INCIDENCE RELATIONS IN MULTICOHERENT SPACES III

A. H. Stone

1. Introduction.

1.1. Preliminaries. The present paper is concerned with relations between systems of sets and their frontiers in a locally connected space S of given degree of multicoherence, $r(S)$. The results are generalizations of those derived in [4] for the unicoherent case $[r(S)=0$], and of those in [5] for the case of two sets; the methods are those used in [5] and [6]. First we apply the "analytic" method (cf. [1; 2; 6]) to obtain a general "addition theorem" for arbitrary sets with 'nearly disjoint" frontiers (Theorem l), which is shown to be "best possible" (Theorem 2), and to derive also relations between arbitrary systems of sets and their frontiers (Theorems 3 and 4). Next ($§ 4$) we consider a function of sets which measures (roughly speaking) the amount of disconnectedness of the frontiers of the components of the complementary set, and, after deriving some of its properties, use it to extend the Phragmén-Brouwer theorem to arbitrary sets (Theorem 6), and to obtain some related results. A modified "addition theorem" is then established (Theorem 9) which includes both Theorem 1 and Theorem 6 as special cases. Finally, we consider the incidences of sets with disjoint frontiers and subject to further restrictions (for example, that the sets be connected and have connected complements), showing that many problems of this type can be reduced to purely combinatorial problems in graph-theory.
1.2. Notations. We shall be concerned throughout with subsets of a fixed nonempty, connected, locally connected, completely normal ${ }^{1} T_{1}$ space, S. The notations are, in general, the same as in [4;5; 6]; but the following items are repeated for the convenience of the reader.

The number of components, less one, of a set E, is denoted by $b_{0}(E)$; thus $b_{0}(0)=-1$. If the number of components of E is infinite, we write $b_{0}(E)=\infty$, without distinction as to cardinality. The degree of multicoherence of S is defined by $r(S)=\sup b_{0}(A \cap B)$, where A and B are closed connected sets such that $A \cup B=S$. It is known [5] that "closed", can be replaced by "open" here.

If $A_{1}, A_{2}, \cdots, A_{n}$ are any n sets (that is, subsets of S), and J is any nonempty collection of distinct suffixes

[^0]$$
j_{1}, j_{2}, \cdots, j_{k} \quad\left(1 \leq j_{1}<j_{2}<\cdots<j_{k} \leq n\right)
$$
we write A_{J} as an abbreviation for $A_{j 1} \cap A_{j 2} \cap \cdots \cap A_{j_{k}}$, and write
$$
\cup\left\{A_{J}| | J \mid=k\right\} \text { as } X_{k}\left(A_{1}, A_{2}, \ldots, A_{n}\right)
$$
or simply as X_{k}. Thus
$$
\cup A_{j}=X_{1} \supset X_{2} \supset \cdots \supset X_{n}=\cap A_{j}
$$

For convenience, we introduce the conventions $X_{0}=S$ and $X_{k}=0$ if $k>n$. We write
(1) $h\left(A_{1}, A_{2}, \cdots, A_{n}\right)=\sum b_{0}\left(X_{k}\right)-\sum b_{0}\left(A_{k}\right) \quad(1 \leq k \leq n)$,
with the convention that in interpreting an equality or inequality involving $h\left(A_{1}, \ldots, A_{n}\right)$ in which $\sum b_{0}\left(A_{k}\right)=\infty$, we first transpose all negative terms. If the sets A_{j} are all closed, or all open, or more generally have separated differences ${ }^{2}$, it is known [4, Th. 6b] that $h\left(A_{1}, \cdots, A_{n}\right) \geq 0$.

Again, following Eilenberg [1], we consider (continuous) mappings f of subsets of S into the circle S^{1} of complex numbers of unit modulus, and write " $f \sim 1$ on $X^{\prime \prime}$ to mean that there exists a real (continuous) function ϕ on X such that $f(x)=\exp [i \phi(x)]$ when $x \in X$. Mappings $f_{1}, f_{2}, \ldots, f_{m}$ of X in S^{1} are independent on X if the only (positive or negative) integers $p_{1}, p_{2}, \ldots, p_{m}$, for which the product (in the sense of complex numbers)

$$
f_{1}^{p_{1}} \quad f_{2}^{p_{2}} \cdots f_{m}^{p_{m}} \sim 1 \text { on } X
$$

are $p_{1}=p_{2}=\cdots=p_{m}=0$. If $A_{1}, A_{2}, \cdots, A_{n}$ are closed sets whose union is X, the greatest number of mappings f of X in S^{1} which are independent on X and such that $f \sim 1$ on each A_{j} (or ∞ if there is no such greatest number) is denoted by $p\left(A_{1}, A_{2}, \ldots, A_{n}\right)$. For fixed X and n, we write

$$
\begin{equation*}
r_{n}(X)=\sup p\left(A_{1}, \cdots, A_{n}\right) \tag{2}
\end{equation*}
$$

the supremum being taken over all systems of n closed sets A_{1}, \ldots, A_{n} whose union is X. Clearly $0=r_{1}(X) \leq r_{2}(X) \leq \ldots$; it is known [1] that

$$
\sup _{n} r_{n}(X)=b_{1}(X)
$$

and $[1 ; 6]$ that $r_{2}(S)=r(S)$.

[^1]1.3. Some Lemmas. We shall require the following lemmas, some of which are known; the proofs of the rest are easy.
(1) If $A_{1}, A_{2}, \cdots, A_{n}$ have separated differences, then
(i) $\cup \operatorname{Fr}\left(A_{j}\right)=\cup \operatorname{Fr}\left(X_{j}\right)$;
(ii) $A_{j} \cap A_{k}$ and $\mathrm{Co}\left(A_{j} \cup A_{k}\right)$ are separated ($\left.1 \leq j<k \leq n\right)$ if and only if $\mathrm{Cl}\left(X_{k}\right) \subset X_{j}$ and $X_{k} \subset \operatorname{Int}\left(X_{j}\right)$;
(iii) $\operatorname{Fr}\left(A_{j} \cap A_{k}\right) \cap \operatorname{Fr}\left(A_{j} \cup A_{k}\right)=0(1 \leq j<k \leq n)$ if and only if $X_{1}, X_{2}, \cdots, X_{n}$ have disjoint ${ }^{3}$ frontiers; that is, $\mathrm{Cl}\left(X_{k}\right) \subset \operatorname{Int}\left(X_{j}\right)$;
(iv) $A_{1}, A_{2}, \cdots, A_{n}$ are of finite incidence ${ }^{4}$ if and only if
$$
\sum b_{0}\left(X_{j}\right)<\infty .
$$
(2) If A_{1} and A_{2} are both open, or both closed, then $A_{1}-A_{2}$ and $A_{2}-A_{1}$ are separated; and further, $A_{1} \cap A_{2}$ and $\operatorname{Co}\left(A_{1} \cap A_{2}\right)$ are separated if and only if $\operatorname{Fr}\left(A_{1} \cap A_{2}\right) \cap \operatorname{Fr}\left(A_{1} \cup A_{2}\right)=0$. If A_{1} and A_{2} are open, this condition is equivalent to $\operatorname{Fr}\left(A_{1}\right) \cap \operatorname{Fr}\left(A_{2}\right) \cap \operatorname{Fr}\left(A_{1} \cap A_{2}\right)=0$.
(3) "Approximation lemma." If $A_{j}-A_{k}$ and $A_{k}-A_{j}$ are separated, and also $A_{j} \cap A_{k}$ and $\mathrm{Co}\left(A_{j} \cup A_{k}\right)$ are separated ($1 \leq j<k \leq n$), then, given any open sets $W(J) \supset A_{J}$ (where J runs over all nonempty sets of suffixes between 1 and n), there exist open sets $A_{j}^{*} \supset A_{j}$ such that, for any open sets B_{j} satisfying $A_{j} \subset B_{j} \subset A_{j}^{*}$, we have $B_{J} \subset W(J)$ and
$$
\operatorname{Fr}\left(B_{j}\right) \cap \operatorname{Fr}\left(B_{k}\right) \cap \operatorname{Fr}\left(B_{j} \cap B_{k}\right)=0 \quad(1 \leq j<k \leq n)
$$

If further $\operatorname{Fr}\left(A_{j}\right) \cap \operatorname{Fr}\left(A_{k}\right) \cap \operatorname{Fr}\left(A_{j} \cup A_{k}\right)=0(j \neq k)$, the sets A_{j}^{*} can be chosen so that the sets B_{j} have disjoint frontiers.
(If $n=2$, this reduces to [5, Ths. 7 and 7a]; the general case follows by a straightforward induction over n_{0})
(4) If $A_{1}, A_{2}, \cdots, A_{n}$ are closed sets of finite incidence, then

$$
p\left(A_{1}, A_{2}, \cdots, A_{n}\right) \leq h\left(A_{1}, A_{2}, \cdots, A_{n}\right)
$$

if further no three of the sets A_{j} have a common point (for example, if $n=2$), then $p=h$. (Cf. [6, §2.6].)

[^2](5) If f maps X in S^{1}, and X is a finite union of disjoint closed sets on each of which $f \sim 1$, then $f \sim 1$ on X. (Trivial.)
(6) If f maps S in S^{1}, and $f \sim 1$ on a closed set $A \subset S$, then there exists an open set $V \supset A$ such that $f \sim 1$ on V. (Cf. [1, p.157; 6, §2.2(2)].)
(7) If f maps A in S^{1}, and $f \sim 1$ on $\operatorname{Fr}(A)$, then f may be extended to a mapping f^{*} of S in S^{1} such that $f^{*} \sim 1$ on $\mathrm{Cl}(S-A)$.

