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1* Introduction. Let G be a locally compact group with right invariant Ilaar

measure m and real or complex group algebra L(G) 1 . A bounded linear trans-

formation A of L (G) to itself which commutes with all of the operations of left

multiplication is called a left centralizer. Examples of transformations A which

satisfy the defining equation A (xy) = x Ay, all x, y £ L (G), include

(i) right multiplications: Ax = xz for some fixed z £ L (G);

(ii) right translations: A - Rg = the operation of translation on the right

by some fixed gQ £ G; and

(iii) convolutions with measures: Ax = x * μ, where μ is a countably addi-

tive set function of bounded variation defined on the Borel sets of G, and

x * μ is defined by

(x * μ) (g) = fx(gh~l) μ(dh), gCG.

It is clear that (i) and (ii) are special cases of (iii); thus, given z £ L (G) we

may define the appropriate μ by μ(E) — JE z (g) m{dg), while for an assigned

gQ £ G the corresponding measure is defined by μ(E) = 0 or 1 according as E

does not or does contain # ι .

The principal result (Theorem 1) of Part I states that, conversely, every left

centralizer is a convolution with a regular measure. Important auxiliary theorems

(3 and 4) furnish a characterization of the right translations (up to scalar factors

of unit modulus), and show that in the strong operator topology any left centra-

lizer may be approximated by a finite linear combination of right translations.

In Part II these results are applied to obtain a generalization of a theorem

proved in [5]. We showed there that if T is an isometric isomorphism of (real,

XWe are using the notation and terminology of [5]. In particular, for elements x and
y of L (G) the symbol xy denotes the usual convolution-product.
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complex) L(G) onto the (real, complex) algebra L(G') belonging to a second

locally compact group G' with right invariant Haar measure m\ then there exists

a topological isomorphism T of G upon G'and a continuous character y such that

T is given by

for each x G L (G) and almost all gζlG, c being a measure-adjusting constant.2

In the present paper we obtain the existence of T and the validity of (*) by

supposing only that T is an isomorphism which does not increase norm. (Of

course, once (*) is established it follows that T must be an isometry after all.)

This generalization was suggested by, and extends, some results of Helson

[2], which the author had the privilege of reading in manuscript. Helson obtained

the theorem to be proved here for the special case of abelian G, G'and complex

algebras; his methods, unfortunately, seem to be essentially "abelian" in

nature, in that he makes strong use of duality theory and the Bochner representa-

tion theorem for positive definite functions.

P A R T I. L E F T C E N T R A L I Z E R S

2. The principal theorem. We shall establish the following result:

THEOREM 1. Let A be a left centralizer acting on (real, complex) L(G).

There exists a unique regular {real, complex) measure μ of bounded variation

such that A is given by Ax - x * μ; furthermore, \\A\\ = var μ . 3

Proof. Let { VJ be a basis for the neighborhoods of the identity element of

G, with Va compact; we write α < β in case Va D Vβ, so that { α} is a directed

set. Let eα denote the characteristic function of Va9 normalized through division

by m (Fα) so that | | ea \\ - 1. It is well known that { ea\ constitutes an approxi-

mate identity, in the sense that limα xea = x for each xζL L (G). Applying the

transformation A, we obtain

x = Ax = A limα xea = limα A (xea) = limα x Aea = limαΛ;/α,

where fa . i e α and | | / α | | < | | 4 | | | | e α | | = \\A\\.

The elements fa may be thought of as linear functionals on the space Co (G)

of continuous functions vanishing at 00; as such their norms are equal to their

L norms, and thus are bounded. Since the unit sphere in Co (G)* is weak*compact

The notations G'y m' used here replace Γ, μ of [5]

Suggestions supplied by the referee have made possible considerable simplification
in the proof of this result, as well as in that of Theorem 4.
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the functionals fa have a weak*limit point which, by the Kakutani-Riesz theorem

is uniquely representable as a regular measure μ, of bounded variation; in fact,

varμ < \\ A \\.

