
ON ISOMETRIC ISOMORPHISM OF GROUP ALGEBRAS

J. G. WENDEL

l Introduction. Let G be a locally compact group with right invariant Haar

measure m [29 Chapter XI]. The class L(G) of integrable functions on G forms a

Banach algebra, with norm and product defined respectively by

IWI=/U(g) !

The algebra is called real or complex according as the functions x(g) and the

scalar multipliers take real or complex values.

Suppose that T is an isomorphism (algebraic and homeomorphic) of the group G

onto a second locally compact group Γ having right invariant Haar measure μ;

let c be the constant value of the ratio m(E)/μ(τE), and let χ be a continuous

character on G. If T is the mapping of L (G) onto L (Γ) defined by

(Tx)(τg)=cχ(g) χ(g), xCL(G),

then it is easily verified that Γ is a linear map preserving products and norms;

for short, T is an isometric isomorphism of L (G) onto L (Γ).

It is the purpose of the present note to show that, conversely, any isometric

isomorphism of L (G) onto L(Γ) has the above form, in both the real and complex

cases.

We mention in passing that if T is merely required to be a topological iso-

morphism then G and Γ need not even be algebraically isomorphic. In fact, let G

and F be any two finite abelian groups each having n elements, of which k are of

order 2. Then the complex group algebras of G and Γ are topologically isomorphic

to the direct sum of n complex fields, and the real algebras are topologically iso-

morphic to the direct sum of k + 1 real fields and (n — k — l)/2 two-dimensional

algebras equivalent to the complex field. The algebraic content of this statement
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follows from a theorem of Perlis and Walker [4] , but for the sake of completeness

we sketch a direct proof.

Since the character group of G is isomorphic to G there are exactly k characters

Xi 9 X2 > # # " f Xk on G of order 2. Together with the identity character χ 0 these

are all of the characters on G which take only real values. The remaining charac-

ters Xk + ι> * ' •» Xrc-i f a l l i n t 0 complex-conjugate pairs, χ 2 m = χ 2 m + i> ™ =

(k + l)/2, (k + 3)/2, • • • , ( « - 2)/2. For 0 < y < n - 1 let Xj £ L (G) (complex)

be the vector with components (l/rc)χy(g). It is readily verified that the Xj are

orthogonal idempotents, so that L (G) can be written as the sum of n complex

fields, and the same holds for the complex algebra L ( Γ ) . In the real case we

retain the vectors XJ for 0 < / < k, and replace the remaining ones by the (real)

vectors ym — x2m + *2m + t 9 zm ~ iχim ~~ iχ2m + ι » whose law of multiplication is

easily seen to be yl = ym , z2

m = - y m , ymzm = zmym = z m , while all other

products vanish. Since the vectors xj, y m , 2rm span L (G) we see that L (G) is

represented as the sum of k + 1 real fields and (n — & — l)/2 complex fields; the

same representation is obtained for the real algebra L(Γ) ; this completes the

proof of the algebraic part of the assertion. The fact that these algebras are also

homeomorphic follows from the fact that all norms in a finite dimensional Banach

space are equivalent.

2. Statement of results* For any fixed g0 £ G let us denote the translation

operator x(g) —> x(golg)i x C L{G), by SgQ; operators Σγ are defined

similarly for L ( Γ ) . In this notation our precise result is:

THEOREM 1. Let T be an isometric isomorphism of the (real, complex) algebra

L {G) onto the (real, complex) algebra L (Γ). There is an isomorphism r of G onto

F, and a {real, complex) continuous character X on G such that

(1A) TSST'1 = χ ( g ) Σ τ g , g G G,

(IB)* (Γ*)(τg) = c χ(g) x(g), g G G, x CL(G) ,

where c is the constant value of the ratio m{Ej/μ(τE)

For the proof we make use of a theorem due to Kawada [3] concerning positive

*I am obliged to Professor C. E. Rickart for suggesting the probable existence of a
formula of this kind.
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isomorphisms of L (G) onto L(Γ) in the real case; a mapping P : L (G) —» L(Γ)

is called positive in case x(g) > 0 a.e. in G if and only if (Px)(γ) > 0 a.e. in

Γ. Kawada's result reads:

THEOREM K. Let P be a positive isomorphism of L (G) onto L (Γ), both alge-

bras real. There is an isomorphism r of G onto Γ such that PSgP~ι = kgΣTg,

g G G9 where kg is positive for each g.

