
THEOREMS ON GENERALIZED DEDEKIND SUMS

T. M. APOSTOL

1. Introduction. Generalized Dedekind sums sp (λ,&), defined by

were introduced by the author [l]. The integers h and k are assumed relatively

prime, Bp(x) is the p-th Bernoulli function, Bp (x) the p-th Bernoulli polynomial

(for definitions see [l;(2.11), (2.12)]), and [x] is the greatest integer <̂  x. For

even values of the integer p the sums (1) are trivial (see [l; (4.13)1) and we

assume in what follows that p is odd. These sums enjoy a reciprocity law, name-

(p + 1) (hkP sp (h9k) + khP sp

(2)
P + * IP + i\

i + Σ (-D S Bs Bp+is hs

s = o * s /

The B's being Bernoulli numbers*. An arithmetic proof of (2) is given in [l] by a

method closely related to a general summation technique recently developed by

Mordell [5]. When p = 1, the sums

k-i

(3) s^Kk) = Σ T
hμ \hμλ l \

are known as Dedekind sums and are usually denoted by s {h,k). Aside from be-

ing of interest from an arithmetical standpoint, these sums also occur in the

asymptotic theory of partitions and have been studied in a large number of papers,

for example [l],[3], [5], [6], [7], [8], [9], [10], and [ l l ] .

In this paper we establish a connection between the sums (1) and certain

finite sums involving Hurwitz zeta functions which makes it possible to give a

short analytic proof of (2).

When p > 1, the factor (— l)s may be suppressed in the summand in (2) because the
terms corresponding to odd values of s vanish.
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2 The Hurwitz zeta function and Dedekind sums. The Hurwitz zeta function

ζ(s,a) is defined for 5ft (s) > 1 and a ^ 0, - 1 , -2, , by the series

n = 0

and its relation to sp (h,k) is given in the following theorem.

THEOREM 1. For odd p > 1 we have

(4) sp{h,k) = i p! {2

while for p = 1 w e /tαt e ί/ie ίw o equivalent expressions

1 / b " 1 7rΛμ rμ

(5) ' ( M ) ^ Σ ^ 0 1 — » t T

-1 * ~ ι πhμ Γ'(μ/lc)
,6) S ( M ) . _ ^ c o , _ _ _

Formula (5) is due to Rademacher [8], who derived it from the Fourier series

expansion of (3). We will give here a purely arithmetic proof of (5) based on

finite rather than infinite Fourier series. Secondly, we establish the equivalence

of (5) and (6) and then prove (4). Finally, we indicate how (5) and (6) can be

thought of as limiting cases of (4).

Proof of (5): The function Bί (x) is given by

x - [x] - 1/2 if x Φ integer,

I 0 otherwise.

Therefore, by formula (2.5) of [lθ] we may write

(7) s{h,k) = £ Bι(μ./k)Bι{hμ/k).

μ mod k

From Eisenstein's finite Fourier series expansion [4; p. 318] we have
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2πh— . , / f . 1 _
(8) Bx{hμ/k) = - — ^ s i n Γ !

2k v = ι k k

Using (8) in each factor of the summand in (7), we obtain

1 * ~ ι k ~ ι πv πλ ^ / 2irμ(λ-ι/Λ)

(9) s(h,k)~ ]Γ Σ c o t c o t Σ C 0 S

Sk2 λ=ι v = i k k μ mod & \ *
_ cos

because of the identity 2 sin x sin y = cos(x - y) - cos(x + y). Since we have

2πμ(λ±vh) [k i i λ t v h = 0 (mod &),
jcos

±vh) [k i i λ t v h = 0
= j

l 0 otherwise,

for each fixed v only one value of λ gives a nonzero contribution to each sum in

the second member of (9), namely λ = vh (mod k) in the first sum and λ = — vh

(mod k) in the second. Therefore we have

1 k~1 πv πhv 1 * ~ ι πv -πhv
syh.k) = — > cot cot > cot cot ,

8* v t Ί k k 8k ^ * *

and this is the same as (5).

