
ON THE APPROXIMATION OF A FUNCTION OF SEVERAL
VARIABLES BY THE SUM OF FUNCTIONS

OF FEWER VARIABLES

S. P . D I L I B E R T O AND E . G . S T R A U S

1. The problems. Let R denote the unit square 0<x<lf0<y<l9 and

C R the space of all continuous real-valued functions z defined on /?, with norm

11 z 11 defined by | | z | | = ma.x(X9y)€R \z\. Let Ix and Iy denote respectively

the unit intervals 0 < x < 1 and 0 < y < 1; and let Cx and Cy denote respective-

ly the classes of all continuous functions on Ix and ly By an obvious identifi-

cation Cx and Cy may be considered as subsets of C R Let C$ denote the subset

of C R composed of all functions z £ CJJ such that z = / -f g where / £ Cx and

g C Cy C$ is closed (under the above norm)

For z £ CR , define the functional^/i [ z ] by

μ[z] — d i s t [z, Cs] ~ inf | | z — u; | | .

The following problem was posed by The RAND Corporation.

Problem (A): Given z £ C/j and e > 0, give a method for evaluating μ[z~\ to

within € . *

Problem (B): Given z £ C/j and 6 > 0, give a method for constructing

functions / £ C^ and g £ Cy such that

It is our purpose in the present note to solve these problems and to establish

certain generalizations.

Received November 7, 1950.

•Actually, this differs somewhat from the problem as formulated by RAND, which was:
Given z and 8, give a method for determining whether μ-[z] < δ This is in all probability
unsolvable when μ[z] = δ, since any computation of μ[z~\ which can be carried out in a
finite number of steps will, in general, yield only an approximation.
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196 S. P. DILIBERTO AND E.G.STRAUS

2. The role of the minimizing sequence. We shall now define a few terms by

means of which our procedure can be outlined conveniently.

We shall say that two functions z and z in CR are equivalent if z —z £ Cs,

and shall denote the equivalence of z and z by z ~ z . Clearly, z ~ z implies

μlz] = μ[z]
According to the definition of μ [ z ] , there exists a sequence of functions

\wι\, W{ C C$1 such that

v>ί\

Let us define Z( — z — wι; then z^ ~ z and ||2:^|| —> μ [z ] . We shall call a

sequence fzj }, z/ C C/? , a minimizing sequence for z if z t ~ z for all i and

Clearly, both of the proposed problems will be solved once one has constructed

a minimizing sequence.*

We shall introduce a "leveling process," which when applied to z and then

iterated will produce a sequence of functions \zι\ with the properties (1) Z( ~ z

and (2) | |z, || > | |z, + i | | for all i. Properties (1) and (2) imply

lim || zi | | = if > μ[z] .
i-oo

That M = yU [z ] , that is, that our "leveling sequence" is in fact a minimizing

sequence, is the principal result of this paper.

This will be established by a "pincers" argument to obtain convergence—

μ [ z j is simultaneously approximated from above and below: For each path in the

class of admissible paths L (defined below) we shall define a functional 77j[z],

over Cβ , with the important property 77̂  [z ] < μ [z ] . Let

S U P I77/ [ z J I = τf[.z~\
leL

Then

-rr[z] < μ [ z ] < M .

* Given a sequence of real numbers ai~^at let us call the integer-valued function N(e)
of the real variable € , defined for € ^ 0 , a modulus of convergence for the sequence a j , if
i £ N(ε) implies | α i - σ | < c

While a method for constructing a minimizing sequence answers the questions, the
finiteness of the procedure is satisfactory only when one has an estimate for the modulus
of convergence. This will be discussed at the end of this paper.
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Our proof is accomplished by showing that 77[_z ] = M, thus implying also that

ττ[z] = μ[z] = M.

3 The main theorem. We shall say that a closed polygonal line is permissible

if it lies entirely within the square 0 < x < 1, 0 < y < 1, and if each of its

sides is parallel either to the x- or to the y-axis.

We enumerate the vertices of a permissible line by (xj>yj)9 j — 1,2, ,

where

l - * 2 f e ι y2kJtl~y2ky *fe + 2n = *fe, ϊk + 2n = ϊk \ k = 1, 2, ' .

To each permissible polygonal line I we can associate a functional π^ \_z~\ with

LEMMA 1. If z ~ z, then ^ [ 2 ] = rr^z].

