LEFT CENTRALIZERS AND ISOMORPHISMS
OF GROUP ALGEBRAS

J. G. VENDEL

1. Introduction. Let G be a locally compact group with right invariant Haar
measure m and real or complex group algebra L (G)'. A bounded linear trans-
formation 4 of L (G) to itself which commutes with all of the operations of left
multiplication is called a left centralizer. Examples of transformations 4 which

satisfy the defining equation 4 (xy) = x Ay, all x, y € L(G), include
(i) right multiplications: Ax = xz for some fixed z € L (G);

(i1) right translations: 4 = Rg = the operation of translation on the right
0

by some fixed g, € G; and

(i) convolutions with measures: Ax = x % u, where y is a countably addi-

tive set function of bounded variation defined on the Borel sets of G, and

x % u is defined by

(x * p) (g) = fx(gh™) ndh), g E€G.

It is clear that (i) and (ii) are special cases of (iii); thus, given z € L (G) we
may define the appropriate p by p(E) = j; z(g) m(dg), while for an assigned
8, € G the corresponding measure is defined by p(E) = 0 or 1 according as E

does not or does contain g(;'l.

The principal result (Theorem 1) of Part I states that, conversely, every left
centralizer is a convolution with a regular measure. Important auxiliary theorems
(3 and 4) furnish a characterization of the right translations (up to scalar factors
of unit modulus), and show that in the strong operator topology any left centra-

lizer may be approximated by a finite linear combination of right translations.

In Part II these results are applied to obtain a generalization of a theorem

proved in [5]. We showed there that if T is an isometric isomorphism of (real,

lWe are using the notation and terminology of [S]. In particular, for elements x and
y of L (G) the symbol xy denotes the usual convolution-product.
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complex) L (G) onto the (real, complex) algebra L(G’) belonging to a second
locally compact group G” with right invariant Haar measure m’, then there exists
a topological isomorphism T of G upon G’ and a continuous character y such that

T is given by

*) x’(g")

m

(Tx) (tg) = cx(g) x(g),

for each x € L (G) and almost all g €6, ¢ being a measure-adjusting constant.?
In the present paper we obtain the existence of T and the validity of (*) by
supposing only that T is an isomorphism which does not increase norm. (Of
course, once (*) is established it follows that T must be an isometry after all.)
This generalization was suggested by, and extends, some results of Helson
[2], which the author had the privilege of reading in manuscript. Helson obtained
the theorem to be proved here for the special case of abelian G, G” and complex
algebras; his methods, unfortunately, seem to be essentially “abelian” in
nature, in that he makes strong use of duality theory and the Bochner representa-

tion theorem for positive definite functions.

PArRTI. LEFT CENTRALIZERS
2. The principal theorem. We shall establish the following result:

THEOREM 1. Let A be a left centralizer acting on (real, complex) L (G).
There exists a unique regular (real, complex) measure p of bounded variation

such that A is given by Ax = x % p; furthermore, || A || = varp.?

Proof. Let {V_} be a basis for the neighborhoods of the identity element of
G, with V, compact; we write ¢ < 3 in case V, D Vg, so that{ a} is a directed
set. Let e, denote the characteristic function of V,, normalized through division
by m(V,) so that || eq || = 1. It is well known that { e, } constitutes an approxi-
mate identity, in the sense that lim, xe, = x for each x € L (G). Applying the
transformation 4, we obtain

%= Ax = A lim, xe, = limg A (xey) = limg, x dey = limg xf,,

where f, = de, and [|fo || < ||4A]] [leall = |[4]1].

The elements f, may be thought of as linear functionals on the space C, (G)
of continuous functions vanishing at co; as such their norms are equal to their
L norms, and thus are bounded. Since the unit sphere in Cy (G)* is weak*compact

2 The notations G’, m’ used here replace I, uof [s].

3 Suggestions supplied by the referee have made possible considerable simplification
in the proof of this result, as well as in that of Theorem 4.
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the functionals f, have a weak*limit point which, by the Kakutani-Riesz theorem
is uniquely representable as a regular measure 1, of bounded variation; in fact,
varp < (14 I

Let K denote the subspace of Cy(G) consisting of functions having compact

support. If x and y belong to K, then so does the function z defined by
z(g) = [y(h) x(hg™") m(dh).