Let K denote the subspace of CQ(G) consisting of functions having compact

support. If x and γ belong to K, then so does the function z defined by

*(g) = fyih) x(hg~ι) m(dh).

Let e > 0 and Cί0 be arbitrary; since μ is a weak*limit point of the /α, there is

an α t > (λ0 such that

I fzig) μidg) - fz(g) /αi(g) midg)\ < €.

Replacing z(g) by its definition and rearranging the iterated integrals, we get

I fy(h) m(dh) fxihg~ι) μ{dg) - fy(h) m(dh) fxihg~ι) f^ig) m(dg)\ < e.

Since xfa—>x in L (G) and therefore as functionals, we have, on passing to the

limit through a suitable cofinal subset { α t } of { α ! ,

|/yCA) midh) fxihg'1) μidg) - fy(h) xih) m(dh)\ < 6.

Therefore

fyih) midh) fxihg'1) μidg) = fyih) xih) midh);

this shows that x ^ μ and x are equal as functionals on K9 hence on Co (G),

and so finally as elements of L (G).

Thus we have shown that Ax = x * μ, at least for Λ C K ; a density argument

shows that the equation actually holds for all χζlL(G) Since \\ A \\ < var μ it

follows from the reverse inequality above that ||^4 | | = var μ. If x * μ t = x * μ 2

for all x C K, then it is easy to see that μ t = μ2, from which it follows that μ is

unique, and the proof is completed.

A result equivalent to Theorem 1 is the following:

THEOREM 2. In the strong operator topology, the set of convolution oper-

ators on L (G) is a closed subset of the ring of all bounded operators.

Proof that Theorem 1 implies Theorem 2* Let { μa\ be a directed sequence of

convolution operators which converges to an operator A in the strong topology.

Clearly A is a left centralizer, and the result follows.

Proof that Theorem 2 implies Theorem 1. As in the proof of Theorem 1, we
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have Ax = limα xfa; but right multiplication by fa may be regarded as a convolu-

tion operator μα, and μα tends strongly to A. Hence A is a convolution operator.

3. Auxiliary theorems. The right translations are characterized as follows:

THEOREM 3. Let A be a bounded linear mapping of L (G) to itself. A has

the form A = λ/?g for some scalar λ of unit modulus and some g0 £ G if and

only if

3A) A is a left centralizer; and

3B) A preserves norm. 4

Proof. Since the mappings λRg clearly have the indicated properties we

have only to prove the reverse implication.

Let μ be the measure determined by A in accordance with Theorem 1. Then

the assumption 3B) means that

(1) jm(dg) \jx(gh~ι) μ(dh)\ = | | * | | , xCL{G).

Let | μ | (£) = the total variation of μ on £ ; | μ | is a regular measure and

(2) \f*(gh~ι) μ(dh)\ < f\x{gh-ι)\ \μ\ (dh).

We assert that equality holds in (2) for almost all g. Supposing the contrary,

let strict inequality hold on a set of positive measure, and integrate (2) over g

with respect to m. From (1) we obtain, by means of Fubini's theorem,

11*11 = fmidg) \fxigh-1) μ(dh)\ < JmUg) J > ( g / Γ ι ) | | μ | {dh)

= / | μ l ^h) j\x(gh-ι)\ midg) = j \ μ \ (dh) J | * ( g ) | midg)

= { v a v μ ) \ \ x \ \ = \ \ A \ \ \ \ x \ \ = | | * | | .

This contradiction proves the assertion.

Let xζlK. Then both members of (2) are continuous functions of g, so that

equality holds everywhere; set g - i = identity of G and replace the function

x(h) by x(h~ι), which is again an element of K. We obtain

(3) \fx(h) μ(dh)\ = J |*(Λ) | | μ | {dh) = / ( * ) .