For $f=\exp (i \phi)$ on $\operatorname{Fr}(A)$; since $\mathrm{Cl}(S-A)$ is normal, ϕ can be extended to a continuous real function ϕ^{*} on $\mathrm{Cl}(S-A)$; define $f^{*}=\exp \left(i \phi^{*}\right)$ on $\mathrm{Cl}(S-A)$, and $f^{*}=f$ elsewhere.
(8) If $A_{1}, A_{2}, \cdots, A_{n}$ are n closed sets, and $1 \leq m \leq n$, then

$$
p\left(A_{1}, A_{2}, \cdots, A_{n}\right) \leq r_{m}\left(X_{1}\right)+r_{n+1-m}\left(X_{m}\right) \leq r_{m}\left(X_{1}\right)+b_{1}\left(X_{m}\right) .
$$

For consider N mappings f_{1}, \ldots, f_{N} of $X_{1}\left(=\cup A_{j}\right)$ in S^{1} which are independent on X_{1} and satisfy $f_{k} \sim 1$ on $A_{j}(1 \leq k \leq N, 1 \leq j \leq n)$. We must prove

$$
N \leqq r_{m}\left(X_{1}\right)+r_{n+1-m}\left(X_{m}\right) .
$$

Let s be the greatest number of mappings f_{k} which are independent on X_{m}; since $X_{m} \subset A_{1} \cup A_{2} \cup \cdots \cup A_{n+1-m}$, clearly $s \leq r_{n+1-m}\left(X_{m}\right)$. We may suppose that the mappings f_{k} are independent on X_{m} for $N-s<k \leq N$, and then have, for each $k \leq N-s$, a relation of the form

$$
g_{k} \equiv f_{k}^{p_{k}} \prod_{t>N-s} f_{t}^{q_{k t} \sim 1}
$$

on X_{m}, where the exponents $p_{t}, q_{k t}$ are integers not all zero, so that clearly $p_{k} \neq 0$. It readily follows that the mappings $g_{k}(1 \leq k \leq N-s)$ of X_{1} in S^{1} are independent on X_{1}, and they clearly satisfy $g_{k} \sim 1$ on each A_{j}. Further, from (6) above, there exists an open set $V_{m} \supset X_{m}$ such that each $g_{k} \sim 1$ on $\mathrm{Cl}\left(V_{m}\right)$. Now $X_{m-1}-V_{m}$ is a finite union of disjoint closed sets of the form $A_{J}-V_{m}$ (where $|J|=k-1$), on each of which each $g_{k} \sim 1$: hence, by (5), $g_{k} \sim 1$ on $X_{m-1}-V_{m}$, so that there exists an open set $V_{m-1} \supset X_{m-1}-V_{m}$ such that each $g_{k} \sim 1$ on $\mathrm{Cl}\left(V_{m-1}\right)$. Proceeding in this way, we obtain open sets

$$
V_{\lambda} \supset X_{\lambda}-\left(V_{\lambda+1} \cup V_{\lambda+2} \cup \cdots \cup V_{m}\right) \quad(1 \leq \lambda \leq m)
$$

such that each $g_{k} \sim 1$ on $\mathrm{Cl}\left(V_{\lambda}\right)$. Since $\cup \mathrm{Cl}\left(V_{\lambda}\right) \supset X_{1}$, the number $N-s$ of mappings g_{k} is at most $p\left(\bar{V}_{1}, \bar{V}_{2}, \ldots, \bar{V}_{m}\right) \leq r_{m}\left(X_{1}\right)$, and the result follows.

As corollaries, we have:
(9) If, in the proof of (8), each of the mappings $f_{k} \sim 1$ on X_{m}, then $N \leq r_{m}\left(X_{1}\right)$.
(10) If no $m+1$ of the sets A_{j} in (8) can have a common point (for example, if $m=n)$, then $p\left(A_{1}, A_{2}, \cdots, A_{n}\right) \leq r_{m}\left(X_{1}\right)$.
For in this case, X_{m} falls into disjoint closed sets A_{J}, each contained in a single A_{j}; hence, from (5), each $f_{k} \sim 1$ on X_{m}.

2. An additional theorem.

2.1. Introduction. The last result, 1.3 (10), combined with 1.3 (4), gives another proof of the fact [6 , Ths. 3 and 4 a] that if $A_{1}, A_{2}, \cdots, A_{n}$ are closed sets which cover S, and no three of them have a common point, then

$$
h\left(A_{1}, \cdots, A_{n}\right) \leq r(S) .
$$

In the present section we shall obtain a considerable extension of this property (Theorem 1), and show that it is the "best possible" of its kind, incidentally obtaining a new characterization of $r(S)$ (Theorem 2).
2.2. Theorem 1. Let $A_{1}, A_{2}, \cdots, A_{n}$ be any subsets of S having separated differences and such that $A_{j} \cap A_{k}$ and $\operatorname{Co}\left(A_{j} \cup A_{k}\right)$ are separated whenever $j \not \equiv k .{ }^{5}$ Suppose that no point belongs to A_{j} for more than m distinct values of j, where $2 \leq m \leq n .{ }^{6}$ Then

$$
0 \leq h\left(A_{1}, A_{2}, \cdots, A_{n}\right) \leq(m-1) r(S) .
$$

Proof. Clearly we may assume that $r(S)$ and $b_{0}\left(A_{j}\right)$ are finite ($1 \leq j \leq n$); from [5, Th. 9], the sets A_{j} are then of finite incidence. Further, it will suffice to prove the theorem under the additional assumptions that the sets A_{j} are closed and have disjoint frontiers. For if the theorem is known in this case, the method of "approximation" extends it first [applying the second part of 1.3 (3) to the sets $\left.\operatorname{Co}\left(A_{j}\right)\right]$ to the case in which the sets A_{j} are open and satisfy
${ }^{5}$ These hypotheses are implied by: (a) the sets $\operatorname{Fr}\left(A_{j}\right)$ are disjoint, or (b) A_{1}, \cdots, A_{n} are all open, or all closed, and $\operatorname{Fr}\left(A_{j} \cap A_{k}\right) \cap \operatorname{Fr}\left(A_{j} \cup A_{k}\right)=0$ whenever $j \neq k$, or (c) A_{1}, \cdots, A_{n} are all closed and $\operatorname{Fr}\left(A_{i}\right) \cap \operatorname{Fr}\left(A_{k}\right) \cap \operatorname{Fr}\left(A_{j} \cup A_{k}\right)=0(j \neq k)$, or dually, and thus also by: (d) A_{1}, \cdots, A_{n} are closed and cover S, and no three of them have a common point. A slight relaxation of the hypotheses on the sets A_{j} is possible; see 2.3 (3) below.
${ }^{6}$ The case $m=1$ is trivial. If equality holds in the conclusion of Theorem 1 , and both sides are finite, then the sets A_{j} must in fact satisfy stronger frontier conditions; see 5.6 below.

$$
\operatorname{Fr}\left(A_{j}\right) \cap \operatorname{Fr}\left(A_{k}\right) \cap \operatorname{Fr}\left(A_{j} \cap A_{k}\right)=0 \quad(j \neq k),
$$

and thence [by the first part of $1.3(3)$] to the general case; we omit the details, since the argument is a straightforward generalization of that in $[5, \S \S 7.4$ and 7.5] (cf. also [6, §4.4]).

We write $X_{s}\left(A_{1}, A_{2}, \cdots, A_{t}\right)$ as $X_{s}^{t} \quad(1 \leq s \leq t \leq n)$, and introduce the conventions $X_{s}^{t}=S$ if $1 \leq s \leq n<t$, or if $0=s<t$, and $X_{s}^{t}=0$ if $s>t$. Now (all the numbers involved being finite here) one readily verifies that
(1) $h\left(A_{1}, A_{2}, \cdots, A_{n}\right)=h\left(A_{1}, A_{2}, \cdots, A_{n-1}\right)$

$$
+\sum h\left(A_{n} \cap X_{s-1}^{n-1}, X_{s}^{n-1}\right) \quad(1 \leq s \leq n-1),
$$

and repeated application of this identity gives .
(2) $h\left(A_{1}, A_{2}, \cdots, A_{n}\right)=\sum_{1}+\sum_{2}+\cdots+\sum_{n-1}$, where

$$
\sum_{s}=\sum_{t h\left(A_{t+1} \cap X_{s-1}^{t}, X_{s}^{t}\right) \quad(s \leq t \leq n-1) . ~ . ~}^{s \leq n}
$$

We first show that
(3) $\quad \sum_{s} \leq r(S) \quad(1 \leq s \leq n-1)$.

For, from 1.3(4), we have

$$
\sum_{s}=\sum_{t} p\left(A_{t+1} \cap X_{s-1}^{t}, X_{s}^{t}\right) \quad(s \leq t \leq n-1)
$$

Let $f_{t j}$, where $j=1,2, \cdots, n_{t}$, be mappings of

$$
X_{s}^{t+1}=\left(A_{t+1} \cap X_{s-1}^{t}\right) \cup X_{s}^{t}
$$

in the unit circle such that
(i) $f_{t j} \sim 1$ on $A_{t+1} \cap X_{s-1}^{t}$,
(ii) $f_{t j} \sim 1$ on X_{s}^{t},
(iii) for fixed t, these mappings are independent on X_{s}^{t+1}.

To prove (3), it suffices to show that the total number $\sum_{n_{t}}$
($s \leq t \leq n-1$) of these mappings is at most $r(S)$.
We have

$$
\operatorname{Fr}\left[\mathrm{Cl}\left(S-X_{s}^{t+1}\right)\right] \subset \operatorname{Fr}\left(X_{s}^{t+1}\right) \subset \operatorname{Fr}\left(A_{t+1} \cap X_{s-1}^{t}\right) \cup \operatorname{Fr}\left(X_{s}^{t}\right),
$$

a union of two closed sets which are easily seen [from 1.3(1)] to be disjoint. Hence [from $1.3(5)$ and $1.3(7)] f_{t j} \sim 1$ on $\operatorname{Fr}\left[\mathrm{Cl}\left(S-X_{s}^{t+1}\right)\right]$, and so $f_{t j}$ can be extended to a mapping, which we still denote by $f_{t j}$, of S in the unit circle, in such a way that
(iv) $f_{t j} \sim 1$ on $\mathrm{Cl}\left(S-X_{s}^{t+1}\right)$.

We assert that the extended mappings $f_{t j}$ are all independent on S. For suppose not; then, for each t, there exists a mapping of the form

$$
g_{t}=\Pi_{j} f_{t j}^{p_{t j}} \quad\left(1 \leq j \leq n_{t}\right)
$$

where the exponents $p_{t j}$ are positive or negative integers, not all zero for all t, such that
$g_{s} g_{s+1} \cdots g_{n-1} \sim 1$ on S.
From (ii), we have $g_{t} \sim 1$ on X_{s}^{t}; and so, if $t>s$, we have $g_{t} \sim 1$ on X_{s}^{s+1}. Thus (4) gives $g_{s} \sim 1$ on X_{s}^{s+1}; hence, from (iii), it follows that $g_{s}=1$, and all the exponents $p_{s j}$ are zero. A similar argument, with s replaced by $s+1$, then proves $g_{s+1}=1$, and so on; finally all the exponents $p_{t j}$ must be zero, giving the desired contradiction.

Now write

$$
E_{k}=\mathrm{Cl}\left(X_{s}^{s+k-1}-X_{s}^{s+k-2}\right), \quad k=1,2, \cdots, n+2-s ;
$$

thus the sets E_{k} are closed and cover S, and it is easy to see that no three of them have a common point. We shall show:
(5) $f_{t j} \sim 1$ on E_{k}.

In fact, if $k \leq t+1-s$, then $E_{k} \subset X_{s}^{s+k-1} \subset X_{s}^{t}$; if $k=t+2-s$, then $E_{k} \subset A_{t+1} \cap X_{s-1}^{t}$; and if $k \geq t+3-s$, then $E_{k} \subset \mathrm{Cl}\left(S-X_{s}^{t+1}\right)$; thus in each case (5) follows from (ii), (i), or (iv).

Thus the total number of mappings $f_{t j}$ is at most

$$
p\left(E_{1}, E_{2}, \cdots, E_{n+2-s}\right)
$$

but, by $1.3(10)$, this number is at most $r_{2}\left(\cup E_{k}\right)=r(S)$; thus (3) is established.

Now we further have $\sum_{s}=0$ if $s \geq m$, since the sets $A_{t+1} \cap X_{s-1}^{t}$ and X_{s}^{t} are then disjoint (for $X_{s+1}=0$). Thus the the orem follows from (2) and (3).
2.3. Corollaries and Remarks. We make the following observations.
(1) For any two sets A, B, satisfying the hypotheses of Theorem 1, we have

$$
b_{0}(A)+b_{0}(B) \leq b_{0}(A \cup B)+b_{0}(A \cap B) \leq b_{0}(A)+b_{0}(B)+r(S) .
$$ (this generalizes [5, Th. 9].)