Let € > 0 and «, be arbitrary; since p is a weak*limit point of the f,, there is
an o, > Gg such that

lfz(g) pldg) - fz(g) fa,(g) m(dg)| < €.

Replacing z(g) by its definition and rearranging the iterated integrals, we get

|fy(h) m (dh) fx(hg_l) n(dg) - fy(h) m (dh) fx(hg—l) fa, (&) m(dg)| < €.

Since xf, — % in L (G) and therefore as functionals, we have, on passing to the

limit through a suitable cofinal subset { o, } of { &},

| [y(®B) m(dh) [x(hg™") pldg) - [fy(h) %(h) m(dh)| < e.

Therefore

Sy ) m(dr) [x(hg™") uldg) = [y(h) %(h) m(dh);

this shows that x % p and % are equal as functionals on K, hence on C; (G),
and so finally as elements of L (G).

Thus we have shown that Ax = x % p, at least for x € K; a density argument
shows that the equation actually holds for all x € L (G). Since || 4 || < var p it
follows from the reverse inequality above that ||4 || = var p. If x %, = x %y,
for all x € K, then it is easy to see that p; = p,, from which it follows that p is
unique, and the proof is completed.

A result equivalent to Theorem 1 is the following:

THEOREM 2. In the strong operator topology, the set of convolution oper-
ators on L (G) is a closed subset of the ring of all bounded operators.

Proof that Theorem 1 implies Theorem 2. Let { u,} be a directed sequence of
convolution operators which converges to an operator A in the strong topology.

Clearly 4 is a left centralizer, and the result follows.

Proof that Theorem 2 implies Theorem 1. As in the proof of Theorem 1, we
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have Ax = lim, xf,; but right multiplication by f, may be regarded as a convolu-

tion operator p,, and p, tends strongly to 4. Hence 4 is a convolution operator.
3. Auxiliary theorems. The right translations are characterized as follows:

THEOREM 3. Let A be a bounded linear mapping of L (G) to itself. A has
the form A = /\Rg0 for some scalar A of unit modulus and some g, € G if and
only if

3A) A is aleft centralizer; and

3B) A preserves norm.*

Proof. Since the mappings ARq clearly have the indicated properties we
have only to prove the reverse implication.

Let p be the measure determined by A in accordance with Theorem 1. Then

the assumption 3B) means that

4)) fm(dg) | [x(gh™) pdh)| = ||%|], x€L(G).

Let || (E) = the total variation of y on E; || is a regular measure and

(2) lfx(gh—l) p(dh) | < f\x(gh—l)l || (dh).

We assert that equality holds in (2) for almost all g. Supposing the contrary,
let strict inequality hold on a set of positive measure, and integrate (2) over g
with respect to m. From (1) we obtain, by means of Fubini’s theorem,

x| = fm(dg) lfx(gh—l) w(dh) | < fm(dg) flx(gh_l)l || (dh)

= f\[.t| (dh) flx(gh-l)i m(dg) = flpl (dh) f]x(g)l m(dg)
= (var ) [ = 41| [|=[] = lI=]].

This contradiction proves the assertion.

Let x € K. Then both members of (2) are continuous functions of g, so that
equality holds everywhere; set g = i = identity of G and replace the function
% () by x (A7), which is again an element of K. We obtain

3) | fe ) p(@h)| = flx®)] x| @h) = J(x).

4 A similar result has been given by Kawada {4], for real L (G). In Kawada’s theorem
the condition || Ax || = || x]|| is replaced by Ax > 0 if and only if x > 0, where of course
the inequalities are meant in the almost everywhere sense. Theorem 3 can be deduced
from this, and conversely.
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For J(x) # 0 and x a nonnegative function, there is a unique constant A, of

unit modulus such that
JeB) w(dh) = A, [x(b) |p| @h).