In order to deduce Theorem 1 from Theorem K we need two intermediate results,

of which the first is a sharpening of Kawada's theorem, while the second reveals

the close connection which holds between isometric and positive isomorphisms.

THEOREM 2. Let P be a positive isomorphism of real L(G) onto L(T)*Then:

(2A) P is an isometry;

(2B) kg = 1 for all g C G;

(2C) P is given by the formula (Px){rg) = cx(g), where c is the constant value

of the ratio m(E)/μ(τ E)

THEOREM 3. Let T be an isometric isomorphism of L(G) onto L(V). There is

a continuous character χ(y) on Γ such that if the mapping P : L (G) —ϊ L (Γ) is

defined by {Px)(y) = χ(y){Tx)(γ), x € L(G), y C Γ, then P is a positive

isomorphism of the real subalgebra of L (G) onto the real subalgebra of L (Γ). The

character X is real or complex with L (G) and L (Γ).

3 Proof of Theorem 2. P and its inverse are both order-preserving operators,

and therefore are bounded [ l , p 249] Consequently the ratio \\Px \\ /\\x || is

bounded away from zero and infinity as x varies over L (G), x ψ- 0. If x is a posi-

tive element of L (G) it follows by repeated application of Fubini's theorem that

\\xn\\ - \x\n\ since Px is also positive, and P (xn) = (Px)n, we have the result

that for fixed positive x ^ 0 the quantity {\\Px \\/\\x \\}n is bounded above and

below for n — 1,2, . Hence P is isometric at least for the positive elements

of L (G). But now for any x C L(G) we may write x = x + x , where x and x

denote respectively the positive and negative parts of x. Then

11*11 = llχ+ + χΊI = ll«+ll +ιl*ΊI = llΛc+|| + ||Λtl>||ft+ + p«Ί| = ||fte||.

Applying the argument to P~ι we obtain the result

11*11 " I I
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which is the statement (2A).

Theorem (2B) follows at once from this and Theorem K. For if x £ L (G) then

IISgX II = TOg||#||, where πig is the constant value of the ratio m(gE)/m(E). Simi-

larly, | | Σ T g ^ : | | = μTg \\ζ\\ Since r is a homeomorphism,μ τg — mg.The constant

kg may now be evaluated by taking norms on both sides of the equation PSgP~ι

= kgΣTg, and must therefore have the value unity.

To prove part (2C) of the theorem we observe that the operator Q defined by

(Qx)(τg) — cx(g) satisfies the relation QSgQ~x — Σ T g, and is an isomorphism of

L (G) onto L (Γ) . Then QSgQ~ι = PSgP~ι, g £ G, and consequently R = P~ιQ

is a continuous automorphism of L (G) which commutes with every Sg. We shall

show that R must be the identity mapping.

Segal [5, p. 84] has shown that the product xy of two elements x9 y belonging

to L (G) may be written as a Bochner integral, which in our notation takes the form

xy= Jx(h)mlι{Shy}m(dh),

where the quantity in braces is a vector-valued function of h £ G9 and the function

mg was defined above. Applying the operator R we obtain

R(xy) = $x{h)*iι{RShy\m(dh) = SxWm^iS^ylmidh) =xRy.

But R is an automorphism, and so also R (xy) — (Rx)(Ry). Thus x = Rx, all

x G L (G), which shows that P — Q9 as was to be proved.

