subgroup € such that

(i) cl@) =2, and €/Z(C) is elementary.

(ii) ker (Aut P—> Aut €) is a p-group. (res is the homomor-
phism induced by restricting A in Aut P to €.)

(ili) [B,C] = Z(C) and CE€) = Z(©).

Proof. Suppose € can be found to satisfy (i) and (iii). Let
® = ker res. In commutator notation, [®, €] =1, and s0 [®, €, P] = 1.
Since [€, P] =€, we also have [€, B, £] = 1 and 3.1 implies [P, &, €] =
1, so that [B, K]S Z(€). Thus, £ stabilizes the chain P2E21 so
is a p-group by Lemma 8.1.
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If now some element of 2.4 (P) is characteristic in B, then
(i) and (iii) are satisfied and we are done. Otherwise, let % be a
maximal characteristic abelian subgroup of B, and let € be the group
generated by all subgroups ® of P such that AcCD, [D:A| = p,
DEZ(PmodA), DS CH). By construction, A< Z(€), and € is seen
to be characteristic. The maximal nature of % implies that A = Z(€).
Also by construction [, €]< U = Z(€), so in particular, [€, €)= Z(€)
and cl(€) <2, By construction, €/Z(€) is elementary.

We next show that C(€) = Z(€). This statement is of course
equivalent to the statement that C(€)=S €. Suppose by way of con-
tradiction that C(€)Z €. Let & be a subgroup of C(€) of minimal
order subject to (a) € B, and (b) €L €. Since C(€) satisfies (a)
and (b), & exists. By the minimality of &, we see that [, €]=€
and D(E)< €. Since § centralizes €, so do [P, €] and D(E), so we
have [, E]=¥U and D(E) = A. The minimal nature of & guarantees
that G/ENE is of order p. Since ENE=CNYU, GENA is of
order p, so GUA/N is of order p. By construction of €, we find A S
€, so <€, in conflict with (b). Hence, C(€) = Z(€), and (i) and
(iii) are proved.

LEMMA 8.8. Let X be a p-group, » odd, and among all elements
of P& (%), choose U to maximize m(N). Then 2,(C(2(N))) = 2,(N).

REMARK. The oddness of p is required, as the dihedral group
of order 16 shows.

Proof. We must show that whenever an element of X of order
p centralizes 2,(%), then the element lies in 2,(%).

If XeC(RN) and X* =1, let B(X) = B, = {2(A), XD, and let
B,CcB, - B, =<, X> be an ascending chain of subgroups, each
of index p in its successor. We wish to show that B, <{ B,. Suppose
B, 1B, for some m <n — 1. Then B, is generated by its normal
abelian subgroups %B, and B, N Y, 8o B, is of class at most two, so
is regular. Let Ze€®B,, Z of order p. Then Z= X*A,A in ¥, k an
integer. Since B, is regular, X*Z is of order 1 or p. Hence,
Aec ), and Z¢B,. Hence, B, = 2,(B,) char B,, < B,..,, and B, < B,
follows. In particular, X stabilizes the chain 22 2,(%) =2 {1).

It follows that if D = 2,(C(2())), then D’ centralizes A. Since
Ne Fz 1 (%), VYU We next show that D is of exponent p.
Since [D, D]& A, we see that [D, D, D} & 2,(A), and so

2,999 =1,

and c¢l(®) £8. If p=5, then D is regular, and being generated by
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elements of order p, is of exponent p. It remains to treat the case
» =3, and we must show that the elements of ® of order at most
8 form a subgroup. Suppose false, and that <X, Y) is of minimal
order subject to X*=Y*=1, (XY)+#1, X and Y being elements
of ©. Since (Y, Y*Hc{X,Y), [Y,X]=Y"'. X'YX is of order
three. Hence, [X, Y] is in 2,%), and so [Y, X] is centralized by
both X and Y. It follows that (XY)' = XYY, X =1, so D is of
exponent p in all cases.

If 2D, let €% E&D, |€: 2(A)| =p. Since 2,(N) <
Z(€), € is abelian, But m(€) = m(A) + 1 > m(A), in conflict with
the maximal nature of U, since € is contained in some element of
Fz (%) by 3.9.

LeMMA 8.4. Suppose p is an odd prime and X is a p-group.

(i) If LAz 1;(%) is emptly, then every abelian subgroup of %
18 generated by two elements.