Proof. Let z(x,y) = z(x,y) + gθc) + h(y) then

2n 2n 2n 2π

Σ(-i);>U;,yy) = Σ(-i)^(*j,yy) + Σ(-i)'β(*j) + Σ
>=1 j-ί j-l > = 1

But

Σ (-l)yg(*i) = - Σ g(*Λ-i) + Σ «(*2k) = 0 ,

2n

Hence

2n 2n

Σ (-i)''*(*j.yj)= Σ

that is, 77j[>] = 77 z[z].

We remark that these invariants (under equivalence) ^ [ 2 ] form a complete set

of invariants. That is to say: If 77, [z ] = 77, [2] for all permissible lines, then
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z ~ z . In fact the 77, based on rectangles alone form a complete set of invariants.

In order to relate μ with the 77̂  we prove the following result.

LEMMA 2. The functional μ [ z ] satisfies μ [ z ] > | 77̂  [ z ] | for all permissi-

ble lines.

Proof. If we had μ [ z ] < 77̂  [ z ] | then there would exist a function z ~ z

such that I z || < I 77̂  [ z ] | and hence :

λ 2n

I w J I - \"il*s\ - 2n

•i 2 n

J = l

which is a contradiction.

Problem A will be solved once we establ ish the following theorem.

THEOREM 1. The functional μ\_z~\ satisfies μ [ z ] = s u p | π ^ [ z ] | = 7 7 [ z ] ,

where the sup is taken over all permissible lines.

As a preliminary to the proof of this theorem we introduce the following level-

ing process :

Given z £ CR , we define the sequences of functions zn(x,y), gn(
χ)i AΛ(y)

(n — 1, 2, ) by the relations :

Z i =z Z t Z2n ~ Z 2n-1 βn > Z2n+1 Z2n ^ π >

min

It is obvious that zn ~ z(n = 1,2, ) The passage from z2n~ι t o Z2n reduces

liz2Λ-ilι ^y t-ne maximal amount by which it can be reduced through the sub-

traction of a function of x , while the passage from z2n t° Z 2n+i reduces ||z2nll

by the maximal amount by which it can be reduced through the subtraction of a

function of y. Thus, if we let

= \\z
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then the Mn form a nonincreasing sequence of nonnegative numbers, so that

limn^a)Mn[^ z ] — Aί [ z ] exists. We have the following obvious result.

L E M M A 3 . The f u n c t i o n a l μ [ z ] s a t i s f i e s μ [ z ] < M [ z ] .

Our solution of problem B will be a consequence of the following theorem.

THEOREM 2. The functional μ [ z ] satisfies μ[z~\ = /W [ z ] .

This, incidentally, will establish the fact that the functional Aί[z] is invariant

under equivalence. The direct proof of this fact might prove somewhat cumbersome.

Keeping in mind the results of Lemmas 2 and 3 we see that both Theorems 1

and 2 are consequences of the following result.

THEOREM 3. The functional π f z ] satisfies ττ[_z~\ = Λ f [ z J .

Proof. We shall call a function z horizontally level if

max z(x,y) = — min z(x,y)

for 0 < y < 1, and we shall call it vertically level if

max z{x,y) = — min z{x,y)

for 0 < x < l.For the sake of brevity we shall use the symbol M instead of Λ/[zJ.

There exists a number N such that M2N < M + €, where e is a small positive

number which is to be further determined later. We now perform the next 2τz steps

of the leveling process on the function z2N

There exists a point (xι9yχ) such that

and since z2N+2n i s vertically level there exists a point (^2,72) with *2

such that

Hence we have
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and since M2N + 2n-ι < M + € and Xι — x2 this implies

M + e-gN+n(Xl)>M + 8 or g ^ + n ( χ 1 ) < e - δ

- M - e - gN+n(Xl) <-M-δ or gN+n(Xl) > δ - e

We therefore have certainly

~ e < g/v + n (^ i ) < e

Thus

and since z2jv + 2rc-i ^ s n o r i z o n t ; a H y level there exis ts a point ( # 3 , 7 3 ) with

} s = 72 s u c n that

By the same process a s we applied to gjV+rc(#i) w e c a n now show that

_1(y2) <2e

hence

fur ther, b e c a u s e z2iV + 2rc-2 i s v e r t i c a l l y l e v e l , t h e r e e x i s t s a p o i n t (χ4,y4) w i th

x4 = %3 s u c h t h a t

R e p e a t i n g t h i s p r o c e s s 2n t i m e s w e f ina l ly o b t a i n a s e q u e n c e of p o i n t s ( % i , y i ) ,

' # > ( * 2 Λ + 1 » 7 2 7 1 + l ) j s u c n t n a t ^ 2 / c ~ ^ 2 / c - l ' 7 2 ^ + 1 = Ύ 2 k ( * = 1 , * # f » )

and
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z2N(x2k-vy2k-J >M + S-(22n~1 - l )e (fe = l, ,π + 1 ) ,

z2N(x2k y2k) < - M ~ δ + ( 2 2 n " 1 - l ) e (fe = l, , n ) .

