ON THE BARYCENTRIC HOMOMORPHISM
IN A SINGULAR COMPLEX

PavL V. REICHELDERFER

INTRODUCTION

0.1. Radé has introduced and studied the following approach to singular
homology theory (see [2;3;4] for details). With a general topological space X
associate a complex R = R(X) in the following manner. For integers p > 0, let
Vg, * + +, Up be a sequence of p + 1 points in Hilbert space E_, which are not
required to be distinct or linearly independent, and let |vg, « « + , vp| denote
their convex hull. Suppose that T is a continuous mapping from |vg, « + +, vp]
into X. Then the sequence vy, + -, v, jointly with T determines a p-cell in R,
which is denoted by (vg, « « « 5 vp, T)R. The free Abelian group Cg generated
by the p-cells in R is termed the group of integral p-chains in R. For integers
p <0, Cg is defined to be the group consisting of the zero element alone. The
boundary operator 35: Cg—’Cg_l is defined, in the usual manner, as the trivial
homomorphism if p < 0, and by the relation

p
al;(vo’ *tHUps T)R = z (‘l)p (vo’ crty air tty Upy T)R
i=0

if p > 0. Since 9%, a{} = 0, one introduces the subgroup Zg of p-cycles in Cg
and the subgroup Bg of p-boundaries in C§ in the customary way, and defines
the quotient group of Zg with respect to Bg to be the homology group Hg.

0.2. The approach to singular homology theory pursued by Radé differs from
other approaches in that absolutely no identifications are made. Thus two p-cells
(G + « + vy THR and 0§, -« -, vps T”)R are equal only if they are identi-
cal; that is, if v/ =v{ for i =0, ..., p and T'=T"” on [vgy + =+ 5 vp]
= |vgy + « +, vp|. In [3;4], Rad$ introduces a technique for making identi-
fications in a general Mayer complex and applies his procedure to study identi-
fications in R, particularly those which yield homology groups isomorphic to the
H§ . It is a primary purpose of the present paper to pursue the matter further in
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order to establish stronger results than those obtained by Radé.
The identification scheme of Rad$ for the complex R is briefly described in
$0.3 below; the reader should consult [3, $1] or [4, $5] for details.

0.3. Let {Gp} be a collection of subgroups G, of the group Cg of integral
p-chains in R such that 85 Gp C Gp-l for every integer p; such a system is
termed an identifier for R. Let (' be the quotient group of C? with respectto
Gp, and denote that element of Cp' to which a chain cg in Cg belongs by {cgi.
The restriction on the groups G, clearly implies that the element {85 cgl in
Cp-1 is independent of the choice of the representative cg of the element {c?}
in Cp; thus one may define homomorphisms dp': Cf'—Cpl; by the formula
ap {cg} = {a{f c{f}. The resulting system of groups Cy' together with the operator
dp constitutes a Mayer complex m with homology groups /. Define a natural
homomorphism pt Cg—)Cg by the formula p cg = {cg }. It is readily verified
that 7, is a chain mapping; hence it induces homomorphisms 74, : Hg——)H;,". If
for every integer p these homomorphisms are isomorphisms onto, then the identi-
fier {Gp} is termed unessential for R. Radé notes that a necessary and suf-
ficient condition in order that an identifier G, be unessential for R is that every
cycle zg in G, should be the boundary of some chain cgﬂ in Gpyq- (See [3,
§$1.3,1.4,1.5] or [4, §5.)

0.4. One of the principal results in this paper may now be described. Let
Bl;: Cg——)Cg be the barycentric homomorphism in R (see [3, §3.1] or [4, $6];
also $1.3), and denote by N(Bg) the nucleus of this homomorphism for every
integer p.

THEOREM. The system of nucleiN(,Bg) of the barycentric homomorphisms in

in R constitutes an unessential identifier for R (see $3.2).

This result is combined with those of Rad§ in [3] to obtain stronger theorems
concerning identifiers than any previously obtained. Since further definitions
are necessary before these results can be described, the reader is requested to

consult $3 for their statements.

0.5. In the process of proving the theorem above, various results of inde-
pendent interest have been attained. The reader is referred especially to $81.6,
1.7, 1.10, 2.2 for theorems which show the structural description of the barycen-

tric homomorphism and of the barycentric homotopy operator.
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I. FURTHER RELATIONS IN THE AUXILIARY COMPLEX K

1.1. As in Rad§ [3;4], the auxiliary complex K is the “formal complex”, in
the sense of [1], for the set E_ of points in Hilbert space. For integers p > 0,
p-cells in K are ordered sequences (vq, « + + , vp) of p+ 1 points in E_, which
are not required to be distinct or linearly independent. These p-cells are taken as
the base for a free Abelian group Cp, which is termed the group of finite integral
p-chains in K. For p < 0, the group C, is defined to be the group composed of
the zero element alone. (See [3, $2.1] or [4, $6].)

1.2. In K the following known homomorphisms will Pe used. (See [3, $2.2] or
(4, $6l.)

(i) For integers j, p such that 0 < j < p, Ap > 0, the homomorphism

jpt Cp—Cp-y

is defined by the relation jp(vp, + + +, vp) = (1) (vgy = = = Sj, s+, vp), where
the symbol * is placed over the point v; to indicate that v; is to be deleted. For
J =p = 0, j, is defined to be the trivial homomorphism. A homomorphism differ-
ing from this one only by the absence of the factor (~1)/ has been used by Rad$

in [2, §2.6]. The definition given above has been chosen because it permits
simplifications in later definitions and formulas.

