AN EXTENSION OF TIETZE'S THEOREM

J. DucunbjI

1. Introduction. Let X be an arbitrary metric space, 4 a closed subset of X,
and E" the Kuclidean n-space. Tietze’s theorem asserts that any (continuous)
f: A — E' can be extended to a (continuous) F: X —> E!, This theorem trivi-
ally implies that any f: A — E" and any f: A — (Hilbert cube) can be ex-
tended; we merely decompose f into its coordinate mappings and observe that, in
these cases, the continuity of each of the coordinate mappings is equivalent to
that of the resultant map.

Where this equivalence is not true, for example mapping into the Hilbert space,
the theorem has been neglected. We are going to prove that, in fact, Tietze’s theo-
rem is valid for continuous mappings of A4 into any locally convex linear space
(4.1), (4.3). Two proofs of this result will be given; the second proof (4.3), al-
though essentially the same as the first, is more direct; but it hides the geometri-
cal motivation.

There are several immediate consequences of the above result. First we obtain
a theorem on the simultaneous extension of continuous real-valued functions on a
closed subset of a metric space (5.1). Secondly, we characterize completely those
normed linear (not necessarily complete) spaces in which the Brouwer fixed-point
theorem is true for their unit spheres (6.3). Finally, we can generalize the whole
theory of locally connected spaces to arbitrary metric spaces. By way of illus-
tration, we prove a theorem about absolute neighborhood retracts that is apparently
new even in the separable metric case (7.5).

The idea of the proof of the main theorem is simple. Given A and X, we show
how to replace X — A by an infinite polytope; we extend f continuously first on
the vertices of the polytope, and then over the entire polytope by linearity. For

this we need several preliminary remarks on coverings and on polytopes.

2. On coverings and polytopes. If X is any space, a covering of X by an arbi-

trary collection {U} of open sets is called a locally finite covering if, given any
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x € X, there exists a nbd of x meeting only a finite number of the sets of {U}. If
{U}, §V 1 are any two coverings of X by open sets, {Vlisa refinement of fUtif
for each V € {V} there is a U € {U} containing it. A.H.Stone has proved
[12] that every covering of an arbitrary metric space has a locally finite refine-

ment.

2.1 LEMMA. Let X be an arbitrary metric space, and A a closed subset of X;
then there exists a covering fUY of X — A such that:

2.11 the covering §UY is locally finite;
2.12 any nbd of a € (4 — interior A) contains infinitely many sets of {U};

2.13 given any nbd W of a € A, there exists anbd W', a € W' C W, such
that UN W' #0 implies U C W.

Proof. Around each point x € (X — A), draw a nbd S, such that diameter
Sx < (1/2)d (x, A), where d is the metric in X. This is a covering of X — A4, since
X — A is open. By A.H. Stone’s theorem, we can construct a locally finite refine-
ment {U}. It is then evident that {U}{ satisfies 2.11-2.13.

A covering of X — A satisfying the conditions 2.11-2.13 will be called a

canonical covering of X — A.

2.2 A polytope P is a point set composed of an arbitrary collection of closed
Euclidean cells (higher dimensional analogs of a tetrahedron) satisfying (a) every
face of a cell of the collection is itself a cell of the collection, and (b) the inter-
section of any two closed cells of P is a face of both of them. A CW polytope is a
polytope with the CW topology of Whitehead [14]: a subset U of P is open if and
only if the intersection U N & of U with every closed cell & is open in the Eu-

clidean topology of T. It is easy to verify:
2.21 a CW polytope is a Hausdorff space;

2.22 in a CW polytope, the star of any cell o (the collection of all open cells

having o as a face) is an open set;

2.23 if Y is an arbitrary space, then f: P —> Y is continuous if and only if

f is continuous on each cell.

2.3 As a final preliminary, we need the “nerve” of a covering. l.et X be a

space, and {U}a covering of X by open sets. Consider an abstract nontopologized
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real linear vector space R spanned by linearly independent vectors {p;} is a
fixed one-to-one correspondence with the collection {{{; the elements of R will
be called points. The n + 1 points py,, * * *, py, determine an n-cell in the usual
way if and only if the corresponding sets satisfy U, N *++ N U, # 0. The poly-
tope determined in this way, with the CW topology, will be called the nerve of the
covering { U3}, and denoted by N(U).