(2) For any set E, we have

$$
b_{0}(\operatorname{Fr}(E)) \leq b_{0}(\bar{E})+b_{0}(\mathrm{Cl}(\operatorname{Co}(E))+r(S)
$$

(this generalizes [4, §6.5].)
(3) In Theorem 1, the hypothesis that $A_{j} \cap A_{k}$ and $\operatorname{Co}\left(A_{j} \cup A_{k}\right)$ be separated $(j \neq k)$ may be omitted for each pair j, k for which $A_{j} \subset A_{k}$; that is, it may be replaced by: For each $j, k(1 \leq j, k \leq n)$, either $A_{j} \subset A_{k}$, or $A_{j} \supset A_{k}$, or $A_{j} \cap A_{k}$ and $\operatorname{Co}\left(A_{j} \cup A_{k}\right)$ are separated. This is proved by noting that a more careful application of the approximation argument will still lead to closed sets with disjoint frontiers.
(4) Other results may be derived by observing that, under suitable conditions on the sets A_{1}, \ldots, A_{n}, further sums \sum_{s} in $2.2(1)$ above will vanish. For example, Theorem 1 can be slightly sharpened as follows:

If A_{1}, \ldots, A_{n} satisfy the hypotheses of Theorem 1 (as weakened in (3) above), and if they can be renumbered so that

$$
A_{\lambda+1} \subset A_{\lambda+2} \subset \cdots \subset A_{n}
$$

then

$$
h\left(A_{1}, \cdots, A_{n}\right) \leq \min (\lambda, m-1) r(S) .
$$

For the approximation argument enables us to assume, as before, that the sets A_{1}, \cdots, A_{n} are closed and have disjoint frontiers. In 2.2 (2) we easily verify that now $X_{s}^{t} \subset A_{t+1} \cap X_{s-1}^{t}$ whenever

$$
\lambda+1 \leq s \leq t \leq n-1
$$

hence $\sum_{s}=0$ whenever $s>\lambda$.
(5) A further slight sharpening of Theorem 1 is implied by the following result.

If the sets A_{1}, \cdots, A_{n} have separated differences, and if A_{n} (say) is either disjoint from, or contains, or is contained in, each other set, then

$$
h\left(A_{1}, \cdots, A_{n-1}, A_{n}\right)=h\left(A_{1}, \cdots, A_{n-1}\right)
$$

We may assume that A_{n} is disjoint from A_{1}, \cdots, A_{k}, contains

$$
A_{k+1}, \cdots, A_{l}
$$

and is contained in A_{l+1}, \cdots, A_{n-1} (where $0 \leq k \leq l \leq n-1$). It is easy to see that we may take A_{1}, \cdots, A_{n} to be of finite incidence, and then, by $2.2(1)$, have only to prove that

$$
h\left(A_{n} \cap X_{s}^{n-1}, X_{s}^{n-1}\right)=0 \quad(1 \leq s \leq n-1)
$$

If $s<n-l$, then $A_{n} \subset X_{s}^{n-1}$, and the result is trivial. If $s \geq n-l$, write

$$
Y_{p}=X_{p}\left(A_{1}, \cdots, A_{k}, A_{l+1}, \cdots, A_{n-1}\right)
$$

and

$$
Z_{q}=Z_{q}\left(A_{k+1}, \cdots, A_{l}, A_{l+1}, \cdots, A_{n-1}\right)
$$

it is easily verified that $X_{s}^{n-1}=Y_{s} \cup Z_{s}$ and that $Y_{s} \subset \operatorname{Co}\left(A_{n}\right)$ and $Z_{s} \subset A_{n}$, from which again the result follows.
(6) Finally, as a corollary from (4), we have the following extension of (1):

If $B_{1}, \cdots, B_{p}, C_{1}, \cdots, C_{q}$ are arbitrary sets such that $B_{j}-C_{k}$ and $C_{k}-B_{j}$ are separated, and $B_{j} \cap C_{k}$ and $\operatorname{Co}\left(B_{j} \cup C_{k}\right)$ are separated, whenever $1 \leq j \leq p, 1 \leq k \leq q$, then

$$
\begin{aligned}
& h\left(B_{1}, \cdots, B_{p}\right)+h\left(C_{1}, \cdots, C_{q}\right) \leq h\left(B_{1}, \cdots, B_{p}, C_{1}, \cdots, C_{q}\right) \\
& \quad \leq h\left(B_{1}, \cdots, B_{p}\right)+h\left(C_{1}, \cdots, C_{q}\right)+\min (p, q, m-1) r(S)
\end{aligned}
$$

where m is the greatest number of the $p+q$ sets B_{1}, \ldots, C_{q} which have a common point.

This follows on application of (4) and Theorem 1 to the $p+q$ sets $X_{j}\left(B_{1}, \cdots, B_{p}\right), X_{k}\left(C_{1}, \cdots, C_{q}\right)$.
2.4. Converse. The converse of Theorem 1 holds in the following rather strong form, which represents an extension to any number of sets of the defining property of $r(S)$.

Theorem 2. Let integers m, n be given, where $2 \leq m \leq n$. Let A_{1}, \ldots, A_{n} be any n closed connected sets, no $m+1$ of which have a common point, such that $\operatorname{Fr}\left(A_{j}\right) \cap \operatorname{Fr}\left(A_{k}\right)=0$ whenever $j \neq k$, and such that $A_{j} \cup A_{k}=S$ whenever $1 \leq j<k \leq m$. ${ }^{7}$ Then

$$
\sup b_{0}\left(X_{m}\right)=(m-1) r(S)+n-m .
$$

In this statement, the word "closed" may be replaced by "open".
To show that
(1) $b_{0}\left(X_{m}\right) \leqq(m-1) r(S)+n-m$,
we clearly may assume $X_{m} \neq 0$; then $b_{0}\left(X_{s}\right) \geq 0$ if $s \leq m$, and

$$
b_{0}\left(X_{s}\right)=-1
$$

for $m<s \leq n$, so that (l) is a trivial consequence of Theorem 1 .
To complete the proof, let N be any integer such that

$$
0 \leq N \leq(m-1) r(S)
$$

We first construct m closed connected sets $B_{1}, B_{2}, \cdots, B_{m}$, such that
(2) $B_{j} \cup B_{k}=S(1 \leq j<k \leq m) \quad$ and $\quad b_{0}\left(\cap B_{j}\right) \geq N$.

If $r(S)=\infty$, this is trivial (take all but two of the sets B_{j} to be S), so we may assume $r(S)<\infty$. From [6, §4.1], there exists a finite covering of S by closed connected sets $E_{1}, E_{2}, \cdots, E_{M}$, no three of which háve a common point, whose nerve G satisfies $r(G)=r(S)=r$, say, and such that G is arbitrarily often "dispersed"; this implies [6, §3.4(7)] that G is obtainable from a graph H by subdividing each arc l_{λ} of H which belongs to a simple closed curve in H, into at least $2 m+2$ subarcs by extra vertices of order 2 . We can select ${ }^{8} r$ such (disjoint, open)

[^3]${ }^{8}$ See, for example, the argument proving $[6, \S 4.1$ (3)].
arcs l_{λ} in H, say $l_{1}, l_{2}, \cdots, l_{r}$, whose removal does not disconnect H; let l_{λ} (where $1 \leq \lambda \leq r$) contain the consecutive vertices $p_{\lambda, 0}, p_{\lambda, 1}$, $p_{\lambda, 2}, \cdots, p_{\lambda, 2 m}$ of order 2 in G. Denote by $E_{\lambda, j}$ the set E_{k} which corresponds to $p_{\lambda, j}$; thus, if $1 \leq \lambda \leq r$ and $1 \leq j \leq 2 m-1$, each $E_{\lambda, j}$ meets two and only two other sets E_{k}, namely $E_{\lambda, j-1}$ and $E_{\lambda, j+1}$. Define B_{q}, where $1 \leq q \leq m$, to be the union of all the sets E_{k} except
$$
E_{1,2 q-1}, E_{2,2 q-1}, \cdots, E_{r, 2 q-1}
$$

Then B_{q} is closed, and is easily seen to be connected (cf. [6, Th. 1]). Further, since $\operatorname{Co}\left(B_{q}\right) \subset U_{\lambda} E_{\lambda, 2 q-1}$, we have $\operatorname{Co}\left(B_{q}\right) \cap \operatorname{Co}\left(B_{s}\right)=0$ if $q \neq s$, so that $B_{q} \cup B_{s}=S$. On the other hand, let D be the union of those sets E_{k} which are not of the form $E_{\lambda, j}(1 \leq \lambda \leq r, \quad 1 \leq j$ $\leq 2 m-1$); then

$$
\cap B_{q} \subset D \cup \cup E_{\lambda, 2 h} \quad(1 \leq \lambda \leq r, 1 \leq h \leq m-1),
$$

a union of $1+(m-1) r$ disjoint closed sets, each of which it meets; thus $b_{0}\left(\cap B_{q}\right) \geq(m-1) r \geq N$.

There exist (cf. $1.3(3)$ and $[6, \S 6.1]$) connected open sets $C_{q} \supset B_{q}$ whose closures A_{q} have the same incidences as the sets B_{q}; then

$$
\operatorname{Fr}\left(A_{j}\right) \cap \operatorname{Fr}\left(A_{k}\right) \subset \operatorname{Fr}\left(C_{j}\right) \cap \operatorname{Fr}\left(C_{k}\right) \subset \operatorname{Co}\left(C_{j} \cup C_{k}\right)=0
$$

whenever $j \neq k$, and moreover we have $A_{j} \cup A_{k}=S(1 \leq j<k \leq m)$ and $b_{0}\left(\cap A_{j}\right) \geq N$.

If $n=m$, the theorem is thus established. If $n>m$, we note that the open set $\operatorname{Int}\left[X_{m-1}\left(A_{1}, \cdots, A_{m}\right)\right]-X_{m}\left(A_{1}, \cdots, A_{m}\right)$ is nonempty, from l.3(1), and take A_{m+1}, \cdots, A_{n} to be $n-m$ distinct points in it; clearly

$$
b_{0}\left[X_{m}\left(A_{1}, \cdots, A_{m}, \cdots, A_{n}\right)\right] \geq N+n-m,
$$

and the proof is complete.
The modifications required to produce open sets A_{j} with similar properties are obvious.

