
A NOTE ON UNRESTRICTED REGULAR TRANSFORMATIONS

W. R. U T Z

1. Introduction. Let W be the c lass of real continuous functions defined on the

nonnegative reals and such that for each g(t) £ W the following conditions hold:

(a) g (0) = 0 and g (t) > 0 when t > 0,

(b) for each triple tχ9 t2, ^ 3 7 > 0 , the inequality tx + t2 > h implies g(tχ) +

g(h)> gU 3 )

Let M be a metric space wherein [p,q] denotes the distance between p, q £ M

A transformation T(M) — /V is called unrestricted regular by W.A.Wilson [2] if

there exisfs a g(t) G $ such that for each pair p,q £ M we have [T(p),T(q)]

— glp,q] Ξ g(lp, q]) The function g (not always unique) is called a scale

function for Γ.

It is easily seen that every member of the class W is monotone increasing and

that each unrestricted regular transformation is continuous and one-to-one. Thus

an unrestricted regular transformation on a compact metric space is a homeomor-

phism. Wilson shows [2,p.65] that if M is dense and metric and T is unrestricted

regular, then T is a homeomorphism.

In §2 of this note we examine the graphs of scale functions and show how the

graph of the scale function of an unrestricted regular transformation determines

the behavior of points under the transformation. Section 3 is devoted to a question

involving a class of transformations investigated by E J Mickle [ l ]

2. The graphs of scale functions. We shall establish the following result.

THEOREM 1. // M is a metric space and T (M) — M is unrestricted regular with

scale function git), then for each n — 1, 2, 3, , the transformation Tn(M) — M

is unrestricted regular with scale function gn(t) {that is, g iterated n times).

Proof. Obviously gn{t) is real and continuous, gn(0) — 0, and gn{t) > 0 when

t > 0. Suppose Tn~~ι {M) — M is unrestricted regular with scale function grι~~ι (t).
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Let tx + t2 > t3, where tχ9 t2$ t3 > 0. Then

g f l - 1 ( t l ) + g n - 1 ( t 2 ) > g ' l - 1 ( t 3 ) ,

and hence

g"(*l ) + g " ( t 2 ) = gtg"" 1 ( t l ) ] + gtg"" 1 (* 2 ) ] > g t g " " 1 ^ ) ] = g"( ί3)

Thus gn (t) C ΪF. Also we have

[Tn(p), T"(q)] = [T\Tn-ι(p)],

for each pair p9q ζi M. Thus, since T is unrestricted regular with scale function

g(t), we have proved by induction that Tn(M) ~ M is an unrestricted regular trans-

formation with scale function gn{t).

If M is a metric space of at least two points, p £ M, and Γ (Λί) = M is unre-

stricted regular, then we shall call the set Σ ^ = o T
n(p) C M the orbit of p under T.

Let g (ί) be a scale function for 7\ We distinguish three cases.

CASE I. // g(t) < t for all t > 0, then each pair of points of M will determine

asymptotic orbits. That is, given p,q C M and 6 > 0, there exists an integer N

such that [Tn(p), Tn{q)] < 6 for all n > N.

Proof. Let p and g be points of M. Since g(ί) < t, we see that [Tn (p), Γ"

— g " Lp, ̂ J decreases monotonically as z increases. Suppose that the monotone

decreasing sequence of real numbers [p, q], g [p, ^ ] , g 2 [p, ί/] 7 , has w f Oas

limit point. Choose δ such that 0 < δ < u, and let s be the greatest lower bound

of ί — g(t) on the interval M — δ < ί < α + δ . Since ^ is the limit point of the

sequence, there exists an integer n for which gnίp9q] ~~ u < min (s, 8). Since

g^ [p,ς] is in the interval u ~ δ < ί < w + δ , i t follows that gΛ [p,ςr] - gn + 1 [p, q]

> s and u — gn + i[p,q] ^ 0. Thus for all i > n9 the elements gι[p,q] of the

sequence are smaller than u this contradicts the assumption that u ψ 0 is the

limit point of the sequence.

In Case I, T has equicontinuous powers.

C A S E II. // git) > t for all t > 0, then T is unstable. That is, there exists

a δ > 0 (in this case any positive number will serve) such that if p, <y £ M9 then

there is an integer /V for which n > N implies [Tn(p)9 Tn(q)] > δ.
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C A S E III. (1) If g(t) = t9 then all orbits are parallel. That is, T is an isometry.

If g(t) ψ t, there are these poss ibi l i t ies :

(2a) When g [p, q] — [p, q] , the orbits of p and q are parallel (as in Case III).

(2b) If g [p, q] > [p, q] , and if there is a zero of g(t) ~~ t greater than [p9 q],

then the orbits of p and q approach a distance apart equal to the first zero of

g(t) — t that is greater than [p,q] . If no zero of g{t) — t is greater than [p9q]9

the orbits of p and q separate a s in Case II.