2.31 THEOREM. If {U} is a locally finite covering of a metric space X, and
N(U) the nerve of {U3, then there exists a continuous K: X — N(U) such that
K ™' (star py) C U for every U € {U3}.

Proof. (Cf. Dowker (4], where N(U) is taken as a metric polytope.) Define for
each U € fUt,

(x € X, dthe metric inX).

Ap(x) = < d(x, X — U)

d(x, X = U)
U

It is first necessary to investigate the nature of these functions. First we notice
that S,d(x,X — U) is always a finite sum, since d(x,X — ) # 0 if and only if
x € U, and since the covering being locally finite means x lies in a finite number
of U’s. Further, since {U} is a covering, we have 2,d(x,X — U) # 0 for every
x € X, and so Ay (x) is well-defined for each x € X. Now each Ay (x) is con-
tinuous; in fact, for any x € X there is a nbd meeting only a finite number of the
sets of {U}; in this nbd, Ay (x) is explicitly determined in terms of a finite num-
ber of continuous functions, so Ay is continuous at each x € X. Finally, it is
evident that Sy Ay (x) = 1 for each x € X and that only a finite number are not
zero in some nbd of any point x € X.
The mapping K: X —> N(U) is defined by setting

)
Now Ay (x) # 0 if and only if x € U; hence ifx € U, N «++ N, and x€only
these sets, then because 2pyAy (x) = 1 for every x, K(x) is the point in the in-

terior of the cell spanned by (pUl, oo ’PUn) with barycentric coordinates f}\Ul.(x)%.
It follows readily that K~ '(star p;) C U for every U. Finally, K is continuous:
for, given x € X, let x € U;N*+*NU, and x € only these sets; then K(x) is
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in the interior of & = (py,,* * *,py,). Let V be any open set containing K(x);
then ¥ N1 & is open in the Euclidean topology of 7, and so the continuity of each
Ay shows the existence of an open W D x with K(W) C V N & C V. This

proves the assertion. (See also 7.4 in this connection.)

3. The replacement by polytopes. After the above preliminaries, we are ready
to perform the “replacement” mentioned in the introduction.

3.1 THEOREM. Let X be a metric space and Aa closed subsetof X;then there

exists a space Y (not necessarily metrizable) and a continuous p: X — Y with
the properties :

3.1 pldisa homeomorphism and ((A) is closed in Y ;
3.12 Y — wu(A) is an infinite polytope, and u(X — A) c [Y - p(A)];

3.13 each nbd of a € [ (A)-interior w(A)] contains infinitely many cells of
Y —u(4).

Proof. Let §U3 be a canonical covering of X — A, and N(U) the nerve of this
covering.The set Y consists of the set 4 and a set of points in a one-to-one corre-

spondence with the points of N(U); to avoid extreme symbolism we denote this set

Y by A U N(U) . The topology in 4 U N(U) is determined as follows:
a. N(U) is taken with the CW topology.

b. A subbasis for nbds of a € 4 in 4 U N(U) is determined by selecting a
nbd W of @ in X and taking in A U N(U) the set of points W N 4 together with the
star of every vertex of N(U) corresponding to a set of the covering {U} contained
in W. This nbd is denoted by W.

It is not hard to verify that A U N(U) with this topology is a Hausdorff space,
and that both A and N(U), as subspaces, preserve their original topologies. We
now define

ol (€4,
# K(x) € X—-4)].

Because of 2.31 and the preceding remarks, the continuity of u(x) will be proved
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as soon as we show it continuous at points of 4 N (X_—_A). Leta € AN m,
and let ¥ be a subbasic nbd of ula) in 4 U N(U); this is determined by a nbd W of
a in X. Now (2.13) we can determine anbd ¥',a € W' C W,suchthatU NW' #
0 implies U C W, since {U} is canonical, and clearly §U] UCW N(X —A)}
is not vacuous. We now prove u(F') C V. In fact, if x € W' N (X — 4) let
x € UN*++NU, and x € only these; then K(x) is in the interior of the cell
spanned by PU* * P, and therefore K(x) is in~ the star of, say, pUl.Butsince
unw’ # 0, we have U, C W, and so K(x) € W. This shows

KW' nx-2]=uW nx-4]chi.

Finally, since #' C W we have u(W' N4) C W' N A C ﬁ;, and so u(W') C
7

. This proves that u is continuous. The properties 3.11—3.13 now follow at once.