(ii) If &5 (X) is empty and A is an automorphism of X of
prime order q, p + q, then q divides p* — 1.

Proof. (i) Suppose U is chosen in accordance with Lemma 8.3.
Suppose also that X contains an elementary subgroup & of order p°.
Let G, = Cx(2,(A)), so that €, is of order p’at least. But by Lemma
8.8, G, < 2,(N), a group of order at most p?, and so &, = 2,(A). But
now Lemma 8.3 is violated since & centralizes €,.

(ii) Among the A-invariant subgroups of X on which A acts non
trivially, let © be minimal. By 8.11,  is a special p-group. Since
p is odd, © is regular, so 3.6 implies that  is of exponent ». By
the first part of this lemma, $ contains no elementary subgroup of
order p°. It follows readily that m(9) < 2, and (ii) follows from the
well known fact that ¢ divides [Aut ©/D(D)|.

LEMMA 8.5. If % is a group of odd order, p is the smallest
prime in 7(%), and if in addition X contains no elementary subgroup
of order p°, then X has a normal p-complement.

Proof. Let P be a S,-subgroup of X¥. By hypothesis, if  is a
subgroup of P, then %7 +;(9) is empty. Application of Lemma 8.4
(ii) shows that N (D)/Cx(9) is a p-group for every subgroup  of P.
We apply Theorem 14.4.7 in [12] to complete the proof.

Application of Lemma 8.5 to a simple group @ of odd order im-
plies that if » is the smallest prime in 7(®), then & contains an
elementary subgroup of order °. In particular, if 3en(®), then &
contains an elementary subgroup of order 27.
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LEMMA 8.6. Let RN, N, N, be subgroups of a group X and suppose
that for every permutation o of {1,2,8},

mﬂ'(l) g ER,(,) ma' (8)

Then NN, is a subgroup of X.

P’I‘OOf. m,%l g (mlms)(msm,) g mlmsmg g m1(m1%)m’ g_ mlmg, as re-
quired.

LemMA 8.7. If A is a p'-group of automorphisms of the p-group
B, of A has no fized points on P/D(P), and A acts trivially on D(P),
then D(P) S Z(P).

Proof. In commutator notation, we are assuming [P, U] =B,
and [¥%, D(P)] = 1. Hence, [A, D(P), B] = 1. Since [D(P), B} < D(P),
we also have [D(P), B, A} =1. By the three subgroups lemma, we
have [P, A, D(P)] = 1. Since [P, A] = B, the lemma follows.

LemMMA 8.8. Suppose Q is a q-group, q is odd, A is an auto-
morphism of T of prime order p, p=1(mod q), and Q contains a
subgroup L, of index q such that P& .A5(Q,) 8 empty. Then p=
14+ g+ ¢ and Q i8 elementary of order ¢

Proof. Since p = 1(mod ¢) and ¢ is odd, p does not divide ¢* — 1.
Since D(Q) & Q,, Lemma 8.4 (ii) implies that A acts trivially on D(R).

Suppose that A has a non trivial fixed point on Q/D(X). We can
then find an A-invariant subgroup MM of index ¢ in L such that A
acts trivially on Q/IM. In this case, A does not act trivially on IR,
and so M = Q,, and M N Q, is of index ¢ in WM, By induction, p =
1+g+ ¢ and M is elementary of order ¢°. Since A acts trivially
on Q/M, it follows that O is abelian of order ¢* If Q were elemen-
tary, Q, would not exist. But if Q were not elementary, then A
would have a fixed point on 2,(Q) = M, which is not possible. Hence
A has no fixed points on Q/D(Q), so by Lemma 8.7, D(Q) S Z(XQ).

Next, suppose that A does not act irreducibly on Q/D(X). Let
N/D(L) be an irreducible constituent of A on Q/D(X). By induction,
N is of order ¢°, and p=1+ ¢+ ¢. Since D) R, DQ) is a
proper A-invariant subgroup of . The only possibility is D(Q) =1,
and || = ¢® follows from the existence of Q,.