4 A similar result has been given by Kawada [4], for real L (G). In Kawada's theorem
the condition | | ^4^ | | = | | * | | is replaced by Ax > 0 if and only if x > 0, where of course
the inequalities are meant in the almost everywhere sense. Theorem 3 can be deduced
from this, and conversely.
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For J (x) £ 0 and x a nonnegative function, there is a unique constant λ^ of

unit modulus such that

fx(h) μ(dh) = λ x fx(h) \μ\ (dh).

If y is a nonnegative function in K for which J (y) ^ 0, then similarly we may

write

fyih) μidh) = λ γ Jy(h) \μ\ (dh) ,

and

f\x{h) + y{h)\ μidh) = λx+γ J\x{h) + y(h)\ | μ | {dh) .

But the left member of the last equation is also equal to

λ x f x ( h ) \μ\ (dh) + λ y f y ( h ) \μ\ (dh) .

Therefore λ^ = λy = λ% + γ. In other words, there is a unique constant λ of unit

modulus such that for all nonnegative x £ K for which J (x) ^ 0 we have

Jxih) μidh) = λ Jx(h) \μ\ (dh).

Hence for all Borel sets E we have μ(E) = λ | μ | (£), and we may as well

suppose that μ is nonnegative. Equation (3) then becomes

(4) \fx(h) μ(dh)\ =f\x(h)\ μidh), xCK.

By the regularity of μ, this equation actually holds for all real continuous x

having limits at oc; that is, for all x in the space C (G), where G is made com-

pact, if necessary, by adjoining an ideal point.

We now appeal to a theorem due to Kakutani [3], stating that, if / is a func-

tional of norm 1 on C (Ω) such that x > 0 implies f{x) > 0 and such that min {x,

y) = 0 implies min {f{x)9 fiy)) - 0, then / is a point functional: f(χ) = Λ;(ω0) for

some fixed ω0 G Ω. We apply the theorem to the functional fix) = Jx{h) μidh).

Clearly | | / | | = 1, since var μ = 1. The functional is certainly order-preserving.

Finally, if min Gc, y) = 0 then x{g) + yig) = \x{g) - yig) |, and therefore

ίixig) + y(g)\ μidg) = S\xig) - yig)\ μidg) = | JU(g) - yig)\ μidg)

by (4). Consequently f{x) + fiy) = \f{x) - f(y)\, so that min (/(*), fiy)) = 0.

The functional jx(g) μidg) is thus seen to satisfy the hypotheses of

Kakutani's theorem, and therefore is a point functional, for some point other than

the point at infinity, since the functional does not vanish identically on K.

Therefore μ is concentrated at one point, and the operator A has the desired form.
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Our next result states that the right translations span the space of all left

centralizers. Precisely, we prove:

THEOREM 4. Every left centralizer A is a strong limit point of the set of

finite linear combinations of right translations.

Proof By the Hahn-Banach theorem, if suffices to show that, it F is any

strongly continuous linear functional on the operators on L(G), which vanishes

on the right translations, then F (A) - 0. A strongly continuous linear functional

F on the operators ί T} on a Banach space X is given by an expression of the

form

F(T) = Σ *fCr*, ),
i - ί

where x t £ X, x* C X*9 i - 1, 2, , n (see, for example, the proof of Theorem

2 in [1]). When X = L(G), we have

F(T) = Σ fv.(g) (Tx.) (g) midg),
i = l

where the V{ are bounded measurable functions.

Suppose now that F vanishes on right translations. This means that

n

Σ Svi (^ ) xi te^"1) "»«*) = 0 (AGO.
i = l

Computing F (A), we have

n n

F(A) = £ fVi(g) (Axi) (g) midg) = Σ Jvi(g) m(dg) fxiigh'1) μ(dh)
i = l i - l

= Mdh) Σ fvi(g) xM'1) m(dg) = 0,
i - l

as we wished to show.