4. Extension of Tietze’s theorem, L.et X,Y be arbitrary spaces, and 4 C X.
Let f: A — Y be continuous. A continuous F: X — Y is called an extension

of fif F(a) = f(a) for every a € A. We now prove:

4.1 THEOREM. Let X be an arbitrary metric space, A a closed subset of X,
L a locally convex linear space [10,p.72], and f: A — L a continuous map.
Then there exists an extension F: X — L of f; furthermore, F(X) C [convex

hull of f(4)].

Proof. Let us form the space 4 U N(U) of Theorem 3.1. It is sufficient to
prove that every continuous f: 4 —> L extends to a continuous F: 4 U N(U) —
L. In fact, to handle the general case we first define, on 4 C 4 UN(U), the map
f(a) = f[ wHa)]; extending?to F we can write F(x) = ;7[ w(x)];it is evident
that F is the desired extension of f.

Let then N(U), denote the collection of all vertices of N(U); we first define
an extension of f to an fo: A U N(U);, — L as follows: in each set of $U1 se-
lect a point x;; then choose an ay € A such that d(xy, ay) < 2d(xy, 4); if
py is the vertex of N(U) corresponding to U, set

folpu) = f(av)
fo(a) = f(a) (@ € 4).
We now prove f, continuous. It is clearly so on N(U), since the vertices of N(U)

are an isolated set (the star of any one vertex excludes all the others). Thus

continuity of f, need only be checked at 4.
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Select any nbd V of fo(a) = f(a); since f is continuous on 4, there isa § > 0
such that d(a,a’) < § implies f(a’) € V. Let W be any nbd of a in X of radius
< 8/3. U € {U}and U C W, then clearly d(x y, a) < $/3, and so dlay,a) <
dlay,xy) + dxy,a) < 2d(xy,A) + §/3< 28/3 + §/3 = §&. Thus all verti-
ces of N(U), in the nhd v satisfy fo(py) = f(ay) C V. Hence for all ¥ € ¥n
AU N(U)o] we have fo(%) € V and continuity is proved.

We now extend linearly over each cell of N(U) the mapping already given on
the vertices, and thus obtain an F mapping 4 U N(U) into L . This map we now
prove continuous; on the basis of 2.23 we need prove F continuous only at points
of A.

Let V be a convex nbd of f(a) = F(a). Since f; is continuous at a, there is a
nbd W with fofi N [4 UN(),]} C V. Construct now a nbd W' C W of a in X
such that U N W' # 0 implies U C W. It follows that all vertices corresponding
to sets in the nbd W' have images lying in the convex set V. If py is any vertex
in the closure of the star of a vertex py’ with U' C W', we observe that U N
W' # 0and sopy C W. Thus the vertices of any cell belonging to the closure
of the star of any vertex py’ are sent into the convex set ¥/ C L andtherefore
the linear extensions over these cells have images lying in V; this shows
F(W') C V. Since L is locally convex, this result implies that F is continuous.
It is evident, finally, from the construction, that F(X) C [convex hull off(A)},
and that F is an extension of f. The theorem is proved.

If Y is a space with the property that, given any metric space X and any closed
A C X, every continuous f: 4 — Y extends to a continuous F: X — Y, we
call Y an absolute retract. Thus Theorem 4.1 asserts that any locally convex
linear space is an absolute retract. The conclusions of the theorem give a slight

extension.

4.2 COROLLARY. Let C be a convex set in a locally convex linear space L.

Then C is an absolute retract.

Proof. This is immediate from the construction of Theorem 4.1, since the ex-
tension has an image lying in the convex hull of f(4), and so in C.
Note that C is not required to be closed in L .

4.3 It is possible to give an elementary direct proof of Theorem 4.1 not ex-
plicitly involving the space 4 U N(U), by merely explicitly exhibiting theresulting
extension that was constructed in 4.2. It has the advantage of exhibiting a certain
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kind of “linearity” in the constructed extension, which is sometimes more amena-
ble to applications. In fact, using the notations of Theorem 2.31 and Theorem 4.1,
we find it is simple to verify directly that

Il

F(x) = X Mu(x)f(an) [« € @ =4)],

= f(x) (x €4)

is the extension of f which we have constructed. The proof of the continuity is es-
sentially a repetition of the last part of 4.1, and is as follows: By the consider-
ations of 2.31, the continuity of F need be proved only at points of 4. Select any
convex nbd V of F(a) = f(a); we are to find a nbd W" D a with F(W") C V.