(ii) For integers p > 0, the boundary operator
is defined by the formula
p . n
G (Worevvrtp) = 3 (<1 gy o vy Bjy v o vy 1p).
j=o
For integers p < 0, g, is defined to be the trivial homomorphism.

(iii) For integers p > 0 and an arbitrary point v in E_, the cone homo-
morphism hp: Cp—> Cp +, is defined by the relation

h;};(voa LI Y vp) = (-1)p+1 (v09 c ey ‘UP,‘U).
For integers p < 0, h;,) is defined to be the trivial homomorphism.

(iv) For integers j, p such that 0 < j < p -1, the transposition homo-
morphism tpj: Cp—> Cp is defined by the relation
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tpj(vo’ .o;,vj’ vj"'l’ ooo,vp) = (UO’ ...,v]-+l, 'Uj,...,vp),
Observe that tpj(vo, e, vp) = (vgy *+ ¢y vp) if and only if vj = vj+,.

(v) The barycentric homomorphism ﬁp : C — C_ is defined as follows.
For integers p < 0, Bp is the trivial homomorphism; for p = 0, 8, = 1; and
forp > 0, Bp is defined by the recursion formula

b
BP(’I)O, ey, vp) = ﬁp"l Bp'l ap(vo, e o vp),
where b is the barycenter of the points vg, - - -, vp.

.
(vi) The barycentric homotopy operator p, used by Radé [1; 3, $2.2 (iv);
4, $6] will not be used in this paper. In its stead, a modification p., is presently
introduced, which has a simpler form, satisfies all the important identities which
hold for the p,, and has useful properties not possessed by p,. The modified
barycentric homotopy operator

P*p: CP—’ Cp""l

is defined as follows. For integers p <0, p,, is the trivial homomorphism; for
p=0, py is defined by the relation

Pag (B0) = —he® (vg) = ()3
and for p > 0, Pap 1S defined by the recursion formula
Pap (Wos = o+ p) = —h{,’[l + prp -1 ] (vgs + =+ 5 1),
where b is the barycenter of the points vy, « + -, vp.

1.3. Amongst the preceding homomorphisms the following identities hold (see

2, §2; 3, $2.31):

|4
=3 Jp 2 0;

ji=o
ap"'lh;'*'h;“l 3p=1 (p>0);
% Bp=Bp-19p (- ©o<p<+w;
Bp tpj = =Bp O<j<p-1;

Op +1 p*p+p*P_lap=Bp—l 0<p<+w.
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Of these identities, only the last is new; it may be established by an inductive
reasoning similar to that used to prove the corresponding identity for the conven-

tional barycentric homotopy operator pp.
1.4. For integers k,p such that 0 < k& < p, the homomorphism

k*p : CP - CP

is defined by the relation
k*p(UO’ ooy, vp) = (_.-]_)P +k (‘I)O’ e, ’/;k’ eoey, vp,vk),
and the homomorphism
i Cp— L,

is defined by the formula y, = Zl}:.__o k+p. Obviously one has the identities

v,
k*p(vo, -o-,vp) =—kp+, hpk (g, --‘,vp), p >0,

bap (o5 ==+ 0p) = A% ky (s + <+, 1), p > 0.
Now the reader will easily verify the relations
k=Dip-y jp » 05 <k<p,
jp ksp = Y kxp-1G+1p , 05k <) <p,
kp y 0L kEZ<j=p;

G=Vp kep » 0< k<] <p,

kg -1 Jp =
PR p+Dep , 02 <k <p.

From these relations the following identity is readily established:
Yp-19% = % ()'p -D.
Using the identity, the reader will easily prove the following result.
LEMMA. If P (x) be any polynomial having integral coefficients, then
Plyp-1) dp = dp Py, = D).

Explicitly, if P(x) = z:,n___o aix’, where the a; are integers, then
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B et = B e b - id e vt].
where y;; means that the homomorphism y, is to be repeated i times.
1.5. For integers k,p such that 0 < £ < p, the homomorphism
bpk’ CP -— Cp 1
is defined by the relation
bpk(vs e+ v 5 vp) = (1)F [ug, « + oy gy Blvgy « « +, wp),
bgs *+ s VksWk 41)y + v 3 blgs o v oy v o+ o, ) |,

where b (vg, + + +, vg) is the barycenter of the points v, « « -, vy. Verification

of the following simple relations is left to the reader:

b(vgyees, )
_.hp 20 'Up (vo,...,vp) == bpp(vo,...,vp);
b(vgyese,vy)
_hp 0 p bp_lk(vo,o.o,vp_l) =bpkh;p_l (‘Uo’--o,’l)p—l)

OW<k<p-1;

b cee, .
—) (UOs vp)bp_lk ]p(vo,. ..’vp) = bpk]*p(vo,...,v)

0<k<p-1,02j20p);

b( s 0y )
—hp v Up bp—lk ap("’o, ey, vp)

bok yp (vos + =+ 5 vp)
0<Ek<p-1;

B0t ) T ep e e+ vy 5p) = bk v jap(tigs -5 0p)

O<k<p-1,0<j<p,121)

b(vg,eee,vy) ; i+1
—hp “o » bp_lkapy;(vo,---,vp)=bpk}'p (voy"'yb}:)

O0O<LEk<p-1,0<3).

If P (x) be any polynomial having integral coefficients, then, for 0 < £ < p-1,

we have

b eese,
'—hp(vo’ Up) bp-lk ap P(yp) (UO’ e ey, vp) = bpk Yp P(yp) (v09 ey ’Up).
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1.6. For the homomorphisms B8, and p4jsthe following structural descriptions
are now obtained.