P A R T II. ISOMORPHISM O F G R O U P A L G E B R A S

4. The isomorphism theorem. In this and succeeding § § , G' is a second

locally compact group having right invariant Haar measure m\ group algebra

L ( G 0 , and right translation operators R*,. The chief result to be established
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is the following:

THEOREM 5. Let T be an algebra isomorphism of L (G) onto L(G'), both

algebras real or complex, which does not increase norms. There exists a bicon-

tinuous isomorphism T of G upon G' and a continuous character y {real or com-

plex with L (G)) on G such that

5A) TRgT~ι = y(g"1) R'τg, gCGs X

5B) (Tx) (τg) = cχ(g) x(g);

hence T is actually an isometrγ. The number c is the constant value of the

ratio m{E)/m\rlE).

The proof of Theorem 5, which will be given in §6 after some necessary

lemmas have been developed, is based on the following idea, due in part to

Kawada [4]. First of all, it is clear that T induces a 1 - 1 mapping of the left

centralizers of L (G) onto those of L (GO by means of the formula

A' = TAT"1 ,

the boundedness of T ι being guaranteed by that of T together with the 1 -

1-ness. In particular, then, translations on L(G) are carried into left centralizers.

It turns out, moreover, that the image of an arbitrary translation Rg is an iso-

metric left centralizer; this is proved in Lemma 1. Therefore, by Theorem 3, it

follows that the operator TRgT~ι is a scalar multiple of a translation on L (GO;

we write

where | λg | = 1. We then show (Lemmas 2, 3) that T is 1 - 1 , onto, and bicon-

tinuous, and that λg (or rather, its inverse) is a continuous character, thereby

establishing 5A). The formula 5B) follows quickly with the aid of Theorem 4.

5. The mapping of translations. We shall first prove:

ιLEMMA 1. Let Rσ be a right translation on L(G) and set Z' = TR T
" D O

Then for some λ of modulus unity, and for some g ' = Ίg ζ_G\ we have

Proof. In view of Theorem 3, we have only to show that Zg is isometric,

since it certainly commutes with all left multiplications. As used in the proof of

Theorem 1, let {ea\ be an approximate identity of L (G), and put Tea — e'a.

Choose x' £ L(GO; clearly x'e'a—>#', since xea—>x for all x C L (G). Then
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Z'gx' = limax'Zge^ = limα*' TRgT~ιTea = limα x' TRgea,

and therefore

\\Z'gx'\\ < \ϊ^a\\x' TRsea\\ < \\x'\\ ί ϊ ^ α | | Γ β g e α | | < | | * Ί I ϊ ^ α |

which shows that Zg is a contraction. But Zg"1 = Z'~ι is also a contraction,

by the same argument. Therefore Zg is an isometry, as we had to show.

LEMMA 2. The mappings g—>λg and g—> Ίg defined above are continuous

homomorphisms of G to, respectively, the multiplicative group of scalars of unit

modulus and the group G'; T is 1 — 1.

Proof. The fact that the mappings are homomorphisms follows from the

equations

The function τ is 1 - 1; for if Tg = i\ the identity of G% then

XT = TR T"\ and R = λ /, so that g = i, λ = 1.
σ o 6 σ &

In order to prove that T is continuous, we observe that it is the product of

the mappings Ml9 M2, M3 defined by:

Mi •• S~^g> g CG;

M2 : Rg-^TRgT'1 = λ g / ? ; g , gCG;

M3 : λ β ' — > g ' , λ a scalar of unit modulus, g ' C G\
σ

It is well known that, in the strong operator topology, Rg is a continuous

function of g, so that Mt is continuous. M2 is continuous, since T and its in-

verse are bounded. The mapping M3 is a homomorphism of the group of operators

{XRg'! onto G'', hence in order to prove its continuity everywhere it is sufficient

to consider merely neighborhoods of the identity/'.

Let V be an arbitrary neighborhood of ΐ ' C C ; we shall construct a strong

neighborhood of / ' whose image under M3 is contained in F ' . Let IF' be a neigh-

borhood of i' having finite measure w and satisfying W'W ι C V'. Let x'ζL L(G')

be the characteristic function of W. We shall show that if |j λ / ? ' % ' - x ' | | < 2w

then g ' C V. In fact, suppose that g ' C V', then W and JF'g' are disjoint, so

that
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\\\R'g,x' - x'\\ = J | λ x ' ( A V ) - x'{h')\ m'idh')

= J\\λx'(hγ)\ + \x'{h')\\ m'(dh')

= \\λR', x'\\ + \\x'\\ = 2 | | x ' | l = 2w.