If |Q]| =¢* then p =1+ ¢ + ¢* follows from Lemma 5.1. Thus,
we can suppose that |Q| > ¢°, and that A acts irreducibly on Q/D(Q),
and try to derive a contradiction. We see that £ must be non
abelian. This implies that D(Q) = Z(Q). Let |Q: D(Q)| = ¢*. Since
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p=1(modg), and ¢"=1(modp), n=8. Since D(Q)=2Z(Q), n is
even, L/Z (L)) possessing a non singular skew-symmetric inner product
over integers mod ¢ which admits A. Namely, let € be a subgroup
of order ¢ contained in Q' and let €, be a complement for € in L',
This complement exists since L’ is elementary. Then Z(Pmod €,) is
A-invariant, proper, and contains D(X)). Since A acts irreducibly on
/D(Q), we must have D(Q) = Z(Xmod €,), so a non singular skew-
symmetric inner product is available, Now Q is regular, since ¢cl(Q) =
2, and ¢ is odd, so |2,(R)| = |Q:0% ()], by [14]. Since cl(Q) = 2,
2,(2) is of exponent q. Since

R:01Q) 2 12:DR)| =2 ¢,

we see that |2,(Q)] = ¢*. Since Q, exists, 2,(X) is non abelian, of
order exactly ¢!, since otherwise Q, N 2,(X) would contain an elemen-
tary subgroup of order ¢°. It follows readily that A centralizes 2,(Q),
and so centralizes Q, by 3.6. This is the desired contradiction.

LEMMA 8.9. If P is a p-group, if F&.45(B) is non empty and
A is a normal abelian subgroup of B of tyve (p, p), then A is con-
tained in some element of AL N5 (D).

Proof. Let € be a normal elementary subgroup of 3 of order 7%
and let G = Cx(A). Then €, P, and <, €)= is abelian. If
|¥| = »*, then A = €, = Fc E, and we are done, since € is contained
in an element of & 45(P). If |F| = p°, then again we are done,
since ¥ is contained in an element of .2&.4:().

If X and 9 are groups, we say that 9 is involved in X provided
some section of X is isomorphic to 9 [18].

LEmMMmA 8.10. Let P be a S,-subgroup of the group X. Suppose that
Z(P) is cyclic and that for each subgroup A in B of order p which
does not lie in Z(P), there i3 an element X = X(N) of P which
normalizes but does not centralize A, 2(Z(P))). Then either SL(2, p)
18 involved in X or 2(Z(P)) 18 weakly closed in P.

Proof., Let ® = 2(Z(P)). Suppose & = D¢ is a conjugate of D
contained in P, but that € #D. Let D =<D), & =E). By hypo-
thesis, we can find an element X = X(&) in P such that X normalizes
{E,D>=%, and with respect to the basis (¥, D) has the matrix

((]j i) Enlarge § to a S,-subgroup P* of C,(€). Since € = D7,
B¢ S C4(€), so P* is a S,-subgroup of %, and € S Z(P*). Since Z(P*)
is cyelic by hypothesis, we have & = 2,(Z($*)). By hypothesis, there

is an element Y = Y(®) in $* which normalizes {§ and with respect
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to the basis (E, D) has the matrix G (1)) Now <(1) %) and G (1)>
generate SL(2, p) [6, Sections 262 and 263], so SL(2, p) is involved in
N,(®), as desired.

LemMa 8.11. IFf U i8 a p-subgroup and B i8 a g-subgroup of X,
P #q, and A normalizes B then [B, A] = [B, A, «AJ.

Proof. By 3.7, [¥,B] < AB. Since AB/[A, B] is nilpotent, we
can suppose that [, B] is elementary. With this reduction, [B, %, U] «
AB, and we can assume that [B, A, A] = 1. In this case, A stabilizes
the chain B2[B, AJ21, so [B, A] =1 follows from Lemma 8.1 and

P+ q.

LEMMA 8.12. Let p be an odd prime, and G an elementary sub-
group of the p-group P. Suppose A is a p'-automorpvhism of B which
centralizes 2(Cy(€)). Then A=1.

Proof. Since €S 2(Cyx(€)), A centralizes &. Since € is A-invari-
ant, sois Csp(@)- By 3.6 A centralizes C‘-B(@)' so if € = Z (), we are done.

If Ca(€) B, then Cy(€)D(P) =P, and by induction A centralizes
D(PB). Now [P, €1< D(P) and so [P, €, <4>] = 1. Also, [E, 4] =1,
so that [€,{A4), B] =1. By the three subgroups lemma, we have
[<A>, B, €] = 1, so that [B, {AD] < Cy(€), and A stabilizes the chain
PRCK(E) D1, It follows from Lemma 8.1 that A =1.