4 Proof of Theorem 3 We first require several lemmas, all of which share the

hypothesis: T is an isometric isomorphism of L (G) onto L ( Γ ) , indifferently real

or complex. For x, γ £ L (G) we write ξ for Tx, 7) for Ty. We denote by E (x) the
s e t £g|& €1 G9x(g) 7^ θ}9 which is regarded as being determined only up to a

null-set; E (ζ) in Γ is defined in the same fashion. (Although we make no use of

this fact, the first three lemmas below actually hold in case T is an isometry

between two arbitrary L-spaces.)

LEMMA 1. If EM Π E (y) = Λ then E {ξ) Π E (17) = Λ , and conversely.

Proof. The hypotheses imply that for all scalars A we have \x + Ay\\ — \\x\

+ \A\ \\y\\. Then for all A we have \\ξ + AΎ)\\ = \\ξ\\ + \A\ | | η | | , which implies

that E {ξ) and E (η) are disjoint. For the converse we need only replace T by T *.
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LEMMA 2. IfE(x) C £ (y) then E(ξ) C £ (η), and conversely.

Proof. Suppose that E (x) C E (y), but that E (ξ) $ E(η). Then we may

write ξ= ξx + ξ29 w i t h f i ^ ) C £(η), £ ( £ 2 ) Π £ ( η ) = Λ = E (ξ x) Π E (ξ2).

Let Γ x ^ = xι\ then from Lemma 1 it follows that E(xχ) Π E(x2) — A = £Gt2)

Π £(y). But E{xχ) U E(x2) = E (x) C £ (y); this contradiction yields the result.

LEMMA 3. Let B in Γ be a σ-finite measurable set {that is, the sum of a

countable number of sets of finite measure). Then there is a positive x C L (G)

such that E {ξ) - B.

Proof. Let 77 £ L{Γ) be chosen so that £ (η) = B. Let y = T~ιη, and set
Λ Q>) = ITQ>) I > £ £ G. Then Λ C L (G)> E{X) — E (y), and therefore from Lemma

2 it follows that £ (£) = β.

LEMMA 4. Le£ A; o/icί y be positive elements of L(G). For y C E{ξ) let

Kξ (γ) = ξ(y)/\ζ{y)\9 and define Kv (y) in similar fashion. Then Kξ (y) =

Kv (γ) almost everywhere on E (ξ) Γ) E (η).

Proof. Since x and y were taken to be positive we have \\x + y | |= ||Λ;|| + ||y||.

Therefore \\ξ + η | | = | ^ | | + |[^H. Then \ξ(γ) + η(Ύ)\ = \ξ(γ)\ + \V(γ)\

a.e. in F . Hence, since the functions K have modulus 1,

\κξ(y)Kη(γΓ1\ξ(y)\ + \V(Ύ)\\ = +
a.e. in £ (ξ) Π E (η). But then Kξ {y)Kv (y ) " 1 = 1 a.e. on £ (£) Π £ (η), as was

to be proved.

LEMMA 5. There is a unique continuous character χ on Γ with the property

that for all positive x G L(G) we have ξ{y) = X ( y ) | £ ( y ) | a.e.\ χ is reaZ or

complex with L (G) and L (Γ).

Proof. Let Fo be the open-closed invariant subgroup of Γ generated by a

compact neighborhood of the identity. Since Γo is σ-finite we may apply Lemma 3

to obtain a positive x £ L{G) such that £ (ξ) — Γo . Now x > 0 implies that

| |* 2 I = I* I 2 ; then also ||<f 2 ' | | = ||<f | | 2 . The element ξ2 is given by the formula

Since * 2 is also positive we have from Lemma 4 that X^ 2 (y) = ^ ^ (y) a e o n

E(ξ2) Γ\ E(ξ) C Fo = E{ξ). Writing simply K{y) for the common value, we see
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that the relation ξ2{y) = K(γ)\ξ2(γ)\ therefore holds in Γo even outside of
E (ξ2). Then

\ξ2{y)\ = JTo

Integrating over Γo again we obtain

= U\\2 = hidy) J

Therefore K(γ)~ιK(γδ~ι)K(8) = 1 a.e. on Γo X Γo. Then there is a null-set

i V C Γ 0 such that y €[ N implies K (yS"1) K(8) = K(γ) for almost all 8 G Γo.