Since f is continuous on A, there exists a § > 0 such that d(@,a’) < § implies
f(a') € V. Now let W be a nbd of a in X of radius < §/3; since {U}is canonical,
we can find a nbd W', a € W' C W, such that whenever U N W' # 0, then
U € W. It follows that for any xy € W' we have U C W and so d(xy,a)<8/3;
this shows that d(ay,a) < dlay,xy) + dlxy,a) < & and therefore we conclude:

(%) Whenever xyy € W', then F(xy) = f(ay) € V.

Construct, finally, a nbd W” such that ¢ € W” C W' and such that whenever
UNW" # 0,then U C W'. We are going to show that F(W") C V.

In fact, if x € W' N (X — A), let x € U;N-++NU, and x € only these
sets; since Zyhy(x) = 1 for every x € (X — A) and A\y(x) # 0 only if U = U,
i = 1,***,n, it follows that F(x) belongs to the (perhaps degenerate) cell in L
spanned by f(aUl),‘ **,flay,); and since U; N W" # 0fori = 1,*¢+,n, we see
from (%) that flay) € V,i =1, ,n. This means that the vertices of the cell
spanned by f(ay ), * *,f(ay,) are all in the convex set V/, so the linear extension
lies in V also, and therefore F(x) € V. Since x is arbitrary, we see that

Flw"nx — 4] c .

But also, since we have diameter W" < §, it follows that F(W" N 4) =
f(W" NA) C V, and so F(W") C V, as stated. Since L is locally convex, this
proves F continuous at points of 4, and, as remarked, continuous on X. (See also
Kuratowski [9]).

We note that to prove Theorem 4.1 our method requires essentially three
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things: (1) the existence of a canonical covering of X — A4, (2) the possibility of
mapping X — A into the nerve of a canonical covering, and (3) the possibility
retracting the set ixuz into A; for (3) allows an extension over the vertices
of N(U), and then with a linear extension over the cells the theorem follows at
once from (1) and (2). The metric enters in obtaining (1) and (3), while the para-
compactness comes into play only in establishing (2) (Dowker [4]; Stone [12]).
It should be remarked that, after Theorem 4.1 was communicated to R. Arens, he
was able to demonstrate that the method used here applies in the case where X is
paracompact (but not metric), provided L is a Banach space. Arens’ result coin-

cides with one by Dowker (oral communication).

5. Application to the simultaneous extension of continuous functions. The ex-
plicit form of the extension given in 4.3 immediately permits us to answera
question of Borsuk [2]. Let Z be a metric space; denote by C(Z) the Banach space
of all bounded real-valued continuous functions on Z . We prove, as a first appli-

cation:

5.1 THEOREM. Let A be a closed subset of a metric space X; then there

exists a linear operation ¢ which makes correspond to each f € C(4A) an ex-

tension ¢(f) € CX).

Proof. With the notations of Theorem 4.1, having selected the points ay once
for all, define for every f € C(4),

d(f) = 2 rox)flaw).

Then ¢ (f) is clearly an extension of f for every f (see 4.3). We have evidently

o(f +g) = o(f) + ¢e),
IO =171,

and so ¢ is additive and continuous, hence a linear operation.
The restriction of Borsuk [2] that 4 be separable is thus not necessary. This

result extends, naturally, to Banach space valued functions.

6. Application to normed linear spaces. To give another application, we charac-

terize those normed linear spaces for which Brouwer’s fixed-point theorem holds
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in their unit spheres.
6.1 LEMMA. Let L be a normed linear space, and C C L the set
txl =l = 11.
Let &" be any n-cell, and ST " its boundary. If C is not compact, then any

f: Bo™ = C can be extended to an F: " — C.

Proof. By a known theorem [1,p.502] it is enough to show that f(85™) can
be contracted to a point over C. Now, since So " is compact and C is not, it
follows that f(8&"™) cannot cover all of C, so that there exists at least one
point xg € [C = f(Bo™)]. Select its antipode —x, and define

t(=x0) + (1= t)f(x)
[t (=x0) + (1= t)f (=)
Then ¢ is continuous in x and ¢, since the denominator cannot vanish for any x be-

cause —x, and f(x) are never antipodal. Since ¢(x,0) = f(x), ¢(B8&", 1) =
—xg, and || ¢(x,t)|| = 1 always, ¢ exhibitsthe desired contraction.