THEOREM. The following relations hold:

Pxo = boo s

P
bop + X bpp-j¥p - lp i+l (@ > 0).
j=1

P*p

Proof. Itis sufficient to verify these formulas for a given p-cell (vgy,- - -, vp).
For p = 0, the formula psq(vy) = byo(vy) is obvious from the definitions. So

assume that
p-1
P*p -1 = bp“l p-1+ Z bp“lp"l‘i Yp-1°"* '(}’p-l-]""l) 2> D.
ji=1
Using $1.2, $1.4, $1.5, and this assumption, and letting b = b(vg, » ¢+ «, vp),
one obtains

Psp (”0’ sy ”o)

b b
._hp(vo, ey, vp) -—hp Pxp -1 ap(vo, oo, 'Up)

b
bpp(vo’-u.,vp) —hp bp—lp—l ap(vo,acc,vp)

p-1
b -

—z hP bp'lp“l‘j yP—l"'(YP'l'—]"'l) ap(vos'°"vp)

j=1

bPP(”O’ b '”p) + bpp'l yp(UOQ Sty vp)
p~1 b
_z hpbp—lp—l—]ap(yp—l)o-O(YP-—j) (vo’o..,up)

J=1

= bpp(vo, ..-,vp) + bpp -1 yp(vo, .o °9vp)

bpp-j ¥pp =D e e s Gp=j+1) (g, -+, vp)

M

+
j

2

P
=bpp+ 2bpp—j)‘/p--O('yp—-j-}-l)(vo,...,vp).
j=t
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So the proof is complete by induction.

1.7. THEOREM. The following relations hold:
Bo = 0y bgo>»
Bp

The proof is similar to that for the theorm in the preceding section.

0p+1 bpo YpOp =D ee-lp=-p+1,p>0.

1.8. From these formulas for 8, and Pxp and the identities in $1.3, many
further interesting relations may be obtained. For example, it is easy to establish
the following results:

Bp = [ap +1 = (P + ]-)p + 1] P*p (P _>.. O);
Bp

These relations are not needed for the present purposes; they may be studied

(P+Vp+1 (p+2p 4,5 pxp+1 prp (p 2 0).

on a later occasion.
In order to clarify the structural descriptions for Bp and psp given in $¢1.6,

1.7, it is convenient to introduce another homomorphism.

1.9. For integers p > 0, let iy, « - -, i, be any rearrangement of the se-
quence 0, « « +, p, and put €; ... i equal to +1 or to ~1 according as 5, « « + , ip
is obtained from 0, - - - , p by an even or by an odd number of transpositions.
With each rearrangement one associates a homomorphism

Tpt

p Cp—™Cp

defined by the formula
Tp(vov c ety vp) = Eio"'ip (vior AR ] vip)-

Sometimes, for clarity, the more explicit notation T, (igs + « * 5 ip) is used for
this homomorphism. For integers j such that 0 < j < p, denote by Tp; the class
of all T,(, + « +, ip) for which i, <+ .. <ij — that is, for which iq, + -+, i;
are in natural order. Obviously T,, consists of just one element, namely
Tp(0, « + «, p) = 1; and T, consists of the T, obtained by all possible re-
arrangements of 0, « - « , p. Moreover, T j—; D Tpj for 1 < j < p. Clearly the
number of elements in the class Tpjis (p+ 1) p -+ (j+2) for0 < ;j<p-1
For each integer j in 0 < j < p, define a homomorphism
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Pp]': Cp b CP
by the formula
Py = 2 T, (T, €T,

Observe that P,, = 1. The reader will readily verify these identities:

k*p ij=ij9 0_<_]<k_<_P,

j
Z k*p Pp] = ij"l’ 0 <j§p.
k=o0

From these identities, the following result is established.
LEmMmA. The following relations hold:

Ppp:l’

Pop-i= vplp=Develyp=j+1), 1<) <p.

Proof. That Pp, = 1 was noted above. From the second relation above it
follows that

P
Ppp-1 = kZ kxp Pop = ¥p Ppp = ¥p>»
=0

so the general formula is established for j = 1. Now suppose that

Pop-jt1 = vpp =1 ceelyp—j+2) (2<2j2p.

Using the preceding identities, one finds

P
Yo Pop-j+1 = Z ksp Ppp-j+y
k=o

p-itt p
kup Ppp-jtrt 3 kup Ppp-jey
k=0 k=p-j+2
=Ppp—j+ (-1 Ppp"j"’l;
Pop-j = (yp-fj+1) Pop-j+1 = vpGp=Deeelyp—j+ 1.

Thus the lemma is established.
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1.10. Combining the results of the preceding lemma with those in the theo-

ems in $§1.6, 1.7, one obtains the following description for the homomorphisms

Bp and p*p-

TaEoOREM. The following relations hold:

BP =0p+1bp0 PPO = z 0p+1bp0 Tp (p_>__0);
o € Tpo
p p
p*p = E bpk Ppk = z z bpk Tp (p Z 0)'
k=o k=0 7, €Ty

1.11. Let vgy+ + +, v, (p > 0) be any sequence of p + 1 points in £_. In
$$1.2, 1.4, 1.5, 1.9, homomorphisms Jps tojs kxps bpk’ Tps have been introduced
which, when applied in any appropriate combination A, to the special chain
(Vgsy =+ =y vp), yield a special chain either of the form +(yg, « « +, yq) or of the
form —(yo, « + +, y4). In the sequel, [A, (vg, + « -, vp)] is defined to be thep-cell
(yos =+ + 5 ¥g)s and |hp(vg, « « «, vp)| denotes its convex hull [yg, =+« ¥/ -

For example,
[0p +1 bpo Tplios =« oy ip) (g, + v oy vp)]
= (b(vio), b(vio, Uil) N b(v,-o, Vipy v s vip)).
If for two sequences of points ug, + + +, up and vy, « « -, vp it is true that
(BCug)y bCugs up)y « oy blugy ugy » » ¢, up))
= (b(vg), by, vy » s blvg, vy + « ¢ 5 vp))

then clearly u; = vj for 0 < j < p. From the remarks in $1.9 and the preceding

theorem, one thus obtains the following result.