We integrate this equation over a set M of finite positive measure and obtain

K(Ύ)μ(M) = JVo

φu(Sγ)μ(d8),

where φy is the characteristic function of M. The right member is easily seen to

be a continuous function of 7, for all 7 £ Γo hence £ ( 7 ) is equal a e. to a

continuous function Xo(7)> which is clearly a character on Γo. From Lemma 4 it

follows also that, for positive x £ L (G), if E (ξ) 9 T o then ξ(γ) = χ 0 (7)

The proof is completed by extending the function χ 0 to all of Γ. To do this we

write Γ as the union of disjoint cosets 7αΠ)> a n ^ consider the open-closed sub-

group Γ\ generated by any finite number of cosets. Then Γ\ is again σ-finite, and

we may repeat the above argument to obtain a continuous character )(i on Fj

Lemma 4 guarantees that for two such subgroups Γ\ and Γλ the characters )( t and

Xi will agree on Γx Π Γ/ 2 Π)> s o ^at Xi ^s indeed an extension of χ 0 . Clearly,

i f * > 0 a n d £ ( £ ) C Γt then ^(7) = χ ^ γ ) | ^(7) | .

Finally, X on all of Γ is defined by χ(y) = χ x (y) for y £ Γi Since the union

of all such subgroups ΓΊ is precisely Γ, and since as shown above the subgroup
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characters are mutually consistent, the function X is well-defined. It is clearly a

continuous character. The remaining property, that x > 0 implies ζ{y) = χ ( y )

l ί ί y ) ' * can be proved as follows. The set E (ζ) intersects at most a countable

number of cosets ynΠ> ^n s e t s °f positive measure. Let ξn be the restriction

to ynV0 of ξ, and put xn = T~ιξn. Then x = Σn=ιXn, and by Lemma 1 the sets

E{xn) are pairwise disjoint, so that the xn are themselves positive elements. From

this it follows that^(y) = χ Λ ( y > | £ n ( y > | = χ(y)\ξn(y)\ f o r r G r Λ r 0 ;

hence the result holds.

The proof of Theorem 3 is now immediate. For the continuous character X on

Γ constructed in Lemma 5 the mapping P on L (G) to L (Γ) defined by (JPx){γ)

= χ(y)~ι (Tx) (y) carries positive elements of L (G) into positive elements of

L (Γ); P is clearly an algebraic isomorphism of L (G) onto L (Γ). We have only to

show that Px positive implies x positive. Suppose then that Px = ξ is positive,

but that x = xx ~ x2 + i (x3 - * 4 ) , with XJ > 0 and E (xx) Π £ 0c2) = £ (x3) Π £ ( * 4 )

= Λ, and correspondingly ξ = ξγ ~ ^ 2 "̂  ι (^3 "~ ^4)* ̂  ^s evidently an isometry,

and therefore by Lemma 1 the sets E(ξι) Π £(^2) a n ( l E(<ξ3) Π E(ξΛ) are null-sets.

Therefore ^ 2 = ^ 3 = ^ 4 = 0 ; so x ~ Xι 9 and x is positive.

5 Proof of Theorem 1. Because of Theorem 3 we may apply Theorems Kand

(2B) to the real sub-algebras of L(G), L (Γ), to conclude that there is an iso-

morphism T of G onto Γ such that PSgP~ι — Σ T g . Since r is a homeomorphism we

may regard the function X as a continuous character on G, by defining χ(g) =

χ(rg). By Theorem (2C), P is given on the real subalgebras by the formula (Px)

(rg) = ex (g), and, because of the linearity, this formula must hold throughout all

of L (G). Therefore (Tx)(rg) = cχ(g) x{g), which proves (IB). Theorem (1A) is an

easy consequence of this formula.

We note finally that Theorem (2A) shows that Kawada's theorem follows from

Theorem 1.
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