<15(x,t)=| (0<t <1, x € Bom).

6.2 THEOREM. Let L be a normed linear space, and C = {x|||x|| = 13.1f

C is not compact, then C is an absolute retract.

Proof. With the notations of Theorem 4.1, let us take the space 4 U N(U) and
the mapping f: A — C. By the construction of Theorem 4.1, we extend [ to

F:AUNU) — L and notice that F[A UNW)] € € = {x]|]xl < 1}. Let
C' = {x||lx| < 1/2}; then C - C' is an open set and F-Y(C —C")is an
open set containing A. Let us consider the totality of all closed cells contained
in F'I(C~ — (C'); this is a closed subpolytope  of N(U), and because fUlis
canonical it is easily verified that no point of A can be a limit point of N(U) — Q;
furthermore, 4 U Q is a closed subset of 4 U N(U).

Let r(1) = /||| ; then taking rF |(4 U Q) we observe that this is an ex-
tension of f: A —> C over the closed set 4 U (Q, with values in C. We shall now
extend r FF | (A U Q) over N(U) — Q with values in C; this is the desired extension
of f.

Define

bolp) = rF(p) (p avertex of NU) —Q),
=rF(x) x€AUQ).
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Then ¢, is an extension of rF|(4 U () over the vertices of N(I) — {) with
values in C; the continuity is evident since we have r F(p) = F(p)for all vertices,
and since F is continuous.

We proceed by induction. Let ¢, be an extension of ¢,_, over all 4 U U

[n-cells of N(U) — ©)], with values in C. We construct ¢, +; as follows: for any
(n+1)cell of N(/) — ¢, we have ¢,(B5"*) C C; applying Lemma 6.1, we
obtain an extension ¢bp4+,: 5" — C; extending over every n+ l-cell, with

values in C, we obtain ¢, +;. Now, ¢, +; is continuous, in virtue of 2.23 and be-

cause no point of 4 is a limit point of N(U) — (). Befining

P(x) = lrilm<f>n(X)

for each x € 4 U N(U), we observe that ¢ is continuous; further, ¢ is an ex-
tension with values in C of r#|(.4 U ()), and hence of f: 4 — C. This proves

the assertion.

. . . .
6.3 TuroreM. Let L be a normed linear space, and S = gx} !jx;l < li. A
necessary and sufficient condition that every continuous f: S —> S have a fixed

point is that S be compact.

Proof. If S is compact, the result comes from Tychonoff’s Theorem (13]. 1f S

is not compact, it follows readily that C: {x| x| = 1} is not compact either.
[let F: S — C be an extension of the identity map /: C — C (6.2 Theorem).
Setting ¢p(x) = — F(x), we see that ¢ has no fixed point.

In particular (Banach, [2, p. 84] )this proves that the Brouwer fixed-point theoren
for the unit sphere of any infinite dimensional 3anach space is not true. This is
a partial answer to a question of Kakutani [6] who showed that in the Hilbert
space a fixed-point free map of the unit sphere in itself can in fact be selected to

to be a homeomorphism.
6.4 COROLLARY. Let L be a normed linear space with noncompact
C: x| fx] = 1.
Then C is contractible on itself to a point.

Proof. Form the metric space C X [, | the unit interval, and map € X 0 by the
identity, C X 1 by a constant map. Since C is an absolute retract, the map on
CXO0UCX1C C X1 extends to a ¢: C X [ — C, and this ¢ gives the re-
quired deformation.
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7. Application to a generalization of the theory of locally connected spaces.
For our final application, we show that the entire theory of locally connected
spaces can be extended to arbitrary metric spaces. In this development, as in that
for the separable metric spaces (Fox [5]), the role of the Iiilbert cube in the
classical theory is taken over by a whole class of “universal” spaces. Kuratowski
(8] has shown that any metric space Z can be embedded in the 3anach space C(Z)
of all bounded continuous real-valued functions on Z. Subsequently, Wojdyslawski
[15] has pointed out that, in the Kuratowski embedding of Z — C(Z), Z is a
closed subset of its convex hull //(Z). The “universal” spaces in our develop-
ment are the convex sets in i’anach spaces. We shall illustrate the technique by
proving a theorem (7.5) about “factorization” of mappings into absolute nbd
retracts.