3. Index inequalities for arbitrary sets.

3.1. An Inequality. Let $E_{1}, E_{2}, \cdots, E_{n}$ be arbitrary subsets of S. As
in [4, §7], we write

$$
A_{j}=\mathrm{Cl}\left(E_{j}\right), B_{j}=\mathrm{Cl}\left(S-E_{j}\right), P_{j}=X_{j}\left(A_{1}, \cdots, A_{n}\right), Q_{j}=X_{j}\left(B_{1}, \cdots, B_{n}\right)
$$

An argument entirely analogous to that in [4, §7], based on 2.3 (1) and (2), gives:
Theorem 3. We have

$$
\begin{aligned}
h\left[\operatorname{Fr}\left(E_{1}\right), \cdots, \operatorname{Fr}\left(E_{n}\right)\right]-n r(S) & \leq h\left(A_{1}, \ldots, A_{n}\right)+h\left(B_{1}, \cdots, B_{n}\right) \\
+ & h\left(P_{1} \cap Q_{n}, P_{2} \cap Q_{n-1}, \ldots, P_{n} \cap Q_{1}\right) \\
& \leq h\left[\operatorname{Fr}\left(E_{1}\right), \ldots, \operatorname{Fr}\left(E_{n}\right)\right]+n r(S)
\end{aligned}
$$

Corollary. We have

$$
h\left(\bar{E}_{1}, \bar{E}_{2}, \cdots, \bar{E}_{n}\right) \leq h\left[\operatorname{Fr}\left(E_{1}\right), \operatorname{Fr}\left(E_{2}\right), \cdots, \operatorname{Fr}\left(E_{n}\right)\right]+n r(S)
$$

3.2. The Case $m=2$. It is easy to see that the inequalities in Theorem 3 are "best possible"; however, Theorem 1 suggests that in the Corollary the term $n r(S)$ could be replaced by $(n-1) r(S)$, or more generally by $(m-1) r(S)$, where no $m+1$ of the sets $\mathrm{Cl}\left(E_{j}\right)$ have a common point. I have been able to prove this only in the case $m=2$:

Theorem 4. If $E_{1}, E_{2}, \cdots, E_{n}$ are arbitrary subsets of S, no three of whose closures have a common point, then

$$
h\left(\bar{E}_{1}, \bar{E}_{2}, \cdots, \bar{E}_{n}\right) \leq h\left[\operatorname{Fr}\left(E_{1}\right), \operatorname{Fr}\left(E_{2}\right), \cdots, \operatorname{Fr}\left(E_{n}\right)\right]+r(S)
$$

Proof. We can assume that $r(S)$ is finite, and that the systems of sets $\left[\mathrm{Cl}\left(E_{1}\right), \cdots, \mathrm{Cl}\left(E_{n}\right)\right]$ and $\left[\operatorname{Fr}\left(E_{1}\right), \cdots, \operatorname{Fr}\left(E_{n}\right)\right]$ are both of finite incidence, since otherwise (in view of the convention regarding infinite terms in the h function; see 1.2) Theorem 4 asserts no more than Theorem 3, Corollary. Hence, in view of l.3(4), Theorem 4 will follow [if we take $A_{j}=\mathrm{Cl}\left(E_{j}\right)$ and $F_{j}=\operatorname{Fr}\left(E_{j}\right)$] from:

Theorem 4a. Let $A_{1}, A_{2}, \ldots, A_{n}, F_{1}, F_{2}, \ldots, F_{n}$ be any closed sets such that $A_{j} \supset F_{j}$ and $\cup F_{j} \supset \cup \operatorname{Fr}\left(A_{j}\right)$. Then

$$
p\left(A_{1}, A_{2}, \cdots, A_{n}\right) \leq p\left(F_{1}, F_{2}, \cdots, F_{n}\right)+r(S) .
$$

3.3. Proof of Theorem 4a. Let $f_{1}, f_{2}, \cdots, f_{N}$ be N independent mappings of $\cup A_{j}$ in the unit circle such that each $f_{k} \sim 1$ on each A_{j}; we must prove that $N \leq p\left(F_{1}, \cdots, F_{n}\right)+r(S)$. Let s be the greatest number of mappings f_{t} which are independent on $U F_{j}$: clearly $s \leq p\left(F_{1}, \cdots, F_{n}\right)$. We may suppose that the
mappings f_{k} are independent on $U F_{j}$ for $N-s+1 \leq k \leq N$, and then have, for each $t \leq N-s$, a relation (say)

$$
g_{t} \equiv f_{t}^{p t} \prod_{k} f_{k}^{q_{k t}} \sim 1
$$

on $\mathrm{U} F_{j}$, where $N-s+1 \leq k \leq N$. Thus g_{t} is a mapping of $\mathrm{U} A_{j}$ in S^{1} which ~ 1 on each A_{j}; and, since clearly $p_{t} \neq 0$, the mappings $g_{t}(1 \leq t \leq N-s)$ are independent on $\cup A_{j}$.

Write $C_{0}=\mathrm{Cl}\left(S-\cup A_{j}\right)$; then $\operatorname{Fr}\left(C_{0}\right) \subset U F_{j}$, so that, from $1.3(7)$, each g_{t} may be extended to a mapping (still denoted by g_{t}) of S in S^{1} such that $g_{t} \sim 1$ on C_{0}. Now define $C_{1}=A_{1}, C_{j}=\mathrm{Cl}\left[A_{j}-\left(A_{1} \cup A_{2} \cup \cdots \cup A_{j-1}\right)\right](2 \leq j \leq n)$; then the sets $C_{0}, C_{1}, \cdots, C_{n}$ are closed and cover S, and each $g_{t} \sim 1$ on each C_{j}. Let $Z=U\left(C_{j} \cap C_{k}\right)$, where $0 \leq j<k \leq n$; then $Z \subset \cup \operatorname{Ur}\left(A_{j}\right) \subset \cup F_{j}$, so that each $g_{t} \sim 1$ on Z. From l.3(9), the number $N-s$ of mappings g_{t} is at most $r(S)$, and the theorem follows.
3.4. Remark. We remark that no inequality similar to Theorem 4, but in the reverse direction, can hold in general. For example, take S to be the plane, and let A be a circular disc and B an inscribed convex polygon plus its interior; then A, B are closed and connected, and $h(A, B)=0$, but $h[\operatorname{Fr}(A), \operatorname{Fr}(B)]$ can be arbitrarily large.

4. Frontiers of complementary components.

4.1. Definition. For any $A \subset S$, let $\left\{C_{\lambda}\right\}$ be the components of the complement of A, and write
(1) $c(A)=\sum b_{0}\left(\operatorname{Fr}\left(C_{\lambda}\right)\right)$,
with the usual convention that a vacuous sum is zero. [Thus $c(S)=0$, $c(0)=-1$.] From [5, Th. 4] we have
(2) $c(A)+b_{0}[\mathrm{Cl}(S-A)] \geq b_{0}[\operatorname{Fr}(A)]$, and (a weaker statement unless $b_{0}[\mathrm{Cl}(S-A)]$ is infinite)
(3) $c(A) \geq b_{0}(\bar{A})$.

If A is open, we evidently have equality in (2). (Note that (3) contains the well-known fact that, if \bar{A} is not connected, at least one component of $\mathrm{Co}(A)$ has a disconnected frontier.)
4.2 Lemma. Let C be a component of $S-A$, and let U be an open set containing $\operatorname{Fr}(C)$. Then there exists an open set $V \supset \bar{A}$ such that $\bar{V} \cap \bar{C} \subset U$.

This follows from [6, §6.1] applied to the sets \bar{A}, \bar{C}; a direct proof is also easy.
4.3 Theorem 5. If $c(A) \geq n$, then there exists an open set $A^{*} \supset \bar{A}$ such that, for each set B satisfying $A \subset B \subset A^{*}$, we have $c(B) \geq n$.

For if $c(A) \geq n$, then there exist finitely many components, say C_{1}, C_{2}, \cdots, C_{m}, of $\operatorname{Co}(A)$, such that $b_{0}\left[\operatorname{Fr}\left(C_{j}\right)\right] \geq n_{j}$ where $\sum n_{j} \geq n(1 \leq j \leq m)$. Thus, for each $j, \operatorname{Fr}\left(C_{j}\right)$ is a union of $n_{j}+1$ disjoint closed nonempty sets $F_{j k}\left(1 \leq k \leq n_{j}+1\right)$, and there exist open sets $U_{j k} \supset F_{j k}$ such that $\mathrm{Cl}\left(U_{j k}\right)$ n $\mathrm{Cl}\left(U_{j l}\right)=0(j \neq l)$. Let $U_{j}=\mathrm{U}_{k} U_{j k}$, an open set containing $\operatorname{Fr}\left(C_{j}\right)$; from the lemma in 4.2 , there exists an open set $V_{j} \supset \bar{A}$ such that $\mathrm{Cl}\left(V_{j}\right) \cap \mathrm{Cl}\left(C_{j}\right)$ $\subset U_{j}$. Take $A^{*}=\cap_{j} V_{j}$, and suppose that B is any set satisfying $A \subset B \subset A^{*}$. Then, since $U_{k} F_{j k} \subset \bar{B} \cap \bar{C}_{j} \subset \cup_{k} U_{j k}$, we have $b_{0}\left(\bar{B} \cap \bar{C}_{j}\right) \geq n_{j}$. Now let $\left\{D_{j \mu}\right\}$ be those components of $\mathrm{Co}(B)$ which are contained in C_{j}, and write $E_{j}=\cup_{\mu} D_{j \mu}$. One readily verifies that $\operatorname{Fr}\left(E_{j}\right) \subset \bar{B} \cap \bar{C}_{j} \subset \mathrm{Cl}\left(S-E_{j}\right)$, and that $E_{j} \cup\left(\bar{B} \cap \bar{C}_{j}\right)=\bar{C}_{j}$; hence, from [5, Th. 4], $\sum_{\mu} b_{0}\left(\operatorname{Fr}\left(D_{j \mu}\right)\right) \geq b_{0}\left(\bar{B} \cap \bar{C}_{j}\right)$ $\geq n_{j}$, so that $c(B) \geq \sum_{j, \mu} b_{0}\left(\operatorname{Fr}\left(D_{j \mu}\right)\right) \geq \sum n_{j} \geq n$.

Corollary. We have $c(A) \leq c(\bar{A})$.
4.4. Extension of the Phragmén-Broumer theorem. This theorem, as extended in [5, Th. 5], can now be extended still further.

Theorem 6. For any set A, we have $c(A) \leq b_{0}(\bar{A})+r(S)$.
The proof is almost identical with that for the case in which \bar{A} is connected, in $[5, \S 4.2]$; the difference arises from the fact that the sets L, M there constructed need not here be connected. But we may assume without loss that $b_{0}(\bar{A})<\infty$, and have $b_{0}(L) \leq b_{0}(\bar{A})$ and $b_{0}(M) \leq b_{0}(\bar{A})$; hence, from $2.3(1)$, we have $b_{0}(L \cap M)<2 b_{0}(\bar{A})+r(S)$. Since $b_{0}(\bar{A})+1$ of the components of $L \cap M$ now arise from \bar{A}, the argument can be concluded in the same way as before.

Corollary l. If $r(S)$ is finite, and A is any subset of S such that \bar{A} has only a finite number of components, then all but at most a finite number of the components of $S-A$ have connected frontiers.

Corollary 2. If S is unicoherent, then $c(A)=b_{0}(\bar{A})$; and, conversely, this equaiity is characteristic of unicoherence.
(This follows from 4.1 (2) and [5, Th. 5].)
4.5. Another extension. It has been shown in [5, Th. 5] that, conversely, Theorem 6 serves to characterize $r(S)$, even when restricted to the case in which A is closed (or open) and connected. However, Theorem 6 can be restated in a slightly different though equally natural way, in which the converse question is more difficult.

Theorem 6a. For any set A, we have
(i) $b_{0}(\mathrm{Fr}(A)) \leq c(A)+b_{0}(\mathrm{Cl}(S-A)) \leq c(\bar{A})+b_{0}(\mathrm{Cl}(S-A))$

$$
\leq b_{0}(\operatorname{Fr}(A))+r(S) .
$$

Conversely, if for some fixed (finite) n we have
(ii) $c(A) \leq b_{0}(\operatorname{Fr}(A))+n$
whenever A is nowhere dense, and if. further
(iii) S is metrizable, or $r(S)$ is finite, then $r(S) \leq n$.