We complete the above sequence of points to form a permissible line by adding

the point U 2 n + 2> y2n^2^ w i t n *2rc + 2 = *2rc+l » 72/1 + 2 = 7ι I f w e construct the
functional 77̂  associated with this permissible line then we obtain

h M I = \ττι[z2N\\ = —
1 2Π + 2

> It + δ - (2 2 *" 1 - l)e — (M + e) .

Since the choice of 6 was independent of n, we can choose e so that (22n~ι)e

= 6x/2 where e% is an arbitrary small positive number. At the same time we can

choose n so large that

M + € €!

n + 1 2 '

Thus we have: For every βγ > 0 there exists a permissible line such that

or, in other words,

τ r [ z ] > M [ 2 ] .

In conjunction with Lemmas 2 and 3, this proves Theorem 3.

4» The discontinuous case. Examining our method of proof we can make the

following observations:

(1) No essential use was made of the continuity of any of the functions

z(x9y)i g(χ) > h(y) involved in the definition of μ [ z ] Specifically we may define

μ*[z] = infg,h supo<;*£ifo<cy<i I z(x9y) - g(x) ~ h(y) \ ,



202 S. P. DILIBERTO AND E. G. STRAUS

where z is an arbitrary (bounded) function defined for 0 < # < I, 0 < y < 1 and

g(x), h(y) are arbitrary functions defined over 0 < x < 1 and 0 < y < 1, re-

spectively. The definition of 77[z] remains valid for discontinuous z , while Λ/[zJ

can be extended to a functional M * [z ] which is defined for discontinuous (bound-

ed) z, simply by replacing all the max and min symbols in the leveling process by

sup and inf symbols respectively. With very minor modifications of the proof of

Theorem 3 we then obtain the following result.

THEOREM 3*. The functional rr[z] satisfies π[z] = μ * [ z ] = M*[z] ,

where (unless we wish to allow infinite values for these functionals) z is an

arbitrary bounded function.

Theorems 3 and 3* yield the following corollary.

COROLLARY. If z is continuous, then

In other words9 the approximation of a continuous z(x,y) cannot be improved by

permitting discontinuous g(x) + h(y).

(2) The functions 77, [z] are continuous functionals in our metric; more spe-

cifically, we have the following result.

LEMMA 4* // \\z — z\\ < e , then | ^

line.

Proof. We have

< e for any permissible

2n

Hence

2 n

2 n j

2n

Σ (-i)'l>(*/.yj) " *(*>.y>:

1 2n

<— Σ
2π > = χ

1
ϊ II < — 2ne=e

- 2n
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As a consequence, 77"[z] is itself a continuous functional, as expressed in the
following corollary.

COROLLARY.// || z— z I < € , where z and z are arbitrary bounded functions,
then

\μ*{z] ~ μ*[ z]\ <e .

It is also easy to show that the functionals Mn [ z ] and M% [ z ] which arise in

the leveling process are continuous in a similar sense.

5. The n-dimensional case. There was nothing in our treatment which de-

manded that z be a function of two variables only, or even that the variables be

numbers. Most generally we can say:

Let S i , S 2 > , Sβ be arbitrary point sets, and let z(s) be a bounded function

defined over the Cartesian product S — Sx X S 2 X * * * X S^. Let 7\, T2, V

Γj be direct subproducts of the Sj such that T{ Sp Tj unless i = /. Let Elf E2,

• , Eι be the projections of S on 7\ , T2, , T^ respectively. We now define

μ[z] = inf/ 1 , . . . f / ι sup ί € S |2 (s) ~ fi(Exs) - ••• ~

where ^ ranges over all functions defined on 71;.
Our permissible lines are now replaced by a rather complicated permissible

array of points t{ ι ... j defined as follows :

(a) ί i is an arbitrary point of S

(b) to every point *ί l f...,, m there exist Z points ^ , . . . , ^ 1 ^ί1, %ίm2 » # * '

^ * i i — , i m , j , j = * i i , i m ί t * i J f * β f i = = * i i » 7 5

(d) the number of points in the set is finite

(e) if til9 9im

 = ί / 1 , ,/n

 t ' i e n m =n(mod2).