If 1 is a subset of X, A is called a retract of X if there exists a continuous
r: X — 4 snch that r(a) = a for each @ € A4; if A is a llausdorff space, it

follows that a retract of X is closed in X. Now we prove the following result.

7.1 Turores. The following two properties of a metric space Y are equiva-
lent :

7.1 In every metric space Z D Y in which Y is closed, there is a nbd
"D} of which Y is a retract.

7.12 If X is any metric space, A a closed subset of X,y and f: A —> Y, there

exists a nbd ' D A and an extension F: W — Y of f.

Proof. We need only prove that 7.11 implies 7.12, the converse implication be-
ing trivial. l.et } be embedded in H(Y) as a closed subset. 3y Corollary 4.2, we
get an extension of f: 4 = Y to F: X — [(Y). Let V' be a nbd of Y in /1(Y)
which retracts onto ), and r the retracting function. Then F~'(V) = } is open in
X and contains A, and r/*:ii — Y is an extension of f.

A metric space Y with the properties 7.11, 7.12 is called an absolute nbd
retract, abbreviated ANR. They are thus characterized as nbd retracts of the set

H(Y) in C(Y).

7.2LEMvA. Let Y be an ANR. Then given any covering {U} of Y, there
exists a refinement (W1} with the property: If X is any metric space and fy,
f1: X — Y are such that fo(x), f1(x) lie in @ common set of (W3 for each
x € X, then f, is homotopic to f,, and the homotopy ¢(x,t), 0 <t < 1, can
be selected so that ¢{x,l) C some U for each x € X, where | denotes the
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unit interval.

Proof. We consider Y embedded in H(Y) C C(Y). Since Y is closed in H(Y),
and Y is an ANR, there is retraction r of anbd ¥ O Y in H(Y) onto Y. To simpli-
fy the terminology, we let a spherical nbd of y € H(Y) be the intersection of a
spherical nbd of y in C(Y) with H(y). For each y € Y, select a spherical nbd
S(y) in H(y) such that S(y) C V and S(y) N Y C some U. Finally, for each y,
select a spherical nbd T(y) C S(y) in H(Y) such that r[T(y)] C S(y). The de-
sired covering is {T(y) N Y3$; it clearly refines §Ut. 1If fo, fi: X — Y and
folx), fi(x) are in a common T(y) N Y for each x, they can be joined bya line seg-
ment that lies in T(y) and therefore lies in V. Letting ¢ (x, t) be the point tfy(x) +
(1 —¢) f(x), we see that r¢p(x,t), 0 < t < 1, gives the required homotopy.

It is not known whether this property implies that ¥ is an ANR. It does follow
readily, however, from 7.2, that an ANR is locally contractible. The theorem also
holds for LC™ metric spaces, provided dim X < n; the property is in fact equiva-
lent to LC". It should be noted that LLemma 7.2 holds also if X is any CW poly-
tope, since then ¢ is still continuous (Whitehead [14]).

Our second lemma requires the following definition (Lefschetz [11]): Let Y be
a space, and {U} a covering of Y. Let P be a CW polytope, and Q a subpolytope
of P containing all the vertices of P.An f: ) — Y is called a partial realization
of P relative to {U} if, for every cell o C P, we have f(Q N &) C some U.

7.3 LEMMA. Let Y be an ANR. Then given any covering {U} of Y, there
exists a refinement {V} with the property that any partial realization of any CW
polytope P relative to {V3 extends to a full realization of P relative to {U3.

The proof given by Lefschetz [11, 10.2,p.89] can easily be applied to yield
this result, after a preliminary embedding of Y in H(Y). This property is in fact
equivalent to ANR; when we restrict P so that dimP < n + 1, this property

characterizes the LC" spaces.
The final lemma required is a covering lemma.

7.4 LEMMA. Let Y be a metric space, and {U} a covering of Y. There exists
a refinement §V i of §U3 with the property that whenever Ng Vy, # 0,then Uy ¥y C
some U. The covering {V3 is called a barycentric refinement of {U} (cf. also

Dowker [4]).