The first inequality in (i) is a restatement of 4.1 (2), the second follows from Theorem 5, Corollary, and the third from Theorem 6 applied to \bar{A}, in view of the fact $[4, \S 6.2]$ that $b_{0}(\bar{A})+b_{0}(\mathrm{Cl}(S-A)) \leq b_{0}(\operatorname{Fr}(A))$. For the converse, suppose that (ii) holds, but that $r(S)>n$. From [5, Th. 5a), there exists a closed connected set A^{\prime} such that $S-A^{\prime}$ has only a finite number of (open) components $C_{1}, C_{2}, \cdots, C_{m}$, and $b_{0}\left(\operatorname{Fr}\left(A^{\prime}\right)\right)>m+n-1$; thus from [5, Th. 4], we have $\sum b_{0}\left(\operatorname{Fr}\left(C_{j}\right)\right)>n$. Suppose now that $r(S)$ is finite, and write $A=\operatorname{Fr}\left(A^{\prime}\right)$; thus A is nowhere dense, and, from $2.3(2), b_{0}(A)<\infty$. Let $\left\{D_{\lambda}\right\}$ be the components of $\operatorname{Int}\left(A^{\circ}\right)$; then $\left[5\right.$, Th. 4] we have $\sum b_{0}\left(\operatorname{Fr}\left(D_{\lambda}\right)\right] \geq b_{0}(A)$ $=b_{0}[\operatorname{Fr}(A)]$. But the components of $\operatorname{Co}(A)$ are precisely the sets C_{j}, D_{λ}; hence $c(A)>b_{0}[\mathrm{Fr}(A)]+n$, contradicting (ii).

If $r(S)=\infty$, the above argument still applies provided that $b_{0}\left[\operatorname{Fr}\left(A^{\prime}\right)\right]<\infty$. Hence we may assume $b_{0}\left[\operatorname{Fr}\left(A^{\prime}\right)\right]=\infty$, so that there must exist some C_{j}, say C, for which $b_{0}[\operatorname{Fr}(C)]=\infty$. Now, the complement (say) F of C is closed and connected. If it is assumed that S is metrizable, then there exists a sequence of open sets G_{n} such that $G_{n} \supset \operatorname{Cl}\left(G_{n+1}\right)(n=1,2, \ldots)$, and $\cap G_{n}=F$. Let $X=C-\operatorname{UFr}\left(G_{n}\right)$; from a theorem of Hewitt [3], there exist disjoint sets Y, Z such that $Y \cup Z=X$ and $\bar{Y}=\bar{Z}=\bar{X}=\bar{C}$. We take $A=C-Y$. Thus $\mathrm{Cl}(S-A)=S$; and $\operatorname{Fr}(A)=\bar{C}$, which is connected. But $\operatorname{Co}(A)$ can be separated, by one of the sets $\operatorname{Fr}\left(G_{n}\right)$, between F and any given point of Y; thus one of the components of $\operatorname{Co}(A)$ is F itself, and again (ii) is contradicted.

Corollary. If S is unicoherent, and $\left\{C_{\lambda}\right\}$ are the components of an
arbitrary set E, then

$$
b_{0}\left[\operatorname{Fr}\left(C_{\lambda}\right)\right]+b_{0}(\bar{E})=b_{0}[\operatorname{Fr}(E)]
$$

and this property characterizes unicoherence among metrizable (locally connected and connected) spaces.

It would be interesting to know whether the extra hypotheses on S imposed in (iii) are needed. It would be easy to replace them by others (for example, local compactness plus perfect normality).
5. Modified addition theorems.
5.1. A Modification. As in the case of two connected sets [5, Ths. 11 and 1la], special cases of Theorem 1 can be obtained under alternative hypotheses. As an example, we state:

Theorem 7. If A and B are any sets satisfying

$$
\operatorname{Fr}(A) \cap \operatorname{Fr}(B) \cap \operatorname{Fr}(A \cap B)=0,
$$

then

$$
b_{0}(A \cup B)+b_{0}(A \cap B) \leq b_{0}(A)+b_{0}(B)+r(S) ;
$$

and if there is finite equality here, then $A-B$ and $B-A$ are separated (so that Theorem 1 then in fact applies). ${ }^{9}$

The proof is a fairly straightforward generalization of that of [5, Th. 11], with 2.3 (1) replacing [5, §7.4]. The extension of Theorem 7 to n sets, however, appears to present some difficulty.
5.2. Another Modification. A more interesting modification of Theorem 1 is the following, in which $r(S)$ does not enter explicitly; in some cases (in view of Theorem 6) it gives more information than does Theorem 1.

Theorem 8. If A and B are arbitrary sets such that

$$
\operatorname{Fr}(A) \cap \operatorname{Fr}(B) \cap \operatorname{Fr}(A \cup B)=0,
$$

then

$$
h(\bar{A}, \bar{B})+b_{0}(\bar{A}) \leq c(A)
$$

[^4]Proof. Write $C=\mathrm{Cl}[\mathrm{Co}(A)]$, and apply [4, Th. 6b] to the closed sets $\bar{A} \cup \bar{B}$, $\bar{A} \cap \bar{B}, C$. We obtain
(1) $b_{0}(\bar{A} \cup \bar{B})+b_{0}(\bar{A} \cap \bar{B})+b_{0}(C) \leq b_{0}[\bar{B} \cup \operatorname{Fr}(A)]+b_{0}[\bar{B} \cap \operatorname{Fr}(A)]$.

From the frontier relation satisfied by the sets A and B, it readily follows that $\operatorname{Fr}(A) \cap \operatorname{Co}(\bar{B})$ is closed, and thence that each component of $\operatorname{Fr}(A)$ which meets \bar{B} is contained in \bar{B}. Hence we see that

$$
b_{0}[\bar{B} \cup \operatorname{Fr}(A)]+b_{0}[\bar{B} \cap \operatorname{Fr}(A)]=b_{0}(\bar{B})+b_{0}[\operatorname{Fr}(A)],
$$

and consequently
(2) $b_{0}(\bar{A} \cup \bar{B})+b_{0}(\bar{A} \cap \bar{B})+b_{0}(C) \leq b_{0}(\bar{B})+b_{0}[\operatorname{Fr}(A)]$.

But by $4.1(2)$, we have $b_{0}[\operatorname{Fr}(A)] \leq b_{0}(C)+c(A)$. Thus, provided that $b_{0}(C)$ is finite, we have proved
(3) $b_{0}(\bar{A} \cup \bar{B})+b_{0}(\bar{A} \cap \bar{B}) \leq b_{0}(\bar{B})+c(A)$,
from which the theorem follows immediately.
To complete the proof, we deduce that (3) continues to hold even when $b_{0}(C)=\infty$; and in doing so, we may assume that $b_{0}(\bar{B})+c(A)<\infty$. Define B^{*} to be the union of those components of \bar{B} which meet \bar{A}, and A^{*} to be the union of A with all components of $\mathrm{Co}(A)$ which have connected frontiers. It is easy to verify that

$$
\operatorname{Fr}\left(A^{*}\right) \cap \operatorname{Fr}\left(B^{*}\right) \cap \operatorname{Fr}\left(A^{*} \cap B^{*}\right)=0,
$$

and that, since $c(A)<\infty, \mathrm{b}_{0}\left[\mathrm{Co}\left(A^{*}\right)\right]$ is finite. Hence (3) holds for the sets A^{*}, B^{*}; and it is a routine matter to deduce that (3) also holds for A and B^{*}, and thence finally for A and B.

There is no difficulty in extending this theorem to any number of sets; for example, (2) can be extended to the following property, valid in an arbitrary topological space S (and generalizing [4, §7.4(1)]):
(4) If $A_{1}, \ldots, A_{m}, B_{1}, \cdots, B_{n}$ are arbitrary sets such that

$$
\operatorname{Fr}\left(A_{j}\right) \cap \operatorname{Fr}\left(B_{k}\right) \cap \operatorname{Fr}\left(A_{j} \cup B_{k}\right)=0 \quad(1 \leq j \leq m, 1 \leq k \leq n),
$$

and $C_{j}=\mathrm{Cl}\left[\mathrm{Co}\left(A_{j}\right)\right]$, then

$$
\begin{gathered}
\sum b_{0}\left[X_{h}\left(\overline{A_{1}}, \ldots, \bar{A}_{m}, \overline{B_{1}}, \cdots, \bar{B}_{n}\right)\right]+\sum b_{0}\left[X_{j}\left(C_{1}, \ldots, C_{m}\right)\right] \\
\leq \sum b_{0}\left[X_{j}\left[\operatorname{Fr}\left(A_{1}\right), \cdots, \operatorname{Fr}\left(A_{m}\right)\right]\right\} \\
\quad+\sum b_{0}\left[X_{k}\left(\bar{B}_{1}, \cdots, \bar{B}_{n}\right)\right]+m b_{0}(S),
\end{gathered}
$$

the ranges of summation being $1 \leq h \leq m+n, 1 \leq j \leq m, 1 \leq k \leq n$; and (3) can be extended similarly.
5.3. An Inclusive Result. The next theorem includes both Theorem 1 and the extended Phragmén-Brouwer theorem (Theorem 6) as special cases. We shall need the following lemma.

Lemma. If G is a set with only finitely many components, then there exists a finite set of points $x_{1}, x_{2}, \cdots, x_{q} \in \operatorname{Fr}(G)$ such that

$$
b_{0}\left[G \cup\left(x_{1}\right) \cup \cdots \cup\left(x_{q}\right)\right]=b_{0}(\bar{G})
$$

For if G has components $G_{1}, G_{2}, \cdots, G_{s}$, we have only to take at least one point x_{j} in every nonempty set $\bar{G}_{\lambda} \cap \bar{G}_{\mu}(\lambda \neq \mu)$.
5.4. Theorem 9. Let $A_{1}, A_{2}, \cdots, A_{n}$ be any subsets of S having separated differences and such that $A_{j} \cap A_{k}$ and $\operatorname{Co}\left(A_{j} \cup A_{k}\right)$ are separated whenever $j \neq k$; and suppose that no point belongs to A_{j} for more than m values of j, where $2 \leq m \leq n$. Then
(1) $h\left(A_{1}, \cdots, A_{n}\right)+c\left(\bar{X}_{1}\right)+c\left(\bar{X}_{2}\right)+\cdots+c\left(\bar{X}_{m-1}\right)$

$$
\leq b_{0}\left(\bar{X}_{1}\right)+b_{0}\left(\bar{X}_{2}\right)+\cdots+b_{0}\left(\bar{X}_{m-1}\right)+(m-1) r(S),
$$

where $X_{j}=X_{j}\left(A_{1}, \cdots, A_{n}\right)$. Further, if there is finite equality in (1), then, for each $q \leq n-1$, for each set J of $q+1$ distinct suffixes j_{1}, j_{2}, \cdots, j_{q+1} between 1 and n, and for each component E of X_{q}, we have
(2) $\cap\left\{\operatorname{Fr}\left(A_{j} \cap E\right) \mid j \in J\right\} \subset E$.