LEMMA 8.13. Suppose B is a S,-subgroup of the solvable group
&, L A5(P) 18 empty and &S is of odd order. Then & centralizes
every chief p-factor of &,

Proof. We assume without loss of generality that 0,.(®) = 1.
We first show that P IS, Let © = 0,(8), and let € be a subgroup
of  chosen in accordance with Lemma 8.2. Let B = 2,(€). Since
p is odd and cl(€) < 2, W is of exponent p.

Since 0,(®) =1, Lemma 8.2 implies that ker (& —— Aut@) is a
p-group. By 3.6, it now follows that ker (& —— Aut ) is a p-group.
Since P has no elementary subgroup of order ° neither does 28, and
so |W: D) < p*. Hence no p-element of & has a minimal poly-
nomial (z — 1)* on B/D(W). Now (B) implies that P/ker a < Sfker ax.
and so P < &, since ker a & P.

Since P <« &, the lemma is equivalent to the assertion that if
is a S,-subgroup of &, then ¥ =1. If & # 1, we can suppose that
¥’ centralizes every proper subgroup of P which is normal in &. Since
g is completely reducible on P/D(B), we can suppose that [, ] =P
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and [D(P),¥]=1. By Lemma 8.7 we have D(P)SZ(P) and so
2(P) =R is of exponent » and class at most 2. Since P has no
elementary subgroup of order 2° neither does R. If & is of order p,
%' centralizes & and so centralizes P by 3.6, thus £ = 1. Otherwise,
|®: D(R)| = p* and & is faithfully represented as automorphisms of
K/D(R). Since (2] is odd, & =1.

LEMMA 8.14. If & 48 a solvable group of odd order, and
FEN(PB) is empty for every S,-subgroup P of S and every prime
p, then &' 1is nilpotent.

Proof. By the preceding lemma, &' centralizes every chief factor
of &. By 3.2, & < F(&), a nilpotent group.

LemMMA 8.15. Let & be a solvable group of odd order and suppose
that & does mot contain an elementary subgroup of order p° for any
prime p. Let P be a S,-subgroup of & and let € be any character-
istic subgroup of P. Then €N P 1 S.

Proof. We can suppose that €=, since € NP char P. By
Lemma 8.14 F(8) normalizes €. Since F(©&)P <« S, we have & =
F(©)N(P). The lemma follows.

The next two lemmas involve a non abelian p-group P with the
following properties:

(1) pis odd.

(2) B contains a subgroup P, of order p such that

0(530) = éBo B, ’

where 9B, is cyelic.
Also, U is a p'-group of automorphisms of 9P of odd order.

LEMMA 8.16. With the preceding notation,

(i) U s abelian.

(ii) No element of At centralizes 2,(C(By)).

(i) If U is cyclic, then either |A| divides p 1Tor F& (D)
18 empty.

Proof. (ii) is an immediate consequence of Lemma 8.12.

Let B be a subgroup of P chosen in accordance with Lemma 8.2,
and let T = 2,(B) so that U is faithfully represented on . If P, &L
9B, then P, is of maximal class, so that with B, = W, W, = [B;, P,
we have |B;: W,,|=», 1=0,1,.--,n—1, |W| =p*, and both (i)
and (iii) follow. If P,=W, then m(W) =2. Since [BW, P]S Z(W),
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it follows that (P, Z(W)> < B. By Lemma 8.9, .Z_4;(P) is empty.
The lemma follows readily from 8.4.

LEMMA 8.17. In the preceding mnotation, assume in addition that
|A| =q 18 a prime, that q does not divide p —1, that P =[P, A]
and that Cq;(i’l) 18 cyclic. Then |PB| = p'.

Proof. Since girp — 1, A centralizes Z(P), and so Z(P)SP'.
Since C$(91) is cyclic, 2(Z,(P)) is not of type (p, ). Hence, B S
2(Z(P)). Since every automorphism of 2,(Z,(B)) which is the identity
on 2:(Z,(P)/2(Z(P)) is inner, it follows that P = 2,(Z.(P)) - D, where
D = Cp(2(Z,(P))). Since P, is eyclic, s0 is D, and s0 D& 2(Z,(P)),
by virtue of B =[P, A] and ¢t p — 1.