Proof that (5) and (6) are equivalent: The relation [2; p. 163]

, ; n πμ
- _ y _ log A: - — cot

Γ (μ/4) Y * 2 k

(10)

V 2 7 Γ Λ μ 1 /o o
+ 2 L C O S — — l ° g 2 - 2 c o s

n<_k/2 k \ k I

where y is Euler's constant and the prime indicates that when k is even the last

term is to be multiplied by 1/2, is due to Gauss. Multiplying both sides of (10)

by cot (πhμ/ k) and summing on μ shows the equivalence of (5) and (6) upon

observing that we have
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(11) Σ

whenever / is an odd function of μ which is also periodic mod k.

Proof of (4): Formula (4.11) of [l] gives a representation of sp (h,k) as an

infinite series which, with some simplification, can be written in the form

oo L

^^ nπh
sp(h,k)~i p ! (2πiΓP Σ n~P c o t — — .

π = i k

n ~^o (mod k)

Writing n = qk + μ, with <? = 0, 1, 2, » , °°, and μ = 1, 2, , k - 1, we

obtain

& - 1 00 ^

sp(h,k) = i p\ (2πi)-P Σ Σ ^
μ= 1 9=0

where we must assume p > 1 in order to insure that the series involved should

be absolutely convergent and the rearrangements valid. This proves (4). We can-

not hope for a proof of (4) along the lines of our proof of (5) because of the non-

elementary nature of ζ {s,a).

If in (4) we replace p ! by Γ(p- f l ) and let p be a complex variable which

tends to 1, then we can show that the two expressions for s (h,k) in (5) and (6)

occur naturally as limiting cases of the right member of (4). We first observe

that, although the function ζ(s,a) has a pole at s = 1, the sum

k~l πhμ
(12) Σ to*-— ζ(s,μ/k)

is regular at s •= 1. This is easily seen by using the expansion

1 Γ'(α)
ζ(s,a)= - — — + 0 ( ^ - 1 ) ( a s s — > 1 )

s - 1 Γ(α)

obtained from Whittaker and Watson [12; p. 271], substituting in (12) and using

(11) to obtain
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i "v 1 , nhfl r ( m *v' πhμ Γ'{fl/k)

£ • « — ί ( / 4 ) £ t

which shows that the right member of (4) tends to the right member of (6) as

P - > 1 .

The connection between (5) and (4) can be obtained by using Hurwitz's

functional equation in the form given by Rademacher [6; (1.24)], namely:

ζ{s,μ/k) = 2Γ(1 - s) (2πk)s~ι £ (cos — sin
2

sin
2 k

πs

8 i n _ C 0 S2 k I " \ ky
this being valid for s *= 1, 1 <_ μ <_ λ Multiplying by cot (πhμ/k), summing on

μ and using (11) leads to

k~ι πhμ
Σ cot — — ζ (s,μ/k)

(13)

= 2 Γ (1 — s)(2πk)s 1 cos 2l c °t s^n C (1 "~ 5> λ/k)
2 λ,μ=l *. *

Since ζ (0,α) = 1/2 - o, when s tends to 1 the right member of (13) approaches

the value

1 * " 1 k~ι πhμ 2πλμ

— 2, 2̂  c o t "
^ λ = l μ=l

1 λ
' sin

- 1 k~ι πhμ k~1 . 2πλμ
= > cot > λ sin

2 k 2

 μ = χ k λ ! *

because of (11). Noticing that the last sum on λ is the imaginary part of the sum

™^k ) ( / A )Σ ™^k - 1) = - — cot ( f f μ /)
λ= l 2 2
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we see that the right member of (4) also tends to the right member of (5) when

P - > 1 .