To prove (1), we may assume throughout that $r(S)$ and $\sum b_{0}\left(A_{j}\right)$ are finite; it then follows from Theorems 1 and 6 that the numbers $b_{0}\left(X_{j}\right)$, $b_{0}\left(\overline{X_{j}}\right)$, and $c\left(X_{j}\right)$ are also finite. Further, we may obviously suppose that $X_{m-1} \neq 0$ (otherwise (1) would be derived with a smaller value of m). Again, by using the method of approximation, we may assume in addition that the sets A_{j} are all open and, by 1.3 (2), satisfy
(3) $\operatorname{Fr}\left(A_{j}\right) \cap \operatorname{Fr}\left(A_{k}\right) \cap \operatorname{Fr}\left(A_{j} \cap A_{k}\right)=0$

For, in the general case, we apply 1.3 (3) to replace the sets A_{j} by slightly larger relatively connected sets $A_{j}{ }^{*}$ having the same incidences and satisfying (3); and, in view of Theorem 5, the truth of (1) for the sets $A_{j}{ }^{*}$ will imply (1) for the sets A_{j}.

From (3) and 1.3(1), the open sets X_{j} satisfy
(4) $X_{1} \supset \bar{X}_{2} \supset X_{2} \supset \bar{X}_{3} \supset \cdots \supset X_{m+1}=0$.

We shall define inductively, for $j=1,2, \cdots, m-1$, open sets G_{j} consisting of a finite number of components $C_{j k}$ of $\mathrm{Co}\left(\bar{X}_{j}\right)$, and open sets $V_{j} \supset \operatorname{Fr}\left(G_{j}\right)$, such that ${ }^{11}$
(5) $G_{j} \cup V_{j} \subset G_{k}$ whenever $j<k$;
$\overline{V_{j}} \subset X_{j-1} ; \bar{V}_{j} \cap \bar{X}_{j+1}=0 ; \bar{V}_{j} \cap \bar{V}_{k}=0$ if $j \neq k ;$
$\operatorname{Fr}\left(V_{j}\right) \cap \operatorname{Fr}\left(A_{k}\right)=0$ (for all $\left.j, k\right) ;$ and $\operatorname{Fr}\left(V_{j}\right) \cap \operatorname{Fr}\left(X_{j}\right)=0$.
Further,
(6) $b_{0}\left(V_{j}\right)<\infty, b_{0}\left(X_{j} \cup V_{j}\right) \leq b_{0}\left(\overline{X_{j}}\right)$, and

$$
b_{0}\left(V_{j} \cap G_{j}\right) \geq c\left(\overline{X_{j}}\right)+b_{0}\left(G_{j}\right)
$$

For suppose this done for all $j<p$, where $1<p<m$. Define G_{p} to be the union of all those components of $\mathrm{Co}\left(\bar{X}_{p}\right)$ which either (a) have disconnected frontiers, or (b) meet $G_{p-1} \cup V_{p-1}$. Since $G_{p-1} \cup V_{p-1}$ $\subset \operatorname{Co}\left(\bar{X}_{p}\right)$, this gives $G_{p-1} \cup V_{p-1} \subset G_{p}$; and since further

$$
b_{0}\left(G_{p-1} \cup V_{p-1}\right)<\infty,
$$

Theorem 6, Corollary 1, shows that $b_{0}\left(G_{p}\right)<\infty$. Let G_{p} consist of the components $C_{p k}$ of $\operatorname{Co}\left(\bar{X}_{p}\right)\left(k=1,2, \cdots, n_{p}\right)$; thus

$$
\sum_{k} b_{0}\left[\operatorname{Fr}\left(C_{p k}\right)\right]=c\left(\bar{X}_{p}\right)
$$

Hence, if the components of $\operatorname{Fr}\left(C_{p k}\right)$ are denoted by $F_{p k l} \quad(l=1,2$, $\left.\cdots, n_{p k}\right)$, we have $\sum_{k}\left(n_{p k}-1\right)=c\left(\bar{X}_{p}\right)$. For fixed p and k, there exist open sets $N_{p k l} \supset F_{p k l}$ with disjoint closures (for varying l); and it follows from the lemma in 4.2 that an open set U_{p} exists such that $U_{p} \supset \operatorname{Fr}\left(X_{p}\right)$ and $U_{p} \cap \mathrm{Cl}\left(C_{p k}\right) \subset U_{l} N_{p k l}$. We may further suppose, from (4), that $\bar{U}_{p} \subset X_{p-1}, \bar{U}_{p} \cap \bar{X}_{p+1}=0$, and $\bar{U}_{p} \cap \bar{V}_{p-1}=0$. It readily follows that $\operatorname{Fr}\left(U_{p}\right) \cap \operatorname{Fr}\left(A_{k}\right)=0$ for each $k(1 \leq k \leq n)$. Again, from

[^5]the lemma in 5.3, there exists a finite set $Q_{p} \subset \operatorname{Fr}\left(X_{p}\right)$ such that
$$
b_{0}\left(X_{p} \cup Q_{p}\right)=b_{0}\left(\bar{X}_{p}\right)
$$

Let $V_{p}=$ union of those components of U_{p} which meet $Q_{p} \cup \cup F_{p k l}$; clearly $b_{0}\left(V_{p}\right)$ is finite; and, since $\operatorname{Fr}\left(V_{p}\right) \subset \operatorname{Fr}\left(U_{p}\right)$, it is easily seen that (5) continues to hold when $j=p$. Also the sets $V_{p} \cap C_{p k} \cap N_{p k l}$ are (for varying k and l) all pairwise separated and nonempty; hence the number of components of $V_{p} \cap G_{p}$ is at least $\sum_{k} n_{p k}=c\left(\bar{X}_{p}\right)+n_{p}$, so that (6) holds.

To start the induction, we take G_{1} to consist of the components of $\mathrm{Co}\left(\bar{X}_{1}\right)$ with disconnected frontiers; the rest of the construction is exactly as in the general case. Thus (5) and (6) hold for $j=1,2, \cdots, m-1$. We remark that it follows trivially from (5) that
(7) $\operatorname{Fr}\left(V_{j}\right) \cap \operatorname{Fr}\left(G_{k}\right)=0$ whenever $j \neq k$, and $V_{j} \cap G_{k}=0$ if $j>k$.

Now consider the "elementary symmetric sets"

$$
Y_{j}=X_{j}\left(G_{1}, G_{2}, \cdots, G_{m-1}, V_{1}, V_{2}, \cdots, V_{m-1}\right) \quad(1 \leq j \leq 2 m-2)
$$

and

$$
\begin{aligned}
Z_{k}=X_{k}\left(A_{1}, A_{2}, \cdots, A_{n}, G_{1}, \cdots, G_{m-1}, V_{1}, \cdots,\right. & \left.V_{m-1}\right) \\
& (1 \leq k \leq 2 m+n-2) .
\end{aligned}
$$

Using (5) and (7), we obtain
(8) $Y_{1}=G_{m-1} \cup V_{m-1}, Y_{j}=G_{m-j} \cup V_{m-j} \cup\left(G_{m-j+1} \cap V_{m-j+1}\right)$ if $2 \leq j \leq m-1 ; Y_{m}=G_{1} \cap V_{1} ;$ and $Y_{j}=0$ if $j>m$. Thus, since $Z_{k}=X_{k} \cup \cup\left(X_{k-p} \cap Y_{p}\right) \cup Y_{k}$, we find:
(9) $Z_{k} \neq 0$ if $1 \leq k \leq m ; Z_{m}=X_{m} \cup \cup\left(X_{p} \cap V_{p}\right) \cup U\left(G_{q} \cap V_{q}\right)$ ($p, q=1,2, \cdots, m-1$) ; and $Z_{k}=0$ if $k>m$.

Now the open sets $A_{1}, A_{2}, \cdots, A_{n} ; G_{1}, \cdots, G_{m-1} ; V_{1}, \cdots, V_{m-1}$ satisfy the hypotheses of Theorem 1 , since this is true of A_{1}, \cdots, A_{n} from (3), while we readily verify that

$$
\operatorname{Fr}\left(A_{j}\right) \cap \operatorname{Fr}\left(G_{k}\right) \cap \operatorname{Fr}\left(A_{j} \cap G_{k}\right)=0
$$

and that in all the remaining cases the sets have disjoint frontiers. Hence

$$
\begin{align*}
& \sum b_{0}\left(Z_{p}\right) \leq \sum b_{0}\left(A_{j}\right)+\sum b_{0}\left(G_{k}\right)+\sum b_{0}\left(V_{k}\right)+(m-1) r(S) \tag{10}\\
& \quad(1 \leq p \leq n+2 m-2,1 \leq j \leq n, 1 \leq k \leq m-1) .
\end{align*}
$$

But (9) shows that

$$
\sum b_{0}\left(Z_{p}\right) \geq b_{0}\left(X_{m}\right)+\sum b_{0}\left(X_{k} \cap V_{k}\right)+\sum b_{0}\left(V_{k} \cap G_{k}\right)+m-n .
$$

Also

$$
\begin{aligned}
b_{0}\left(X_{k} \cap V_{k}\right) & \geq b_{0}\left(X_{k}\right)+b_{0}\left(V_{k}\right)-b_{0}\left(X_{k} \cap V_{k}\right) \quad(c f .[4, \S 6.2]) \\
& \geq b_{0}\left(X_{k}\right)+b_{0}\left(V_{k}\right)-b_{0}\left(\bar{X}_{k}\right)
\end{aligned}
$$

and, from (6).

$$
b_{0}\left(V_{k} \cap G_{k}\right) \geq c\left(\bar{X}_{k}\right)+b_{0}(G) .
$$

Thus finally, since all the numbers involved here are finite, (1) follows from (10).
5.5. The Case of Finite Equality. Suppose now that there is finite equality in (1) above, and that a point y exists in (say)

$$
\operatorname{Fr}\left(A_{1} \cap E\right) \cap \operatorname{Fr}\left(A_{2} \cap E\right) \cap \ldots \cap \operatorname{Fr}\left(A_{p+1} \cap E\right)-E,
$$

where E is a component of X_{p}; thus $y \notin X_{p}$. It is easy to see that we may assume without loss of generality that $p \leq m-1$ and that the sets A_{j} are all open. Clearly $y \in \operatorname{Fr}\left(X_{p}\right)$; thus we may carry out the preceding construction in such a way that $y \in Q_{p} \subset V_{p}$. But, from the way in which (1) was derived from (10), we must now have $h\left(X_{p}, V_{p}\right)=0$, so that the component W of V_{p} which contains y must meet E in a connected set; consequently, since $W \cap \mathrm{Cl}\left(X_{p+1}\right)$ $=0$, it follows that $W \cap E$ meets one and only one of the sets

$$
A_{J}\left(=\cap\left\{A_{j}, j \in J\right\}\right)
$$

with $|J|=p$. Since W meets $A_{1} \cap E$, we have $1 \in J$; similarly $2 \in J, \ldots$, and $(p+1) \in J$, giving a contradiction.
5.6. Remarks. We observe that the preceding results contain those concerning modified addition theorems in [5, Ths. 11 and lla]. For, in the first place, l.3(1) together with an "approximation" argument shows that the relation
(2) above is equivalent to the apparently stronger relation
(2a)

$$
\cap\left\{\operatorname{Fr}\left(A_{j} \cap E\right)\right\} \subseteq \operatorname{Cl}\left(X_{p+1}\right)
$$

$$
(j \in J,|J|=p+1, p<n)
$$

(In fact, the left side here is contained in

$$
\left.\operatorname{Fr}\left(X_{p+1}\right) \cup \operatorname{Fr}\left(X_{p+2}\right) \cup \cdots \cup \operatorname{Fr}\left(X_{m}\right) .\right)
$$