Hence M3 and a fortiori T = M3M2M\ are continuous in g. Finally, λg is

continuous since λg I is the product of the uniformly bounded and continuous

functions TRgT~ι and R'τ - t .

L EMMA 3. The mapping T exhausts G' and is a homeomorphism of G onto

G\

Proof. We first show that τG is closed in G'. Suppose that j Tgα 1 is a di-

rected sequence of elements which converges to an element h' of G'. Then the

corresponding translations R'r tend to R^,* Mapping back to the algebra of

operators on L (G), we see that T~ιR' T tends to T~ιR'h,T. But T~ιR' T =

λ ιR by definition of T and λ. Therefore the operators λ ιR converge in the
g g . Γ _ δ α δ α ^

strong topology to an operator which is clearly on isometric left centralizer, and

which therefore has the form λR^ for some scalar λ and h C G. Returning to

L(G') , we readily see that λ 77^ Γ" 1 = R^,, so that A' - τA, λ = λ^1.

Next we note that the continuity of T ι on ΊG follows from the equation

just as that of T was obtained from its defining equation.

Finally we establish the fact that ΊG = G'. Suppose if possible that A ' £ . G/

has no counterimage in G; T ιR',,T = A is nevertheless a left centralizer on

L (G), and therefore, by Theorem 4, may be expressed as the strong limit of a

directed sequence ί/lα ! of finite linear combinations of translations. Then

TAT1 = R^* is the strong limit of operators Aa each of which is a finite linear

combination of translations R',, with g' G TG. Let W be a neighborhood of i'

so small that m'(W) < oc and h'W ιW n TG is empty; the existence of such a

W is assured by the fact that τG is closed. Let x' be the characteristic function

of W\ and set χ'a = Aax\ Let k' be any element of ΪΓA'""1. Then Λ ' g ' ^ IT', for

each g ' C τG. Hence Λ ' U ' A ' ) = 1 implies that * £ ( £ ' ) = 0. Therefore

But this contradicts the assertion that A'a tends strongly to β^/. Hence no such

A' can exist; this completes the proof of the lemma.
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6. Proof of the isomorphism theorem. If we define γ(g) = λg l , it is clear

that the lemmas of the preceeding § establish the existence and properties of

τ and x and the validity t>f 5A). In order to prove 5B), let U be the isomorphism

of L (G) onto L (G') which 5B) defines; that is,

Wx) (Xg) = cγ{g) x(g), x€L{G).

Then

(U~lx') (g) = c-\{g-1) x'{Xg) for x'CLiG').

Hence

WRhU~ιx') (τg) = cχ{g) (RhU~ιx') (g) = cχ{g) W~ιx') igh)

ι

g-
1) x'iτgτh) = x(h~ι)x'{τgτh)

( τ g ) ,

showing that ί/Λ/.ί/"1 = γ{h~ι) Rτh, hCG. Therefore URgU~ι = TRgT~\ and

consequently T~ιUR = i? T~ιU. Let S = T~ιU; we see that S is a bicontinuous

automorphism of L (G) which commutes with all right translations. We shall show

that S is the identity mapping, which will prove that U = Γ, as desired.

Let z C L (G), and let A be the left centralizer defined by right multiplication

by z: Ax = xz, all x C L (G). Let {/4α ! be a directed sequence of combinations

of translations which converges to A in the strong topology. We have

Ax = limα Aa x .

Therefore

SAx = S limα Aa x - limα SAa x = limα Aa Sx = /IS*.

In other words, using the fact that S is an automorphism, we have

Sx Sz = Sixz) = SAx = ASx = (S%)z,

so that Sz = z. Since z ζLL (G) is arbitrary, S = /, and the proof is completed.
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