LEMMA. If the points v, + « +, v, (p > 0) are distinct, then the c;hain
Bp (vgs = =+ s vp) contains (p + 1)! terms; that is, for distinct elements Tp and

T};’in Tpo» we have
[0p+1 bpo Tp’(vo, N vp)] # [OP +1 bpo Tp”(vo, e, vp)]'

1.12. LEMMA. Let vgy + + «, vp (p > 0) be any set of p + 1 points in E_,
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not necessarily distinct or linearly independent. A necessary and sufficient
condition that a point v belong to the convex hull of the points

(i) b(vg)y blvgyvy)s o v s blvgyvys** s vp)

is that it possess a representation of the form

P
(i1) v = Z 1Y)
] =0 ]

wi=Llypo 2 200 2 pp 20).

ll‘M"c

0

Proof. If v belongs to the convex hull of the points (i), then it has a repre-

sentation of the form

(iii)v=£ A Bvgy « + ¢ 40y Ep: Ai=1,0<Xx;,0<i<p
i=o i=o
Thus
P Loy P P i
v=i§0)\ijz=:oi+l=j§0 iz___:].i+1vi’

which gives a representation of form (ii) for v. Conversely, if v has a representa-
tion of form (ii), put ;= G+ 1) (uj=p;+y) for 0 < i <p=-1,A,=(p+1) pp,
It follows at once that v has a representation of form (iii), and hence belongs to

the convex hull of the set of points (i).

1.13. For integers p > 0, if ug, + + -, up is any sequence of p + 1 points in
Ew, then |ug, « « +, u, | will denote its convex hull. Let & be any integer such
that 0 < £ < p, and consider the sequence of p + 2 points

(i) uo’...uk’b(uo,o-.uk),.-.’b(uo’...’uk’-o-’up)’
that is (see §1.5), the sequence of points occurring in bpy (ug, + + + , up). Let
(i1) Woy * **» Wp+

be any rearrangement of the sequence of points (i). Designate by x, = wp, = u;;
the first u; (0 < i < k) occurring in the sequence (ii). In general, let x; = wy,
=u; (0 < 1 < k) be the (I + 1)st u; (0 < i < k) occurring in the sequence (ii),
and put x; = u; for k+1 < [ < p in case £ < p. Now clearly xp, - + -, xp isa
rearrangement of the sequence ug, « + +, up in which the last p — k& elements are

unaltered; the sequence (i) is a rearrangement of the sequence
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- (iii) xoy"‘yxk9b(x09“‘:xk)9"‘sb(xm""xka"'!xp)

in which the last p + 1 — k elements are unaltered; and the sequence (ii) is a re-
arrangement of the sequence (iii) in which the points x4, « - - , x5 appear in the
same order as in (iii); that is, x; =wp, for 0 < I < k, where 0 < hy < Ay
< +«..<hy < p. Now let g be any integer such that 0 < ¢ < p + 1. It will be
shown that

(IV) b(w09 ey wq) Clb(xo), b(xQ, xl), L Y b(x09x11 ¢ty xp)l
0 <g<p+D.

Case g=0. Then b(wy) =wy. If wy is one of the u; (0 < i < k), it follows
by the choice above that Ay =0 and w, =x, = b(x,). If wy is not one of the
u; (0 < i < k), there must be a [ > £ such that wy = b(ug, « « +, ugy « =+, up)

= b(xg, »+ 4 Xy + » » 5 x7). Thus relation (iv) is established when ¢ = 0.

General case. By a rearrangement, the points wg, « « + , w, may be ordered

into two sets

Why =Koy o " Why = %] (O< 1<k O0< hy <-e-<h <p),
whl +1 = b(uo, ooy, uk, e e, ull+1) = b(xo, o0y, xil+l)
whl+2 = b(uo, e« o o ’ uk, e o o ’ uil+2) = b(xo’ e o o 9 xil+2)

whq=b(u0""’uk7""uiq)=b(x0!""xiq)

(k < iger < iger <ove<ig < p).

The special cases which arise when one of these sets is missing are left to the

reader. Now clearly

blwgy =+ 5 wg) = blwpy, + v +p why)

l L1+
1 9 1 1 q 1
= Z 1+ Z X x]-+ Z X x]
j=o q+1 h=l+1 Iptl j=r+r 9T L paren G+
42 d
1 d 1 a 1 1
+ z Z Xj +eee+

%
; . Je
j =iy +1 g+1 574, i+l JRigg q+1 zq+1
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In view of this equation and of the lemma in $1.12, the relation (iv) now follows.

1.14. From the facts presented above, the following result is presently es-

tablished.

LEMMA. Let vgy -+, vp (p < 0) be any sequence of p + 1 points in E_,.
Fix Tp+i € Tp+1o(0 <k <p), Tp € Tpk (see $1.9). Then there exists a
T;, (S Tyo such that (see $1.11).

4

|0p+2 Bp+10 Tp+1 bpk Tp(vos <=+ vp)| C |04y bpo Tlvg, =+ v vp)|.