Hence if A_{1}, \cdots, A_{n} also satisfy the condition (slightly stronger than in Theorem 9) that $\operatorname{Fr}\left(A_{j} \cap A_{k}\right) \cap \operatorname{Fr}\left(A_{j} \cup A_{k}\right)=0(j \neq k)$, finite equality in Theorem 9 will imply, again from l.3(1), that
(2b) $\quad \cap\left\{\operatorname{Fr}\left(A_{j} \cap E\right)\right\} \subset \operatorname{Int}(E) \quad(j \in J,|J|=p+1, p<n)$, a relation which is slightly stronger than (2). And if the sets A_{j} satisfy the even stronger condition

$$
\operatorname{Fr}\left(A_{j}\right) \cap \operatorname{Fr}\left(A_{k}\right) \cap \operatorname{Fr}\left(A_{j} \cap A_{k}\right)=0 \quad(j \neq k),
$$

it can be deduced from (2b) that
(2c) $\cap\left\{\operatorname{Fr}\left(A_{j} \cap E\right)\right\}=0$ if $2 p \geq n \quad(j \in J,|J|=p+1, p<n)$.
Finally, if there is finite equality in Theorem 1, then there will be finite equality in Theorem 9, for $c\left(\bar{X}_{j}\right) \geq b_{0}\left(\bar{X}_{j}\right)$, by 4.1 (3); and thus the above considerations will apply.
5.7. Other Inequalities. Many other inequalities can be derived from Theorem 9; for example:

Theorem 9a. Under the hypotheses of Theorem 9, we have
(i) $c\left(\bar{X}_{1}\right)+c\left(\bar{X}_{2}\right)+\cdots+c\left(\bar{X}_{m-1}\right)+b_{0}\left(X_{m}\right)+b_{0}\left(X_{m+1}\right)+\cdots+b_{0}\left(X_{n}\right)$

$$
\leq \sum b_{0}\left(A_{j}\right)+(m-1) r(S)
$$

Further, if there is finite equality in (i), we have

$$
\text { (ii) } X_{p}\left(\overline{A_{1}}, \bar{A}_{2}, \cdots, \bar{A}_{n}\right)=\bar{X}_{p} \quad(1 \leq p \leq m) .^{12}
$$

Proof. Relation (i) is a trivial consequence of Theorem 9, (1), since

$$
b_{0}\left(\bar{X}_{j}\right) \leq b_{0}\left(X_{j}\right)
$$

[^6]Suppose there is finite equality in (i); as before it will suffice, by an approximation argument, to prove (ii) assuming that the sets A_{j} are open. Now, finite equality in (i) implies that Theorem 9, (2), holds, and also that $b_{0}\left(\bar{X}_{j}\right)=b_{0}\left(X_{j}\right)$ for all $j<m$. If J, K denote sets of p distinct suffixes between 1 and n, and $J \neq K$, we find (writing $A_{J}=\cap\left\{A_{j} \mid j \in J\right\}$) that

$$
\bar{A}_{J} \cap \bar{A}_{K} \subset \bar{X}_{p+1} \quad \text { if } p<m
$$

This includes (ii) when $p=2$; and (ii) follows in general by an easy induction over p.
5.8. Geometrical Considerations. To illustrate the geometrical content of these theorems, we consider the case of two sets in more detail.

Theorem 10. Let A and B be sets, neither of which contains the other, having separated differences and connected complements, and suppose that $A \cap B$ and $\operatorname{Co}(A \cup B)$ are separated. Then

$$
b_{0}(A \cap B)+b_{0}(\operatorname{Co}(A \cup B)) \leq b_{0}(A)+b_{0}(B)+r(S)-1 .
$$

If there is finite equality here, and further $\operatorname{Fr}(A) \cap \operatorname{Fr}(B) \cap \operatorname{Fr}(A \cup B)=0$, then each component of $\operatorname{Co}(A \cup B)$ has a frontier consisting of exactly two components.

Proof. We can assume that $r(S)$ is finite. Write $P=\operatorname{Co}(A), Q=\operatorname{Co}(B)$; then P and Q are connected, so that, from Theorem $1, b_{0}(P \cap Q)$ is finite. Let $P \cap Q(=\operatorname{Co}(A \cup B))$ have components $H_{1}, H_{2}, \cdots, H_{n}$. Then
(1) A and H_{j} are not separated, since otherwise $Q=\left\{(Q \cap A) \cup\left(P \cap Q-H_{j}\right)\right\} \cup H_{j}$, a union of two nonempty separated sets. Similarly B and H_{j} are not separated. Hence
(2) $\operatorname{Fr}\left(H_{j}\right)$ meets both $\operatorname{Fr}(A)$ and $\operatorname{Fr}(B)$.

Let $A^{*}=A \cup(P \cap Q), B^{*}=B \cup(P \cap Q)$; from (1), A^{*} is connected relative to A, so that $b_{0}\left(A^{*}\right) \leq b_{0}(A)$, and similarly $b_{0}\left(B^{*}\right) \leq b_{0}(B)$. It is easy to see that $A^{*}-B^{*}$ and $B^{*}-A^{*}$ are separated, and that $A^{*} \cap B^{*}$ and $\operatorname{Co}\left(A^{*} \cup B^{*}\right)$ are separated; hence $2.3(1)$ gives

$$
b_{0}\left(A^{*} \cap B^{*}\right) \leq b_{0}(A)+b_{0}(B)+r(S) .
$$

But $A^{*} \cap B^{*}=(A \cap B) \cup C o(A \cup B)$, a union of two separated sets; thus the first part of the theorem follows.

From Theorem 9a and Theorem 5, Corollary, we also have

$$
b_{0}(A \cap B)+\sum b_{0}\left(\operatorname{Fr}\left(H_{j}\right)\right) \leq b_{0}(A)+b_{0}(B)+r(S) .
$$

If further $\operatorname{Fr}(A) \cap \operatorname{Fr}(B) \cap \operatorname{Fr}(A \cup B)=0$, (2) shows that $b_{0}\left[\operatorname{Fr}\left(H_{j}\right)\right]$ ≥ 1 for each j. Hence finite equality in Theorem 10 requires $b_{0}\left[\operatorname{Fr}\left(H_{j}\right)\right]$ $=1$ for each j, and the proof is complete.

Corollary. If A and B are simple sets ${ }^{13}$ with disjoint frontiers, and neither A nor B contains the other, then $b_{0}(A \cap B)+b_{0}[\operatorname{Co}(A \cup B)] \leq r(S)-1$; and if there is finite equality here, then each component of $A \cap B$ or of $\operatorname{Co}(A \cup B)$ has a frontier with exactly two components.

This follows on applying Theorem 10 first to A, B and then to $\operatorname{Co}(A), \operatorname{Co}(B)$. If S is unicoherent, the first part of this corollary reduces to [4, §4.5].

6. Simple sets with disjoint frontiers.

6.1. Finitely Multicoherent Spaces. Throughout this section, we shall assume that $r(S)$ is finite.

Theorem 11. Let $A_{1}, A_{2}, \cdots, A_{n}$ be simple ${ }^{14}$ subsets of S, every two of which meet, and which have disjoint frontiers. Then there exist N or fewer of the sets A_{j} whose union is $\mathrm{U}_{1}^{n} A_{j}$, where

$$
\begin{aligned}
& N=2 r(S) \text { if } r(S)>1, \text { or if } r(S)=1 \text { and } \cap A_{j} \neq 0 . \\
& N=3 \text { if } r(S)=1 \text { and } \cap A_{j}=0, \text { and } \\
& N=2 \text { if } r(S)=0 .
\end{aligned}
$$

These values of N are the smallest possible.
It is easy to see by examples (it suffices to take S to be a linear graph) that no smaller values of N are possible in general. To prove the rest of the theorem, we need two graph-theoretic lemmas.
6.2. Lemma 1. Let G be a connected linear graph having no end-points, and let $E_{1}, E_{2}, \ldots, E_{n}$ be closed connected subsets of G, every two of which meet. If $r(G)>1$, or if $r(G)=1$ and $\cap E_{j} \neq 0$, then $U E_{j}$ is the union of $2 r(G)$ or fewer of the sets $E_{j} ;$ if $r(G)=1$ and $\cap E_{j}=0$, then $\cup E_{j}$ is the union of at most 3 sets E_{j}.
${ }^{13} \mathrm{~A}$ set E is "simple" if E and $S-E$ are both connected.
14 It would suffice to require only that $\mathrm{Cl}\left(A_{j}\right)$ and $\mathrm{Cl}\left[\mathrm{Co}\left(A_{j}\right)\right]$ be connected $(1 \leq j \leq n)$.

The proof is by induction over $r(G)$. If $r(G) \leq 2$, the lemma can be verified by inspection of the possible graphs G. Suppose, then, that $r(G) \geq 3$, and that the lemma is true for all graphs of smaller degree of multicoherence but not for G, and that n is the smállest number of sets for which the lemma fails for G. Thus no E_{j} is contained in the union of the others.

From G we derive a homeomorphic graph G^{*} by suppressing all vertices of order 2; the (open) l-cells of G^{*} will thus be the components of G minus its vertices of orders other than 2 ; we call them the "maximal 1-cells" of G. (A maximal 1-cell may have coincident end-points.) We consider three cases:
(l) If G has a cut-point R which is not a vertex of G, let $P Q$ be the maximal l-cell of G which contains R; thus here $P \neq Q$, and $G-P Q$ is a union of two disjoint, closed connected nonempty subgraphs H, K, neither of which has an end-point. From [6, §3.2(1)], we see that $r(H)+r(K)=r(G)$, while, since G has no end-points, $r(H) \geq 1$ and $r(K) \geq 1$. For the moment we assume that neither $r(H)$ nor $r(K)$ is 1 . Write $E_{j}^{\prime \prime}=E_{j} \cap H, E_{j}{ }^{\prime \prime}=E_{j} \cap K$; it is easy to see that these sets are closed and connected, though possibly empty. Further, every two nonempty sets $E_{j}{ }^{\prime}$ must meet, since both must contain P unless one of the corresponding sets E_{j} is contained in H. Hence the hypothesis of induction applies to H and the nonempty sets E_{j}^{\prime}, and $U E_{j}^{\prime}$ must be contained in the union of at most $2 r(H)$ sets E_{j}. Similarly $U E_{j}{ }^{\prime \prime}$ is contained in the union of at most $2 r(K)$ sets E_{j}. Thus we obtain at most $2 r(G)$ sets E_{j} in all, which together contain $U E_{j}{ }^{\prime} \cup \cup E_{j}{ }^{\prime \prime}$; further, their union is connected and so contains $P Q$ and thus $U E_{j}$, unless $U E_{j}^{\prime}$ or $U E_{j}^{\prime \prime}$ is empty.