(2c) If g[p9q] < [p9q], and if no positive zero of git) ~ t is smaller than

[ p , q ] , then p and g have asymptotic orbits as in Case I. If g it) ~~ t has a positive

zero smaller than [p9q], then the orbits of p and q approach a dis tance apart

equal to the first zero of g(t) — t l e s s than [p9 q].

The proofs of these cases are similar to the proof of Case I.

THEOREM 2. // M is a bounded metric space, then Case I and Case II are

not possible.

Proof. That Case II cannot occur is obvious.

Suppose g (t) < ί (Case I ) . Let δ be the least upper bound of [p9q] for all

P><? £ ^ Let σ > 0 be the greatest lower bound for t — g(t) on the interval

δ/2 < t < δ. Select p9q C M such that [p9q] > max (δ — σ, δ/2). Since

Γ ' Ή p ) , T~ι(q) are elements of /If, and since

it follows that

Thus,

[p.q] = gCΓ-^p), T-'Cq)] < [Γ-'Cp), Γ-Hq)] ~σ < δ - σ

this contradicts [p,q] > S ~ σ and completes the proof of the theorem.

LEMMA 1. // g(t) £ W9 then there exists a real number s such that9 on 0<t

< s9 either (i) g(t) = t9 or (ii) g{t) > t9 or (iii) g(t) < t.

Proof. Suppose that g (t) φ t on every interval 0 < t < s. If ί — 0 is not a limit

point of the positive zeros of g(t) — t, then obviously on some interval 0 < t < s

we have g(t) < t or g{t) > t. Suppose that t — 0 is a limit point of the zeros of
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g(t) — t and suppose that in every interval 0 < t <s there are values of t for

which g(t) < t and g(t) > t. Select ux and u2 such that g(ιiι) — uγ and g(u2) ~ u2y

and such that g(t) > t on the interval uγ < t < u2. Select u3 > 0 such that g{u3)

< u3 and u3 < u2 — Uγ. Define u4 — Uγ + u3. Since ^ L < u4 < u2, we have g(u4)

> u4. Since uγ + zz3 > w4, we must have g ί ^ ) + g ^ ) > g("4) This is not the

case since giu^) + #(^3) ~ Uγ + #(^3) < wL + α3 — u4 < g(u4). Thus on some

interval 0 < t < s, either g(ί) < t or g(ί) > ί.

We must now eliminate the possibility of the equalities. Suppose g{t) < t on

0 < t < 5 but there is no subinterval 0 < t < s± on which g(ί) < ί or g(ί) = ί.

Let u < 5 be such that g(u) — u. Select v < u such that g(v) < v. Now, f +

(u — v) — u but

g ( v ) + β(u ~ v) < g(v) + (u — v) < ^ 4- u — 1; = u = g(u) ,

and property (b) oϊ g(t) is violated. Thus g(t) < t.

If g ( ί ) > ί on 0 < ί < s, but there is no subinterval 0 < t < s t on which g{t)

> t or g(t) = t, then choose 0 < ux < s and 0 < u2 < s such that g(w t) = ux and

g(u2)
 = u2, and such that on the i-interval 0 < ^ a 1 < i < ^ u 2 ~ < s w e n a v e §(ί) ^ ί

Select 0 < u3 < u2 — uγ such that g(w3) — u3 and define w 4 = u3 + ^ t . Then

g(«3) + g ( " i ) = "3 + ux =u4 < g(u 4 ) ,

since &! < u 4 < u 2 . Thus g(t) fails to have property (b). We conclude that g (t) > t.

This proves the lemma.

LEMMA 2. // (i) of Lemma 1 occurs, then either g(t) = t for all t > 0 or

exists an r > 0 s&cA ίAαί g(t)= t for 0 < t < r and g(t) < t for all t > r. // (iii) 0/

Lemma 1 occurs, then g(t) < t for all t > 0.

Proof. Suppose that (i) of Lemma 1 occurs. Let r be the largest value of s for

which g(t) = t on 0 < t < s (if r does not exist, then g(t) — t for all t > 0). Let t

be any real number greater than r. Suppose g(t) > U Then t — mr + </, where rais

a positive integer and 0 < q < r. Since g(r) — r, we have g(mr) < m,g(r) = mr

and since 0 < g < r, we have g(^) = </. Hence

g(mr) + g(q) < mr -h g = t < g ( t ) ,

in violation of property (6) of g(ί). Thus g(ί) < ί for all ί > 0. Suppose ί > r and

g (t) — ί. Then there exists a nonnegative integer m, and real numbers u and q

such that mr + q + u = t, and such that g(u) < u. However,
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g(mr) + g(q) + g(u) < mr + q + g ( u ) < mr + g + u = ί = g ( 0 »

and condition (6) of g(ί) is violated. Thus g(t) <t for t > r, and the first part of

the lemma is proved.