Proof. Evidently [Tp (vgy« « +, vp)] = (O vip), where igy ooy iy is
a rearrangement of 0, « « -, p such that iy <. .. <. Puty; = v for 0 < j<p,
so that [T, (vg, + + «, vp) ] = (g, + + + 5 up). Then

[bpk Tp(vo, e, vp)]
= (uo: vty Uk b(um e uk), cety b(u09 et glfy v ‘aup))’

©
and [Tp+1 bpg Tp(vgy » vy vp)] = (wg, + = oy wp+1), Where wg, « o, wp+1
is a rearrangement of

gy + s hy blugy + = v s uR)y v v oy Blugs = vy tihy ooy Up).
Finally,
[0p +2 bp+10 Tpr1 bpk TpWg =+ + 5 vp)]
= [b(wg), blwgywy)y « + oy blwg,wyye e, wp+1)].

The reasoning of $1.13 shows that there is a rearrangement x,, + « -, %p of

Ugs * * * 5 Upy and hence of vy, « -+, vp, such that
|0p42 bp+10 Tp+1 bpk Tplogs == o5 vp)]
C | b(xg)y blxgsxy)y = v vy bRgsxyy oe o5 %p)].

Let T, be that element of Tpo such that [T};(vo, ceey, vp)] = (xgy ¢ =+, xp).

Since
[Op +1 pr Tp,(vo, ey ’Up)] = (b(xo), b(xoyxl), ey b(xlvxl’ ¢y xp)),
the lemma is established.

1.15. If cp is a p-chain in K, and 4 is a convex subset in E_, then the in-
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clusion cp C A will mean that either cp = 0 € Cp or else

n
° = z mj o)y« 5 vpj),s
j=1

where the m; are nonzero integers and |vg;, «««, vp;| C 4 for 1 <j < n. One

readily verifies the following inclusions (see [3, $2.4]):

Jp (vgs s v vy vp) C Jvgy v, vp 0<j<p,
Wy ++ =y vp) C [vgy v v ey vp] o >0,
Bplvgs =+ s vp) C gy e vy vp| (p > 0),
prpvo, =+ oy vp) C fugy » e, vp| (> 0),
P T B D 0<j<p-1),
s hapgy e oy 0p) C lvgyeeyvp 0 <k<p),
Yp W + =y 0p) C |vgs e = vy vp] (> 0),
bpr(vgs ¢+ oy vp) C Jugy = vy vp] 0<%k <p),
Tp(vgy + ooy vp) C [wgyeve,vp] (TPCTPO),
ij(UO""!vp) C |v0,...,vp| 0<j<p.

II. ReLations IN THE CoMPLEX R = R(X).

2.1. If A is a convex subset of £_, then for integers p > 0, C;} denotes that
subgroup of C, generated by those p-cells (vg, « + «, vp) for which |vg, « « «, vp |
C A; for p <0, we have C{} =0 €& Cp (see §1.1). Suppose T: A—X is a con-
tinuous mapping (see $0.1). For integers p > 0 define a homomorphism

. rA R
Tp: Cp — Cp
by the relation T, (vg, «++ 5 vp) = (vgy =+« vp, TR for (vgy « -+, vp) € Cﬁ.
For p <0, let Tp be the trivial homomorphism. For chains p in C}“,1 the notation
Tp cp = (c,, T)R is used. In terms of this notation one finds the relation (see
§0.1): 9f (e DR = 3, ¢y DR

Now suppose that, for certain integers p,
hp: Cp — Cy

is a homomorphism from the group C, of p-chains into the group C, of g-chains
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in K with the property that for all p-cells (v, + + +, vp) in K one has

.

hp(vo""va) C l'l’o,‘",vp

Then clearly one may define for these integers p a homomorphism
R, R R
hy: C;—C q

by the formula hg (vos *++ 5 Vps Nk - (hp (vgs =+ + 5 vp)s T)R in case p > 0, and
one may make hf the trivial homomorphism if p < 0. In view of the inclusions in

$1.15, one observes that this definition creates the following homomorphisms in

R (see[3, $3.1]):

iy Cp—Ca_y (02 < p);
R. R R o < < . R, CcR R > .
BR: Cp—)Cp (~0 < p <+ ®; Yp Cp—>Cp (p > 0);

R . R. CR R .
PR CR—Cpyy Fo<p<wa;  bL: CE—CL (0 <k <p);

R . R R < ;i < _ . R . R R .

tyit Cp——)Cp_l(O_]_p 1); IP.CP—)CP (TPCTPO),
R, CR R < i<
ij. Cp-—)Cp 0<j<p.

2.2. From the relations in $1.3, one derives the following (see [3, $3.1]):

R sR _ QR R e < .
apﬁ Bp'lap (m p<+m),
Bﬁ p1=’B§ 0<Lj<p-1);
3§+1p*’§, +P§p-13§=/3§—1 (0<p <+ .

The theorems in §§1.6, 1,7 give rise to these formulas for Bg and pfp:

R _
P ‘boo’
R _ . )
Psp = + z bpp-j Ypr© s lrp =i+ 1) (p > 0);
R _ oR pR .
Bo _0 boo’

BR = OF, B RGR -, R -p D) (>0

From the theorem in §1.10, one obtains the following description for BP and pfp.
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THEOREM. The following relations hold:

|

R _ aR R pR _ R R ~R )
Bp = S +1 Bpo Pro = ;‘:T % +1 b0 Tp (b 2 0
Tp po

P P

R R R
TP = X X bpr T, 020
K=o k=0 7y € Ty

R
p*p

2.3. The writer is indebted to T.Radé for suggestions which led to the
results presently presented in §$$2.3-2.7, 2.9, 2.10, 2,12. The new facts con-
tributed by this paper are contained in §$2.8, 2.11, 2.13. For integers p > 1,
any chain of the form (1 + tgj) (vgy *o+ Ups TYR( < j< p-1) is termed an
elementary t-chain in R (see [3, $3.2] or [4, $7]), and the subgroup of C;{ gener-
ated by these elementary t-chains is denoted by TX. For p < 1, TII: is defined
to be the subgroup of CI; composed of the zero element alone.