If y is a nonnegative function in K for which J(y) # 0, then similarly we may

write

Jr®) wdh) = &y [y |p| (dh),

and

Jix®) + y W} pl@h) = Ae 1y Slx®) + y B} | p] @B).

But the left member of the last equation is also equal to
A Jx(B) |p] (dh) + Ay Sy |p| @h).

Therefore A, = Ay = Ay 4y. In other words, there is a unique constant A of unit

modulus such that for all nonnegative x € K for which J (x) # 0 we have
JxB) p(@h) = A [x(B) |p| (dh).

Hence for all Borel sets £ we have u(E) = A |p| (E), and we may as well

suppose that py is nonnegative. Equation (3) then becomes
(4) | [ p@r)| = [1x®) | p(dh), x €K.

By the regularity of y, this equation actually holds for all real continuous x
having limits at cc; that is, for all x in the space C(G), where G is made com-
pact, if necessary, by adjoining an ideal point.

We now appeal to a theorem due to Kakutani [3], stating that, if f is a func-
tional of norm 1 on C(Q) such that x > 0 implies f(x) > 0 and such that min (x,
y) = 0 implies min (f(x), f(y)) = 0, then f is a point functional: f(x) = x(w,) for
some fixed w, € Q. We apply the theorem to the functional f(x) = fx () pu(dh).
Clearly || f || = 1, since var u = 1. The functional is certainly order-preserving.

Finally, if min (%, y) = 0 thenx(g) + y(g) = |x(g) - y(g) |, and therefore
Jix@) + (@1 plg) = fl2( - y(@)| nldg) = | fizle) ~ y(g} pldg

by (4). Consequently f(x) + f(y) = |f(x) = f(y)|, so that min (f(x), f(y)) = O.
The functional fx(g) u(dg) is thus seen to satisfy the hypotheses of

Kakutani’s theorem, and therefore is a point functional, for some point other than

the point at infinity, since the functional does not vanish identically on K.

Therefore 1 is concentrated at one point, and the operator 4 has the desired form.



256 J. G. WENDEL

Our next result states that the right translations span the space of all left

centralizers. Precisely, we prove:

THEOREM 4. KEvery left centralizer A is a strong limit point of the set of

finite linear combinations of right translations.

Proof. By the Hahn-Banach theorem, if suffices to show that, it F is any
strongly continuous linear functional on the operators on L (G), which vanishes
on the right translations, then F (4) = 0. A strongly continuous linear functional
F on the operators { T} on a Banach space X is given by an expression of the

form

n

=1

where x; € X, x¥ €X*i=1,2+++,n (see, for example, the proof of Theorem

2 in [1]). When X = L(G), we have

F(T)= Y [v,(g) (Tx) (g) m(dg),

i=1

where the v; are bounded measurable functions.

Suppose now that F vanishes on right translations. This means that

Y Jo; (@) %, (gh™) m(dg) = 0 kL EG).

i=1

Computing F (4), we have

n

F(4) 2 Jvilg) m(dg) fxi(gh™) pu(dh)
=1

Y foilg) (4%) (g) m(dg) =
=1

l

i

Juldn) Y Jvi(g) xi(gh™) m(dg) = 0,
I=1

as we wished to show.

ParT II. IsomorPHISM OF GROUP ALGEBRAS

4. The isomorphism theorem. In this and succeeding $§, G’ is a second
locally compact group having right invariant Haar measure m’, group algebra
L(G"), and right translation operators Rg’,. The chief result to be established
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is the following:

THEOREM 5. Let T be an algebra isomorphism of L(G) onto L(G"), both
algebras real or complex, which does not increase norms. There exists a bicon-

tinuous isomorphism Tof G upon G’ and a continuous character y (real or com-

plex with L(G)) on G such that

5A) TRGT™' = x(g™ R7,s g€ G, g€ G
5B) (Tx) (1) = cx(g) x(g);

hence T is actually an isometry. The number c is the constant value of the

ratio m (E)/m*(TL).