Suppose that (iii) of Lemma 1 occurs. To show that g(t) < t for all real values

of t, we shall show that for no t > 0 is g(t) — ί. If g(t) = t for some £ > 0, then

there exists a smallest value α of ί such that g(u) — u. Now, g(u/2) < u/2 since

u is the smallest value of t for which g{t) — t. Hence g(u/2) + g(u/2) < u, con-

trary to property (b) of g(t). This completes the proof of the lemma.

THEOREM 3. If M is a bounded metric space and T(M) = M is unrestricted

regular and has equicontinuous powers, then T is an isometry.

Proof, Since T has equicontinuous powers, given € > 0 there exists δ > 0

such that when [p, q] < δ we have [Tn(p), Tn{q)] < 6 for n = 1,2,3,

From this it follows that (ii) of Lemma 1 cannot occur. For if 6 is taken as s/2

in Lemma 1, then regardless of the size of [p, q] , we have [Tn(p),Tn(q)] > s/2

for n sufficiently large (cf. 2b of Case III).

Further, (iii) of Lemma 1 cannot occur since by Lemma 2 this implies Case I,

which is impossible since M is bounded.

Since (i) of Lemma 1 must occur, either g{t) = t for t > 0, or there exists

an r >0 such that g (t) = t for all 0 < t < r and g{t) < t for all t > r. If g (t) jέ t,

then we can show by the argument of Theorem 2 that distances in M are bounded

by r. Hence we always have [Γ(p), T (q)] — g[p9q] for each pair p, q £ \ί9 and

T is an isometry.

REMARK. Suppose that (ii) of Lemma 1 occurs and suppose that g(t) ~~ t has

a positive zero. We can show easily that either there exist arbitrarily large zeros

of g{t) — t or there exists a real number w > 0 such that t > w implies g(t) < ί.

If r is the smallest positive zero of g{t) — t, and N is the length of any interval

of the ί-axis on which g (t) > ί, then N < r.

The following theorem relates periodicity to unrestricted regularity. Other

theorems of this nature are possible.

THEOREM 4. Let M be a metric space. If T (M) — M is pointwise periodic and

unrestricted regular then T is an isometry.

Proof. Let p and q be arbitrary points of M. Since p and q are individually
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periodic (possibly having different periods), there exists an integer n (in particu-

lar, the products of the periods of p and q will serve) such that Tn (p) — p and

Tn(q) — q. Thus p and q are fixed under Tn. If g{t) is the scale function of Γ,

then gn(t) is the scale function of Tn Since p and q are fixed under Tn, we have

g"[T"(p), T"(g)] = [Γ"(p), Γn(q)] = [p,q] .

Thus we have g " [p, ςr] = [p, ςr] . This implies that g [p, qr] = [p, qr] and since g

is the scale function for T, we have [T(p), T (q)] = g[p,q] — [p, q] , and the

theorem is proved.

3 A c lass of transformations. Given a metric space M9 Mickle [ l ] defines

the associated c lass P (M) of real continuous functions on the nonnegative reals

as those functions g(t) satisfying these conditions:

(a) g (0) = 0 and g(t)> 0 when t > 0,

(b) for any m + 1 points p 0 , pl9 p 2 , , pm in M the real quadratic form

is positive definite.

For example, let M be any set with metric [pfq] = 1 for p 7̂  ςr, [p, r̂] — 0

for p ~ q. Let g(ί) be any real continuous function that satisfies condition (α). If

Po> Pι> # * * 9 Pm a r e a n y s e t of 7?z + 1 distinct points of M, then g ίpi,pj ] = g( l)

— α > 0 for i ψ j . The elements of the matrix || αj , || of the quadratic form of

condition (b) are 2α 2 if i — 7 and α 2 if i 7̂  /. From this, and from well-known

theorems concerning quadratic forms, it follows that condition {b) is always

satisfied. Hence, in this case, P {M) consists of all real continuous functions

for which {a) holds.

Let T {M) — N be a continuous transformation. Then T is said by Mickle to

satisfy the condition C (g), g{t) C P {M), if for each pair p, q £ M we have

ίT(p),T(q)l < g[p,q].

A transformation may satisfy the condition C (g) for some g(t) £ P (M), yet

not be unrestricted regular. Let M be the interval 0 < x < 1 with the metric

described in the second paragraph of this section. Let /V be the same interval
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with the Euclidean metric. Let T {M) — N be the identity on the point set. That is,
if p £ M has coordinate x, then T (p) £ N has coordinate x. If g(t) G P (M) and
g(l) > 1, then for each distinct pair p, q £ M, we have [T(p)9 T (q)] < 1 <
glp,q], and T satisfies C(g). However, T is not unrestricted regular.

QUESTION. Suppose that T(M) — N is an unrestricted regular transformation.
When does there exist an element g(t) £ P {M) such that T satisfies the condition
Cig)?
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