LEMMA. If cg € T;}, then

() of eX € TH_,

(ii) 3§ c;} = 0,

(iii) pf; cg € T§+1.

This lemma differs from that in Rad§ [3, $3.2], only by the fact that the

barycentric homotopy operator pI; has been replaced by the modified operator pfp

(see $1.2). It may be established by the same reasoning as that employed by
Radé.

2.4. For integers p > 1, any chain of the form
R
(voy"”vj9vj+1y"‘,vpa T)

with v; = v; 4 for some j such that 0 <j < p-1is called an elementary d-chain
in R (see [3, $3.3] or [4, $71), and the subgroup of Cg generated by these ele-
mentary d-chains is denoted by D;}f‘ Forp <1, Dg is defined to be that subgroup
of Cg composed of the zero element alone.

LEMMA. [f cg € Dg, then
.\ R R R
(1) 8p cp € Dp"l’

(ii) 3"; cg =0,
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v R R R
(iii) Pxp p ( DP+1'

This is the lemma in [3, $3.3], except that the modified barycentric homotopy
operator pfp is used in place of pg; it is proved in the same way.

2.5. LEMMA. Let (vgy ++ * Ups TR pe any p-cell in R (p > 1).Suppose that
the sequence wq, * « +, wy is obtainable from the sequence vg, « -« -+, vp by n

transpositions. Then there is an element t}}f in TIIS such that
R R R
(UO""’vva) =("1)n(w0,°",wp,T) +tp.

Proof. By assumption there exist n + 1 sequences vgj, « « +,vp; for 0<j<n

where v;, = v; and v;, = w; for 0 < i < p such that
(”oj, e ey Upjs Nk - tﬁi,- (Vg j=1s * * * » Up j=1s TR
for some integer i; satisfying0 < i; < p~-1,1 < j < n. Clearly
(vgs * + + 5 Vps R = (D" (woy* e, wp, T)R

+

(- l)j—l a+ tgij) (Uo jm1e * s Upj-1y T)R ’
j

1

u M=

and the lemma is established.

2.6. LEmMMA. Let (vgy » + + vp, T)R be any p-cell in R (p > 1), for which
v; = v for some i,k such that 0 < i < k < p. Then there are elements tg in
Tg and a'g in Dg such that

R R R
(vo,n-,vp, Nt = tp +dp.

Moreover, 2(vgy + + « Ups TR is in T[’f .

Proof. Since the sequence vy, « « + 5 Vi1, Uy Vi * = =5 Vpgs Vpyrs * * * 5 Up
is obtained from wp, «c ¢, Vi 000, vy 00, vp by k~i transpositions, and
v; = v by assumption, if follows that

- R
(--].)k P vgs c 0y i1y Upo Upp * * s Up_ys Upypr *° % vp)

is an element dg of DR, Moreover, from the lemma in $2.5 it follows that there
is an element tg in Tg such that (vg, « « «, vp, R = d’; + t’;, and the first part
of the lemma is proven. Now the sequence vgy =<+, vy, ¢+ +, Vjy**+, VUp IS

obtained from wg, ++ s, vy vy vy, v 00, v by 206 - i) — 1 transpositions.
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Again, from the lemma in $2.5 it follows that there is an element tg in T’; such
that

R R R
(vo,..-’ui,-.o’vk,--o,vp’ T) =—(vo’...,vk,-..’vi,...,vp, T) +tP'

Since v; = v,, one obtains 2(vg, « + +, vp, Nk - tg; and the second part of the
lemma is demonstrated.

2.7. For integers p > 0, a chain cg is termed an elementary n-chain in R if
it has the form

n

CR = z mr(vo’ LRI vP’ TI')R ,
r=1

where
(i) for1 < r < n, the m; are nonzero integers;

(ii) for1 < r; < r, < n, the transformations T, and T, are not identical

on |vgy * =+, vp |3

(iii) the points vg, « « «, vp are distinct. The p-cell (vgy + =+ vp) in K (see
§1.11) is called the base for cg, and the notation cg = cg (vgy * = vp) is
used when it is desirable to display the base.

2.8. LEMMA. Suppose that cg is an elementary n-chain in R for which

R R _ R R R _
Bp cp "O'Thean+lp*p cp = 0.

Proof. With the notation of $2.7, one finds (see $$2.1, 2.2).

n
(i) ‘85 Cg = z z mr(0p+1 pr TP(‘UO, LI Y ‘Up)’ Tr)R = 0;
Tp € Tpo r=1

P n

(i) Bgn Pﬁp cp = ) )2 2 2 s bpyg

To+1 € Tp+10 k=0 7, € Tpp T =1
Tp+1 bpk Tp(vgy +ov s ), THR.
In view of $2.7 (iii), and §1.11, it follows from (i) that for each T{, (S Tpos

one has

n

(i) X mr0p+y bpo Tplvg, +ovy vp)y THR =0 (15 €Ty,

r=1
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Fix
TP+1€TP+10’ TPCTpk (OS'I‘?SP)'
From the lemma in $1.14 follows the existence of a Tp € Tpo such that
(iv) |0p+2 bp+1o Tp+1 bpk Tp(UO’ seey, Up)l
Cl0p+1 bpo Tplvg, eoey vp)].
From (iii) and (iv) one concludes that for each
Tp+1 € Thwros Tp € Tpp 0<k<p),
we have
n
™) z mr (0P+2sbP"’10 Tp+1 bpk Tp(v()’ ct vp)’ T)R = 0.
re1
In view of (ii) and (v) the lemma is now established.