(This last condition is not really necessary but it serves to avoid confusion.)

In order to visualize these sets it might be well to consider the case where S

is three-dimensional Euclidean space; that is, Si is the Λ-axis, S2 the y-axis, and

S3 the z-axis. If we take 7i , T2 , Γ3 as the three coordinate planes then the per-

missible point sets consist of the vertices of closed polyhedral surfaces whose

edges are parallel to the coordinate axes. If we take 7\, T2, T3 as the three

coordinate axes then the permissible point sets consist of the vertices of closed

polyhedral surfaces whose edges are parallel to the coordinate planes.
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To each permissible point set p we now associate the functional

where the summation is extended over all the N different points of the permissible

set. If we generalize the concept of equivalence so that z ~ z whenever

z(s)-z(s) - / , ( £ i s ) + •'• +fι(Eιs) ,

then 77̂  [ z ] is seen to be invariant under equivalence.

The leveling process consists in the construction of the sequences

according to the following rules:

)

(j =1," , l;n = 0, l , ) .

We can agaiij define the nonincreasing sequence of nonnegative functionals

- S U P
seS

and

M[z] = lim «π[z] .
n-»oo

All the above lemmas and theorems remain valid under these new definitions;

and the proofs, while more difficult to state, contain essentially no new ideas.

Probably the greatest deviation from the above proofs takes place in the con-

struction of the permissible set through the leveling process in the proof of Theo-

rem 3. We shall therefore describe that process in greater detail.

Choose N so large that Λί#/+1 < M + €, and let Mtf/ + Λ /+i = M + 8;

then there exist two points tγ and ί4 in S such that Eγ £χ = E γ tϊt ι , and
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a n d t h a t t h e r e e x i s t p o i n t s t ί t 2 a n d ^ 1 , 1 , 2 i * 1 $ s u c h t h a t E 2 t χ = E 2 1 1 > 2 E2 t ι $ ι

T h e n e x t s t e p in t h e l e v e l i n g p r o c e s s a d d s t h e p o i n t s £ 1 , 3 , ^1,1,3* ^1,2,39

* i , 1 , 2 , 3 9 a n ^ s o on* Af ter nl + 1 s t e p s w e h a v e t h e s e t tχ,iΪ9 9 im (m — 0 , 1 , ,

nl ij € { l , 2 , , I ] ) , w h e r e

(1 ) zMΊ(t, . ... . ) > M — (

In order to form a permissible point set we have to adjoin additional points so that

condition (b) will be satisfied. Condition (b) is already satisfied for all points

tifil9 fim withm < (n — 1)1. The number of points with (n — l ) Z < m < nl is

/ !, and is therefore independent of n. It is easy to see that by adding a fixed

finite number of points (this number A depends on k and I but not on n) we can ob-

tain a point set which satisfies condition (b). Thus the augmented point set satis-

fies conditions (a), (b), (d). Since no points of the form î,/» , , / m , ; , / O Γ ^i,/i, ,

/>ιm»/were constructed in the leveling process we can satisfy condition (c) by de-

finition. For the nonaugmented point set, condition (c) is an immediate conse-

quence of (1) if € is sufficiently small. The augmented part can be constructed so

that (c) is satisfied. We denote the nonaugmented set by p' , the augmenting set by

p".
Thus we have constructed a permissible point set; if we form the corresponding

functional 7Tp [ z ] , then we have

KM I =^

3̂
Σ zwl(*Mi, . iJ

> - (B - A)[M - (2nl+2

B
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24 B -

where B — B(n) is the number of points in the permissible set, so that B(n)

with n. For a suitable choice of β and n we have
oo

Hence Theorem 3 is true in this generalized case.

6. Further discussion of the leveling process. While the leveling process

gave rise to a sequence of functions zn ~ z with l i m ^ ^ | | z n | | = μ[<z]> we were

unable to show the convergence of the functions zn. In fact, we have not yet

proved the existence of a function 2 £ C# with z ~ z and | |z | | = μ [ z ] , nor

did we investigate the rate of convergence of | |£n| | . It is the purpose of this

section to treat the last two questions.