Proof. Let {U'} be a locally finite refinement of {U3, and N(U') the nerve
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of {U'}, K the barycentric mapping (2.31) K: ¥ — N(U'). Let N’ be the bary-
centric subdivision of the polytope N(U') and {p'} its vertices. We take stars in
N' (the CW topology of N is a subdivision invariant); then the open sets = K-!

(star p') form the required covering.
We now prove the “factorization” theorem:

7.5 THEOREM. Let Y be an ANR; then there exists a polytope P and a
continuous g: P — Y with the property that, if X is any metric space, and
f: X — Y, there exists a u: X —> P such that g is homotopid to f.

Proof. Let us take the covering of ¥ by Y alone, and obtain a refinement {¥}
satisfying Lemma 7.2. Let {V/'} be a refinement of {W} satisfying Lemma 7.3
relative to {3}, and {V} a locally finite refinement of a barycentric refinement
of {V'}. We now construct a mapping g: N(V) — Y, as follows: if p, is the
vertex of N(V) corresponding to V € {V}, select y, € V and set g(py) = y,,.
This is clearly a partial realization of N(V). If (pv1 , ',pvn) is a cell of N(V),
then V/,N+++ NV, # 0 sothat U_, ¥; C some V'; thus all vertices are sent
into a set of V'. Hence (7.3), the mapping g extends to a g: N(V) — Y. This
map g and polytope N(V) are those required.

Now, for any metric space X and f: X — ¥, construct the covering {f-!(V)}
of X, and let {U} be a barycentric nbd-finite refinement of §f-1(V)3. We take
K:X — N(U) and define g': N(U) — Y as follows: if py is a vertex of N(U),
select xy € U and set g'(py) = flxy).

’

Again, as before, g’ extends to a mapping of N(U) into Y.

We shall first show that f is homotopic to g’ K by showing that for each x,f(x)
and g'K(x) are in a common W (7.2). If x € U;N*++N U, and x € only these
sets, then K(x) € (py,,* * *,py,); since g'(py) = flxy) € f(U;) we have
Ui, g'(py) C Ui f(U) C V, so that g’ K(x) is in some ¥ D V. On the other
hand, f(x) € f(U;N+**NU,) c U, f(l;) C V also; this shows that g'K(x)
and f(x) are in a common set I for each x, and hence are homotopic.

Next, we map N(U) into N(V) simplicially as follows: if py is a vertex of
N(U), select some V with U C f'l(V) and set 7(py) = pyp. It is easy to verify
that 77 is simplicial. Extending linearly, we have 7: N(U)— N(V). Again it is
simple to verify that g77(x) and g'(x) are in a common set ¥ for every x € N,
and hence are homotopic.

Thus we see that f is homotopic to g7 K, so that, with 7K = u, the theorem

is proved.
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The property is not known to be equivalent with ANR. The theorem also holds
for LC™ spaces, if dimX < n; the polytope P can be chosen so that dim 7’ < n in

this case. We have the trivial consequence:

7.6 COROLLARY. If Y is an ANR, and P is the polytope of the theorem, then
the continuous homology groups of Y are direct summands of the corresponding

groups of P.

Proof. By taking X = Yand i: Y — Y the identity map, we have i homotopic
to g u; hence, for each n, the homorphism H,(Y) — H,(Y) induced by gu is the
identity automorphism. The result now follows from the trivial group theoretic

result:

7.7 THEOREM. If A, B are two abelian groups and u: 4 — B, g: B — 4
homomorphisms such that gula) = a for each a € A, then A is isomorphic to a

direct summand of B.

Proof. Since gula) = a for every a € A, it follows at once that u4 — B
is an isomorphism into. Furthermore, 1 (A4) is a retract of B. In fact, defining
r = pg we see that r: 3 —> u(4); further, for each b = w(a), we have r(b) =
pwgpla) = ula) = b. Since w(4) is a retract of B, it is a direct summand of B,
and 8 = p(4) @ Kernel ug.

In the case that Y is a compactum, all coverings involved can be chosen finite,
and 7.6 yields known results (Lefschetz [11;p.109]). If the Y is a separable
metric ANR, the coverings can be so chosen (Kaplan [7]) so that the polytope P
is a locally finite one.

It should further be remarked that the method of proof used in Theorem 6.2 is a
completely general procedure to prove that an ANR which is connected in all di-

mensions is in fact an absolute retract.
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