2.9. For integers p > 0, the class Ng is defined to be that subset of Cg
composed of the chain 0 € Cg and of all CI; having a representation of the form

R
. Cps (Voss *++ vps)

[y}

T X
]
skl

where

(i) forl < s < nthe cgs (voss « + + 5 vps) are elementary n-chains (see 2.7);

(ii) for 1 <s; < s, < n, the point sets Vosys *** s Upsy and Vos,s =" s Ups,
are distinct. For p < 0, the class N;} consists of the chain 0 € Cf} alone.
Each of the elementary n-chains c;}s (voss »**» vps) (1 <s <n), is termed a

n-composant of cg. Observe that the sets N:f are not generally subgroups of
R
Cp.

2.10. LEMMA. Let

n

R R

ep = > Cps (vosy *++ 5 Vps)
s=1

be any nonzero element in Ng. A necessary and sufficient condition in order that
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B[’f R < 0is that BR

R
P ps = 0 for every n-composant Cps (1 <s <n).

Proof. Trivially the condition suffices. It is presently shown to be neces-
sary. With explicit notations (see $$2.7, 2.9),

s

n n
Bycpg = X BYelo= T X ms(B,(vgs ooe s vps) Tro)"
= s =1

]
M =

Z E Mrs (Op +1 bpo p (voss *=+ s Vps), Trs)R =0.

In view of $2.9 (ii) and of the remarks in $1.11, it is clear (see $0.2) that, for

1 <s < n we have

p ps = Z Z mrs(op +1 bpo Tp (vOS’ R ) Ups), Trs)R =
=1 Tp € Tpo

and hence the assertion in the lemma is verified.

2.11. LEMMA. Let cg be any element in Ng for which BI; cg = 0. Then
R
Bp +1 p*p p =0

This result is an immediate consequence of the lemmas in $892.8, 2.10.

2.12. LEMMA. Every chain cg has a representation of the form (see $$2.3,
2.4, 2.9)

R _ ,R R R R R R R R R
cp —tp +dp +n, (tPCTP, dPCDp, anNP).

Generally this representation is not unique.

Proof. The nonuniqueness of the representation will be evident from the
proof of its existence which follows. For chains cg =0€ Cg, the result is

trivial, so assume that c[’f # 0. Then clg has a unique representation of the form

n

(1) cg = Z m]'(voj’ *** s Upjs Tj)R,

j=1

where the m; are nonzero integers and the p-cells (vojl, “te s Vpjips Tj‘)R and
(Vojye ** s Upjys sz)R are distinct for 1 < j; < j, < n. The proof is made by

an induction on n. If n = 1, then cl; =my(voys =+ s Vprs T,)R. I, for some inte-
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gers i, k such that 0 < i < k£ < p, one finds v;; = v, then the fact that cg
has a representation of the prescribed form follows from the lemma in $2.6. On
the other hand, if all the vg,, +++, vp, are distinct, then cg is an elementary
n-chain (see $2.7). Thus the lemma is established in case n = 1. Suppose that
the lemma is true for all chains 05 having a representation of the form (i) with at
mostn = N — 1 terms (N > 1). For chains c;f whose representations (i) have N
terms it is convenient to consider several cases.

Case 1. Assume there is some term in the representation (i) of cg—- without
loss of generality one may assume it to be the first — for which there are inte-
gers i, k such that 0 < i < k < p and v;y = v . By the lemma in $2.6 there

are elements tgl in Tg and dgl in Dg such that

TR = R L gR

m‘(UOI’ .-.,vpt, 1 p1 pi.

By assumption there are elements tgz in Tg, d;;"g in Dﬁ, and ng in N{} such that

N

(v .y ees L TI)R - 4R R R
.;2 migps e s v TYW = 1p, 4 dy + np
e

Thus

R _ (,R R R R R
cp =ty + tpz) +(dy, + d)) + oy,
and since Tg and Dg are subgroups of C;}, the existence of a representation of
the prescribed form for cg follows in Case 1.
Case 2. Assume that for each j (1 < j < N) the vyjy«++, v); are distinct.

By rearranging terms one may obtain from (i) a representation of the form

m ns m
(ii) Cg = Z Z mrs (Vosy =+ * s Upss Trs)R, Z ns =N,
s=1r=1 s =1

satisfying these conditions: none of the m,s is zero; for the same s (1 <s < m),
1 <r; <ry Z ng, jge mappings Tr s and T;,s are not identical on |v,s,
seeyvps|s for 1 <5y < sy < m, the p-cells (vos, -, Vps,) and (vos,,
oo, vpsz) are distinct in K (see $1.1). Now for each s (1 < s £ m) clearly
each of the chains

ns

R = LR R
cps - Z mrs(vos’ * Ups? Trs)

]' =
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is an elementary n-chain in R (see $2.7). The proof is carried forth by an in-
ductive reasoning on m. If m = 1 then cg is an elementary n-chain in R, and the
representation (ii) already has the prescribed form. So assume that cﬁ, whose
representation (i) has at most N terms, has a representation of the prescribed
form whenever its representation (ii) has at most m = ¥ ~ 1 terms (M > 1).
Suppose now that Cg is a chain whose representation (i) has N terms while its

representation (ii) has M terms

M
S n =N
s =1

Subcase 2.1. Assume that for 1 < s, <s, < M the point sets vos, -+, Ups,
and Vgsys *** s Ups, are distinct. From $2.9 it is clear that cg is itself an ele-
ment in Ng and representation (ii) has the prescribed form.