The proof of Theorem 5, which will be given in $6 after some necessary
lemmas have been developed, is based on the following idea, due in part to
Kawada [4]. First of all, it is clear that T induces a 1 — 1 mapping of the left
centralizers of L (G) onto those of L (G*) by means of the formula

A’ = TAT™,

the boundedness of T™! being guaranteed by that of T together with the 1~
1-ness. In particular, then, translations on L (G) are carried into left centralizers.
It turns out, moreover, that the image of an arbitrary translation Ry is an iso-
metric left centralizer; this is proved in Lemma 1. Therefore, by Theorem 3, it
follows that the operator TR,T ' is a scalar multiple of a translation on L (G*);
we write

— ,
TRgT = ’\g ng’
where I)\gl = 1. We then show (Lemmas 2, 3) that Tis 1 -1, onto, and bicon-

tinuous, and that '\g (or rather, its inverse) is a continuous character, thereby

establishing 5A). The formula 5B) follows quickly with the aid of Theorem 4.
5. The mapping of translations. We shall first prove:

LEMMA 1. Let Rg be a right translation on L(G) and set Zé = TRgT—‘.
Then for some ’\g of modulus unity, and for some g = Tg € G’, we have

. -1 _ ’
Zg = TRgT = ’\g Rg,.

Proof. In view of Theorem 3, we have only to show that Z g is isometric,
since it certainly commutes with all left multiplications. As used in the proof of
Theorem 1, let {e,} be an approximate identity of L (G), and put Tey = ej.
Choose x* € L(G"); clearly x%e5—x", since xe,—> x for all x € L (G). Then
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Zgn’ = limg x°Zjeq = limgx” TR,T ' Te, = lim, x* TR

g€ar

and therefore
1Zgx"|| < limg||x” TRgeqll < [|2°|] limg || TRgeql| < [|x7|] limg || Rgeal]

= |l=*|| limg leall = ||x"1],

which shows that Z; is a contraction. But Zg ' = Z’-, is also a contraction,

by the same argument. Therefore Zé is an isometry, as we had to show.

LEMMA 2. The mappings g—>Ag and g—> Tg defined above are continuous
homomorphisms of G to, respectively, the multiplicative group of scalars of unit
modulus and the group G’; T is 1 — 1.

Proof. The fact that the mappings are homomorphisms follows from the

equations

Agh R TR

— -1 _ -1 - ’ ’
‘) = TR T ™ = TR, TTUIR,T™ = A R2 MR, = AN, R

Tg Th*®

The function T is 1 — 1; for if Tg = i’, the identity of G*, then

)\gl’ = TRgT—‘, and Rg = )\gl, so that g = ¢, /\g = 1.

In order to prove that T is continuous, we observe that it is the product of
the mappings M,, M,, M, defined by:

My : g—Rg, g €6
My: Rg— TRGT™ = A R7,, g8 €6;
My : )\Rg"__)g’, A a scalar of unit modulus, g” € G*.

It is well known that, in the strong operator topology, R, is a continuous
function of g, so that M, is continuous. M, is continuous, since T and its in-
verse are bounded. The mapping M; is a homomorphism of the group of operators
{ARg-} onto G* hence in order to prove its continuity everywhere it is sufficient
to consider merely neighborhoods of the identity /”.

Let V'’ be an arbitrary neighborhood of i’ € G% we shall construct a strong
neighborhood of /” whose image under M; is contained in V. Let W’ be a neigh-
borhood of i* having finite measure w and satisfying W’W’"' C V’. Let x"€ L(G")
be the characteristic function of W*. We shall show that if || A R' ' —x"|] < 2w

then g” € V’. In fact, suppose that g ¢ V’; then W’ and W, g are disjoint, so
that
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HAR x" = x"|| = Jirz(h7g") = 2" ()] m(dh")
= JHAx (g | + |27 ()|} m*(dh?)