In order to prove the existence of z we prove the equicontinuity of the se-

quence \zn\ and thus insure the existence of a convergent subsequence with a

continuous limit z . To this end we first prove :

LEMMA 5. If f%(x), f2M C C Λ and \\fx - / 2 | | < € , then

max fι(x) ~max /2OO : and

Proof. Since

min f(x) = — max Γ "~

it suffices to prove the first statement. Let

then

and hence

min f \{x) ~~ min /2OO < € .

o<*£l

) > fχ(xι) — € = max f \{x) ~~ β

max f2(x) ^ max f \{x) "" β ,
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or

max fι(x) ~~ max / 2 M
0<x<\ 0 l

Similarly,

max /2(*) ~ max f \{x) <

We define

n

"* ( ) = V ( )

n

hn(y) = Σ hk(y) ,

so that

= z ~ In "" Ίn

The equicontinuity of {z^l will be the direct consequence of the following

result.

THEOREM 4. If for fixed y and Δy we have

\z(x,y) -z(x,y + Δ y ) | < e /or 0 < ^ < 1 ,

then we have

\hn(y)-hn(y+Ay)\ < e (n = l ,2," ) .

Similarly, if for fixed x and ΔΛ; i^e have

\z(x,y) -z{x+άx,y)\ < e for 0 < y < l ,

then we have

< 6 ( n = l , 2 , " ) .

Proof. It obviously suffices to prove the first part of the theorem.

Let z* = z(x,y) — gn{x); then

\z*(x,y) ~ z*(x,y + Δ y ) | = U ( * f . y ) - z(x f y + Δy) | < e for 0 < x <
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Hence, if in Lemma 5 we let fι(x) — z*(x9y) and f2(x) — z*(x,y + Δy), we

obtain

max [z(x,y) — gn(x)] ~ max [z(x, y + Δy) - gn(x)]
0i o ς i

min [z(xty) - gπ(*)] - min [z(xty + Δy) - gn(x)]
O l 0<x<,\

< 6

< e

z ~~ gn ~~ hn is vertically level. Hence

in [z{x, y)-gn(

in [z (x, y
I

If

2 l

~hn{y + Δ y ) |

max [z(* f y) - gn(x)] ~" max [Z(Λ, y + Δy) - g n(*)]

mm , y) - gn(a:)] ~ min [z(x, y + Δy) - gn(x)] I < 6

The discussion so far has failed to settle the questions of the rate of con-

vergence of | | z π | | and of the convergence of zn. We were able to obtain only

partial answers. At the suggestion of the referee we omit the proofs of most of the

following statements; their sequence will have to indicate our derivation.

LEMMA 6. For n>2we have

i i g j > κ ι ι > ι i i ι ι i i ι

LEMMA 7. We have also
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> H l w - J I +(22"+1-2)llgJv+nll

Σ ( 2 2 N ' 2 k + 1 - Dl l g^Hfcl l - Σ ( 2 2 " ~ 2 * + 2 - 1 ) I I

THEOREM 5. The norm \\z\\ satisfies

THEOREM 6. For every € > 0 there is an n0 such that for all n > n0 we have

llgn||<(2+e)W/log2n.
COROLLARY. The following relations hold:

l im \\gn\\ = K " II*nII = 0 .

DEFINITION. A function z(x,y) is level if it is both horizontally and verti-

cally level.

THEOREM 7. For every z £ CR there is a Z £ CR such that Z is level9

Z ~ z, and μ[z] = \\z\\ .

Proof. According to Theorem 4, the sequence \zn} has a uniformly convergent

subsequence {zni}.het

I = lim zni .

i-oo

According to Theorem 6 we have

lim || zni + 1 — z π j l = 0

hence

z = lim z n i + i .

Of the two functions zn., -z^ i + 1 one is horizontally level, while the other is

vertically level; hence the common uniform limit is level.

Since zni ~ z, we have Z ~ z and

|| z | | = lim | | z π i | | = lim || zn\\ = μ[z] .
i-*co
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We remark that the bound obtained for \\gn || in Theorem 6 .does not seem to be

the best possible. In fact in all the cases we have investigated we obtained

| |gΛ | | < c 2 " " . Such an estimate would of course settle the unsolved question of

the convergence of the sequence {z Λ | .

Another unsettled question is that of the existence of a minimizing function z

equivalent to a discontinuous function z . While Theorems 4-7 remain valid with

minor modifications for discontinuous z, Theorem 4 no longer implies the exist-

ence of a convergent subsequence of {zn}.
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