3. Proof of the reciprocity law. We can now give a proof of the reciprocity

law (2) using complex integration. This proof is of additional interest in that

we use properties of ζ (s,a) for fixed s and variable α. We will need the follow-

ing facts about ζ (s, a) :

(14) ζ(s,a) = ζ(s9a + 1) + a~s ,

(15) ζ ( s , a + 1 ) = ζ ( s ) - s ζ ( s + 1 ) a + 0 ( a 2 ) a s a — > 0 ,

(16) /or 0 £ 5R (α) £ M, (M fixed), ζ (s,a) tends uniformly to 0 as 3 (α)—>

+_ °°. ( ΓAe uniformity is with respect to K(α)).

Equation (14) follows at once from the definition of ζ (s9a) and (15) is merely

the beginning of the Taylor series for ζ(s,a + 1) near a = 0. Here ζ (s) =

£ ( s , l ) is Riemann's zeta function. Relation (16) can be readily obtained, for

example, by applying the Riemann-Lebesgue theorem to the integral representa-

tion [2; p. 266]:

Γ(s)ζ(s,a)=f°

valid for 31 (s) > 1 and 5R (α) > 0. This gives (16) for 0 < SI (α) £ A/ and (14)

proves it for 0 £ 3t (α) £ Af.

Because of (4), the reciprocity formula (2) can now be put into the following

form:

THEOREM 2. For odd p > l we have

i{p + 1) !

(17)

* " 1 πhn h~ι

h Σ cot—^ί(p,μ/A) + * Σ cot
μ = l

S = 0

Proof. We apply Cauchy's residue theorem to the function

f(z) = cot πz cot (πhz/k) ζ{p,z/k),
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Integrating in the positive sense around a contour C consisting of a rectangle

whose vertices are the points ± iT, k + iT, with small semi-circular detours

Co and Cjs around the points 2 = 0, z = k, traversed along the arcs z = e e

and z = k + e eiθ, respectively, where π/2 <_ θ <. 3ττ/2, and 0 < e < I/A.

Ultimately, e will tend to 0 and T > 1/2 will tend to oo. The integrand f(z)

has first order poles at the points z = 1, 2, » , k - 1 due to the factor cot πz,

and at the points z = k/h, 2k/h, ^ , (h - 1) A /λ because of the factor

cot (πhz/k). By (14) we have

so that the point 2 = 0 is a pole of order p + 2 for /(z). Using the power series

expansion

- (2πi)n Bn

(18) πz cot 7rz = X z "
!

in the neighborhood of z = 0 (with the understanding that Bί should be replaced

by 0), and (15) with a = z/k we find that Cauchy's theorem gives us

1 _ 1 * " 1 rrhn

(19)

π

k h~ι

 πkv
Σ cot-— ζ(p,v/h) -

h
πh v^i n π2h

where

Ro = Res cot πz cot (πhz/k) (k/z)p .
z =0

We now observe that by periodicity of the cotangent and by (14), the contribu-

tion to the integral from the part of C consisting of vertical line segments is

l-fτiβ + G ] cot πz cot (πhz/k) {k/z)P dz'
and this vanishes since the integrand is an odd function of z. Next, the integrals

along the horizontal segments tend to zero as T—» oo since, for 0 j£ x j£ k we

have cot π(x + iy)—•> + i and, by (16), ζ (p, (x + iy)/k) tends to 0 uniformly
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in x as y —» + °°. Finally, combining the integrals over Co and C& by means of

(14) and letting T—> oo we obtain

lim f f(z) dz = f cot πz cot (πhz/k) (k/z)P dz.

When 6 —> 0 we find

lim f = 77i β 0

6 -o c o

so that equation (19) leads to the result

Y k~ι _ j . . . L Λ - i

~ Σ co

(20)

From (18) we easily calculate that

2t (2?τOp p + l (p

and, since we have

C(P + l ) = -

equation (20) yields (17) and the proof is complete.

In [8], Rademacher gives a proof for the case p = 1 using (5) instead of (4).

Apparently unaware of [δ], K. Iseki [3] has given a proof very much like

Rademacher's analytic proof for the case p — 1 in a recent paper.
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