= IARE 271+ 1271 = 2]]2]] = 2.

Hence M3 and a fortiori T = M3 M, M, are continuous in g. Finally, A, is
continuous since A,/ is the product of the uniformly bounded and continuous
functions TRgT ™" and Rig-1-

LEmMA 3. The mapping T exhausts G’ and is a homeomorphism of G onto
G’

Proof. We first show that TG is closed in G’. Suppose that { Tg, | is a di-
rected sequence of elements which converges to an element 4” of G”. Then the
corresponding translations Rfrga tend to R;,. Mapping back to the algebra of
operators on L (G), we see that T_lR;gaT tends to T_lR;l,T. But T_IR_;gT=
/\;le by definition of T and A. Therefore the operators )\;la/?ga converge in the
strong topology to an operator which is clearly on isometric left centralizer, and
which therefore has the form AR, for some scalar A and A € G. Returning to
L(G’), we readily see that A TR, T7! = R}, ,sothat h” = Th, A = )\}:l.

Next we note that the continuity of T ! on TG follows from the equation

TTRLT =AY, R, =)

T g
just as that of T was obtained from its defining equation.

Finally we establish the fact that TG = G”. Suppose if possible that A" € G*
has no counterimage in G; T—lR}'l,T = A is nevertheless a left centralizer on
L(G), and therefore, by Theorem 4, may be expressed as the strong limit of a
directed sequence {A,} of finite linear combinations of translations. Then
TAT™' = R~ is the strong limit of operators 4, each of which is a finite linear
combination of translations Ré,, with g” € TG. Let W’ be a neighborhood of i’
so small that m*(W’) < « and A’W’"'W’ n TG is empty; the existence of such a
W’ is assured by the fact that TG is closed. Let x” be the characteristic function
of W’, and set x3 = A,x". Let £” be any element of W’A""!. Then k'g'¢ W’, for
each g” € TG. Hence x“(k"%2") = 1 implies that x5 (k”) = 0. Therefore

125 = R #ll 2 fy g 125 6 = 2" G6h) | (k")
= S 1R = ).

But this contradicts the assertion that 47 tends strongly to R; .. Hence no such

h’ can exist; this completes the proof of the lemma.
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6. Proof of the isomorphism theorem. If we define y(g) = A;', it is clear
that the lemmas of the preceeding § establish the existence and properties of
T and y and the validity of 5A). In order to prove 5B), let U be the isomorphism
of L (G) onto L (G”) which 5B) defines; that is,

(Ux) (Tg) = ex(g) x(g), x € L(G).
Then

(0% (@) = ¢ 'y (g™ x7(1g) for x" € L(G).
Hence

(UR,U™'%") (Tg)

]

ex(g) (R,U %) (g) = cx(g) (U'x") (gh)

ex(@) ¢ Py (R7g ™) %' (TgTh) = x(B7Y) x(Tg TA)

x&™ R _,x7) (tg),

showing that URhU_l (™Y R b € G. Therefore Uling—l = TRgT_l,and
consequently T—lURg = RgT—lU. Let S = T7'U; we see that S is a bicontinuous
automorphism of L (G) which commutes with all right translations. We shall show
that S is the identity mapping, which will prove that U = T, as desired.

Let z € L(G), and let A be the left centralizer defined by right multiplication
by z: Ax = xz, all x € L(G). Let {44} be a directed sequence of combinations

of translations which converges to 4 in the strong topology. We have
Ax = lim, A, x.
Therefore
SAx = S limg Ay x = limg SAq x = lim, 44 Sx = ASx.
In other words, using the fact that S is an automorphism, we have

Sx Sz = S(xz) = SAx = ASx = (Sx) z,

so that Sz = z. Since z € L (G) is arbitrary, S = I, and the proof is completed.
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