Subcase 2.2. Assume that there are distinct integers s — with no loss of
generality one may assume these to be s =1 and s = 2 — such that the sets
Voys *tt s Upy and vgg,y oo, vp, are the same. It follows that the sequence
Vggs *** s Upy is obtainable from vgy, +++, vy by a positive number [ of trans-
positions. lience by the lemma in $2.5 there exists for each r in 1 <r < n, an

element tg, in TI; such that

R
(vol, *te s Upts Trl)R = (- 1)1 (1)029 *tc s Upos Trl)R + Ipr (1 <r< nl).
Since Tg is a subgroup of Cg, the chain
™
R
2 mpy ek
r=1
. R . R
is an element ¢« in 7. Consequently,
”1
R _ R ! .. R
N X D m (g, Yp2? r.p
r=1

2

Clearly the terms in square brackets may be rearranged into the form (ii) with
an integer m < M ~ 1, and their representation in form (i) has an integer n < N.

By the inductive assumption there are elements tg# in Tg‘, dg, in Dg and ng in
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N}; such that cg = (Lg* + tg#) + dg + ng, and the existence of a representation

R

of the prescribed form for ¢, now follows in Case 2. Indeed, it is obvious in this

case that dy = 0 € Cg. So the lemma is completely established.
2.13. LEmma. If cg is\any chain in CR for which Bg c;f = 0, then
R
BP +1 p*p p
The proof follows at once from the lemmas in $$2.3, 2.4, 2.11, 2.12.

R ~o.

REsuLTSs

3.1. In[3, $4.1] (see also [4, $8]) Rad4 has established a lemma from which
one derives the following statement by replacing the barycentric homotopy oper-

ator p by the modified barycentric homotopy operator pR (see §$1.2, 2.1).

LEMMA. Let {Gp} be an identifier for R (see $0.3) such that the following

conditions hold:
(i) CS € C implies that BR cR = 0;
(i1) cg (= G implies thatp*p P €6 pt1
Then {Gp} is unessential.

3.2. For each integer p let N(BR) be the nucleus of the homomorphism
BR CR CR (see $2.1). Since 8 is a chain mapping (see §2.2) it is clear
that the nuclel N(B ) constitute an 1dent1f1er for R (see $0.3). Now in view of
the lemma in $2.13, conditions (i) and (ii) of the lemma above are clearly ful-
filled for the identifier {N(BIIS)}, and furthermore, this choice of an identifier
yields the maximum amount of information that may be obtained from that lemma.
Thus the { N(BR) constitute an unessential identifier for R, and one of the
main results is now established (see $0.4). It is summarized in the following

statement.

THE OREM. The system of nuclei N(BR) of the barycentric homomorphisms
y b ¥ p

B§: CS——)C;S constitutes an unessential identifier for R.

3.3. In order to compare this result with those in Radé [3; 4], first observe
that it follows from the lemmas in $$2.3, 2.4 that

N(By) > T§ + DX (-w<p<+c.

Moreover, since Clg is a free group, it is clear that the division hull of N(,Bg)
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must be identical with the group N(BR) Thus the group N(B ) also contains the
the division hull of the group TR DR for all integers p. An example is now
given to show that the group N (ﬁp) generally contains more.

3.4. Denote by dg, d,, d the points (1, 0, 0, --.), (0, 1, 0, 0, +++), (1/2,
1/2, 0, 0, «++) respectively, let X be Euclidean x-space, and define transforma-

tions by the following relations:

T):x=vy -—1/2 (v € |dy,dy ]);
[O (Ueldoyd ‘)a
T,: x =
vy — 1/2 w€|d,d |);
[v0—1/2 (v € |dy,d |);
T3: x =
0 (v €1d ,dy]);
T,ix =0 (v € |do, dy |).

Clearly
le = (doy dly Tl)R - (doy dly TZ)R - (do9 dn T3)R + (do’ dl, T4)R

belongs to CR and BF ¢® = 0. Moreover, c¥ is an elementary n-chain (see

§$2.7). An elementary reasoning shows that it cannot belong to the division hull
for the group TR + DR,

3.5. In order to describe the largest unessential identifier for R obtained by
Rad$, a further definition is needed. For integers p > 0, let (vg, -+, Vps T)R
be any p-cell in R (see §0.1). Let Woy * =+ 5 Wp be any set sequence of p + 1

linearly independent points in E.. Then there is a linear mapping
% |woy oy wpl —> |vgs oee Up .
such that &« (w;) = v; for 0 < i < p. The p-chain
CI; = ('on *tt s Upy T)R - (woy ccc s Wps T(X)R
is termed an elementary a-chain in R (see [3, $3.4]1), and the subgroup of Cg
generated by the elementary a-chains is denoted by Ag. Forp < 0, Ag consists

of the zero element alone. In [3, $3.4] Rad has a simple characterization for

the group Ag which he uses to define the group in [4, $7].

3.6. For each integer p, put FR AR + DR + TR (see $$2.3, 2.4, 3.5),
and let F denote the division hull of FR Then Rado shows that {FR} is an
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unessential identifier in R (see [3, $4.7] or [4, $9] ), and this is his best result.
If one sets Ag + N(BP) (see $3. 2) and lets A denote the division hull
of Al’f, then clearly Ag P F , and hence AR D) F . If one modifies the reasoning
of Radé in [3, $4] by replacmg the barycentrlc homotopy operator pg by the
modified barycentric homotopy operator p,’fp (see §2.1), one finds that 35 is an

unessential identifier for R. Thus one obtains the following result.

THEOREM. If Ap is the division hull of the group A + N(Bg) then the

system {A } is an unessential identifier for R.
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