If $U E_{j}{ }^{\prime \prime}$, say, is empty but $U E_{j}^{\prime \prime} \neq 0$, it is easy to see that at most $2 r(H)+1$ $<2 r(G)$ sets E_{j} will suffice, namely those selected to contain $U E_{j}{ }^{\prime}$, together with the set E_{j} which contains the largest subarc of $P Q$. If $U E_{j}^{\prime \prime}=U E_{j}^{\prime \prime}=0$, all the sets E_{j} are contained in $P Q$, and two of them will suffice.

If $r(H)$, say, is 1 (so that H is a circle), the above argument needs modification only if one of the given sets is contained in $H-(P)$; we leave the details to the reader.
(2) If G has a cut-vertex R, but no cut-point other than a vertex, the argument is essentially the same as before, with $P Q$ degenerating to R.
(3) Finally, if G has no cut-points, pick $x \in E_{1}-\left(E_{2} \cup \cdots \cup E_{n}\right)$; replacing x by a sufficiently nearby point if necessary, we can suppose that x is not a vertex and so belongs to a unique maximal l-cell $P Q$ of G. Here $P \neq Q$, since G has no cut-points, and the subgraph $H=G-P Q$ is connected and has no endlines. We easily find $r(H)=r(G)-1$. Write $E_{j}^{\prime}=E_{j} \cap H$; as before, at most $2 r(H)$ of the sets E_{2}, \cdots, E_{n}, say $E_{2}, \cdots, E_{m}(m \leq 2 r(H)+1)$, must contain
$\mathrm{U} E_{j}^{\prime}(j \geq 2)$. The connected set $E_{1} \cup E_{2}$ joins x to H (for we may clearly assume $U E_{j}^{\prime} \neq 0$), and so contains one of the $\operatorname{arcs} P x, Q x$, say $P x$. If none of E_{m+1}, \cdots, E_{n} meets $Q x$, the m sets $E_{1}, E_{2}, \cdots, E_{m}$ contain $\cup E_{j}$. If $Q x$ n $\left(E_{m+1} \cup \ldots \cup E_{n}\right) \neq 0$, let y be its point on $Q x$ closest to x, and let $y \in E_{k}$; then the connected set $E_{2} \cup E_{k}$ joins y to H without containing x, and so contains $Q X$; thus the $m+1$ sets $E_{1}, E_{2}, \cdots, E_{m}, E_{k}$ contain $U E_{j}$. Since $m+1$ $\leq 2 r(G)$, the proof is complete.
6.3. Lemma 2. Let $B_{1}, B_{2}, \cdots, B_{n}$ be n simple closed subsets of a connected linear graph G, every two of which meet. If $r(G)>1$, or if $r(G)=1$ and $\cap B_{j} \neq 0$, then $\cup B_{j}$ is the union of $2 r(G)$ or fewer of the sets $B_{j} ;$ if $r(G)=1$ and $\cap B_{j}=0$, then $\cup B_{j}$ is the union of at most 3 sets B_{j}.

As before, we may assume that the lemma is false, and that n is the smallest number of sets for which it fails; thus no B_{j} is contained in the union of the others. Define a "maximal end-line" $P Q$ of G to be a maximal l-cell $P Q$ of G in which Q is an end-point of G; thus $P \neq Q$. If B_{1}, say, meets a maximal endline $P Q$ which it does not contain, then (being closed and simple) B_{1} must be either a closed arc $x Q$, where $x \in P Q$, or the closure of the complement in G of such an arc. In the latter case, it is clear that B_{1} together with one other set B_{j} will contain the rest; in the former case, we see similarly that either $B_{1} \cup B_{2}$ $=G$, or $B_{2} \supset B_{1}$, or $B_{1} \supset B_{2}$-all of which are excluded. This proves, then, that each B_{j} contains all maximal end-lines of G which it meets. Let H be the graph obtained from G by removing all end-points and maximal end-lines, and write $E_{i}=B_{i} \cap H$. On applying Lemma 1 to the sets E_{1}, \cdots, E_{n} in the graph H, we see that $\cup E_{j}$ is the union of the desired number of sets E_{j}; the analogous conclusion for the sets B_{j} follows.
6.4. Proof of Theorem 11. We shall consider only the case $r(S)>1$ explicitly; the modifications needed when $r(S)=1$ will be obvious, and the case $r(S)=0$ is covered by [4, §4.5]. It will thus suffice to prove that, if $n>2 r(S)$ ≥ 4, one of the sets A_{j} is contained in the union of the others. Consider the 2^{n} intersections $Y_{k}=\bar{D}_{1} \cap \bar{D}_{2} \cap \ldots n \bar{D}_{n}\left(1 \leq k \leq 2^{n}\right)$, where each D_{j} takes the two values $A_{j}, \mathrm{Co}\left(A_{j}\right)$, in all possible combinations. The sets Y_{k} are closed and cover S; and, since the sets $\operatorname{Fr}\left(A_{j}\right)$ are disjoint, no three of them have a common point. Further, from Theorem $1, b_{0}\left(Y_{k}\right)$ is finite, and so the sets Y_{k} are of finite incidence. Let G denote the modified nerve (cf. [6]) of the sets Y_{k}; as in [6, §6.4], G is connected and $r(G) \leq r(S)$. Let B_{p} denote the subgraph of G consisting of (i) all vertices which correspond to intersections Y_{k} in which the p th "factor" D_{p} is A_{p}, and (ii) all edges of G both of whose end-points
have been assigned to B_{p}. Let C_{p} be defined similarly, but with $\mathrm{Co}\left(A_{p}\right)$ replacing A_{p}. Thus, for each $p(1 \leq p \leq n), B_{p}$ and C_{p} are disjoint subgraphs which together contain all the vertices of G; and it is easy to see that B_{p} and C_{p} are connected, since A_{p} and $\mathrm{Cl}\left[\mathrm{Co}\left(A_{p}\right)\right]$ are. Hence $B_{1}, B_{2}, \cdots, B_{n}$ are simple closed subsets of G. Further, if $p \neq q, B_{p}$ and B_{q} have at least a common vertex. Thus, by Lemma 2, one of the sets B_{p} is contained in the union of the others; say $B_{1} \subset B_{2} \cup \ldots \cup B_{n}$. It readily follows that $A_{1} \subset A_{2} \cup \cdots \cup A_{n}$, whence the proof is completed.
6.5. Corollary. For any collection of more than $2 r(S)$ simple subsets of S with disjoint frontiers, the union of some two of the sets contains the intersection of the rest.
6.6. Further Results. Evidently the method which was employed to prove Theorem 11 is of more general applicability; it shows, roughly speaking, that the incidences of a system of sets with disjoint frontiers are no worse than if S were a linear graph of the same degree of multicoherence. In the same way we may prove:

Theorem lla. Let $A_{1}, A_{2}, \cdots, A_{n}$ be n simple subsets of S, every two of which meet, and which have disjoint frontiers. If n is large enough compared with $r(S)$ (assumed finite), then some A_{j} is contained in the union of two others.
(Note that no A_{j} need be contained in one other, irrespective of how large n is.) Here the determination of the "best" bound for n seems to be difficult: it can be shown, however, that, disregarding the trivial case $r(S)=0$, it lies between $\exp \left\{\exp \left[c_{1} r(S)\right]\right\}$ and $\exp \left\{\exp \left[c_{2} r(S)\right]\right\}$, where c_{1}, c_{2} are positive constants.

Another related theorem, proved in a similar way, is:
Theorem llb. Let $A_{1}, A_{2}, \cdots, A_{n}$ be connected subsets of S such that $b_{0}\left[\operatorname{Co}\left(A_{j}\right)\right] \leq q(j=1,2, \cdots, n)$. Suppose that every two of the sets A_{j} meet, and that they have disjoint frontiers. Then there exists a function N of q and $r(S)$ (independent of n) such that $\cup A_{j}$ is contained in the union of N or fewer of the sets A_{j}.

It is easy to show by examples that, with $q \geq 1$, we have

$$
N \geq(q+1)(q+2) r(S) \text { if } r(S) \geq 1
$$

and

$$
N \geq q^{2}+q+2 \text { if } r(S)=0 ;
$$

but the author does not know if these values are in fact the best.
For theorems of this type, the conditions that the sets A_{j} (or, more generally, their closures) be connected, and that the numbers $b_{0}\left\{\mathrm{Cl}\left[\mathrm{Co}\left(A_{j}\right)\right]\right\}$ be bounded, cannot be omitted. In $[4, \S 8]$ a theorem in a similar order of ideas was obtained for arbitrary connected sets in a unicoherent space; it can indeed be extended to the multicoherent case, but at the cost of requiring not only that certain intersections of the sets A_{j} be nonempty, but that they have sufficiently many components. For example, the theorem for three sets becomes:
(1) If A_{1}, A_{2}, A_{3}, are connected subsets of S such that $A_{1} \cap A_{2} \cap A_{3}=0$, and $b_{0}\left(A_{j} \cap A_{k}\right) \geq r(S)$ whenever $j \neq k$, then every two of the sets $\mathrm{Fr}\left(A_{j}\right)$ meet.

The proof of (1) is an easy consequence of [5, §7.2].
We finally remark that the present technique can be used to give a direct "elementary" proof of Theorem 1 , without using mappings in S^{1}. However, though the basic idea (showing that the sets have the same incidences as if S were a linear graph) is simple, a quite lengthy and tedious argument is needed to reduce the general theorem to the case in which the complements of the sets are of finite incidence; and the proof given in 2.2 above is considerably shorter.

References

1. S. Eilenberg, Sur les espaces multicohérents I, Fund. Math. 27(1936), 153-190.
2. _, Sur les espaces multicohérents II, Fund. Math. 29 (1937), 101-122.
3. E. Hewitt, A problem of set-theoretic topology, Duke Math. J. 10 (1943), 309-333.
4. A. H. Stone, Incidence relations in unicoherent spaces, Trans. Amer. Math. Soc. 65 (1949), 427-447.
5. 66 (1949), 389-406.
6. ___, Incidence relations in multicoherent spaces II, Canadian J. Math. 2 (1950), 461-480.

Manchester University

[^0]: ${ }^{1}$ As was remarked in $[5, \delta 6.6(3)]$, there would be no difficulty in reformulating the theorems so as to apply if complete normality were weakened to normality.

 Received January 10, 1951.
 Pacific J. Math. 2 (1952), 99-126

[^1]: ${ }^{2}$ That is, $A_{j}-A_{k}$ and $A_{k}-A_{j}$ are separated ($1 \leq j<k \leq n$). (Two sets are "separated" if neither meets the closure of the other.)

[^2]: ${ }^{3}$ Throughout this paper, "disjoint" means "pairwise disjoint".
 ${ }^{4}$ That is, the sets A_{j} and all their intersections A_{J} have only finitely many components.

[^3]: ${ }^{7}$ Note that we do not require every two sets A_{j}, A_{k} to cover S. In fact, if n nonempty closed sets are such that every two of them cover S, then trivially all of them have a common point.

[^4]: 9 It follows (see 5.6 below) that, in the case of finite equality, we have for each component E of $A \cup B$ that $\operatorname{Fr}(A \cap E) \cap \operatorname{Fr}(B \cap E)=0$. It is false, in general, that $\operatorname{Fr}(A) \cap \operatorname{Fr}(B)=0$.

[^5]: ${ }^{11} \mathrm{By}$ convention, $X_{0}=S$ and $X_{n+1}=0$.

[^6]: ${ }^{12}$ Condition (ii) need not hold for $p>m$.

