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1. Introduction. It will be convenient, for the purposes of this paper, to de-

fine Lebesgue area as in [6]. This definition is applicable to surfaces in metric

spaces and is equivalent to the usual definition for surfaces in Euclidean space.

There is described in [7] a method for generating from a continuous function

defined on a square into a metric space, a monotone function with range in m,

the space of bounded sequences [ l ] , having the same Lebesgue area. A corres-

ponding remark holds for Fre'chet surfaces instead of continuous functions.

Suppose that & is a surface and that &' is obtained from & by the procedure

referred to. The purpose of this paper is to show the existence of set functions

whose values on elementary configurations of m agree with the elementary areas

of the configurations, and whose values on the point set occupied by JS>' are

equal to the Lebesgue area of $• We shall give definitions for two such set

functions; for one of these functions it is necessary to assume that the Lebesgue

area of j$ is finite in order to be sure that the equality holds.

The set functions can be interpreted for subsets of En. If a surface in En

admits a monotone representation, then the value of each of the set functions on

the point set carrying the surface is, with the proviso mentioned above, equal to

the Lebesgue area of the surface.

2. Preliminary remarks. The definition of Lebesgue area which we shall use

is given in this section. We shall see that there is no loss in generality in sup-

posing that all of the surfaces with which we shall be concerned are in m.

We list here some definitions and notations that will be used in the sequel. If

D is a domain in the plane and if a subset iv of some topological space is homeo-

morphic to D, then J9 is a 2-domain. If E is a set, then E, E°, and £ * will denote

its closure, interior, and boundary, respectively. We reserve the letters f and

g to represent linear functionals on m of norm one. For fixed / and g, πfs is the

transformation from m to E2 defined by πfs{a) - (f(a)9 g(a)) for each a £ m. If

a9 by and c are the vertices of a triangle in m, then the area of the triangle is,

by definition,

Received March 23, 1951. This paper was written with the financial support of the
Research Corporation.

Pacific J. Math. 2 (1952), 243-250
243



244 EDWARD SILVERMAN

(1/2) sup

f.g

fia) g(a) 1

fib) g(b) 1

f(c) g(c) 1

where, as indicated above, f and g are linear functionals of norm one.

If & is a surface, then L (&) and P (&) are the Lebesgue and Peano areas of

$). Similarly, L (x) and P (x) are the corresponding areas of x9 where x is a suit-

able continuous function. If J9 is a 2-domain in m, φ is a transformation from J9

to E
2,

then M{φ,z) is the value of Federer's multiplicity func-

tion M determined by φ at z [4].

We denote the unit square by Q and the surface of the unit sphere by Σ. Let

ψ be a transformation from Q onto Σ which is topological on Q° and constant on

Q*. lί x is continuous on Q and constant on Q*9 then ΛΓ is defined on Σ by

x(ψ{q)) =x{q). In general, the composition of two functions F and G is denoted

by F * G. Hence we can write x = x * ŷ  If D is contained in the domain of a func-

tion F, then F\D is the function F restricted to D.

We recall here the definitions of Peano and Lebesgue areas [6].

Let x be continuous on Q into m.

If D is a domain contained in ()0> and

ff M(πfg*x\D,z)dz,

f,g

then

Σ G(x,D),
σ D £ σ

where σ is a finite disjoint family of domains contained in Q°.

We define the Peano area of a function defined on Σ in an analogous manner.

For convenience we suppose that σ does not consist of Σ alone.

In [6], Lebesgue area was defined by means of quasilinear functions. It can

be shown, as in [5], that this definition is equivalent to that given below.

A polyhedron is a surface which admits a representation x on Q such that

there exists a curvilinear triangulation of Q consisting of curvilinear triangles

ίi> * 9 tn> a n d f°Γ e ach i(i - 1, , n),

(i) x I ti is topological,

(ii) x (tj) is a nondegenerate triangle (in m), the vertices of %(ίj) being the

images of the vertices of ί t .
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If r is a polyhedron in m, then it can be shown, just as the corresponding

statement is proved for polyhedra in Eni that P (P) is equal to the elementary

area of P.

If & is a surface (in m), then

L (&) = lim inf Jelementary area of P L
D(P ,*&)-> 0 I I

where D (P, &) is the Frechet distance between P and &.

The Lebesgue area of a surface represented on Σ is defined in an analogous

manner.

If J& is a surface in a metric space ΪR, then there exists a surface & in m

which is isometric to & (if x" is a representation of & , then there exists a

representation x' of & such that | | x'(p) - x'(q) | | = d (x" {p),x"{ q)), the dis-

tances being in m and ϊfl respectively). We define L (& ) to be L{& ). The defin-

ition is valid since Lebesgue area in m satisfies Kolmogoroff s principle. As

noted earlier, it is this definition of Lebesgue area which we shall use.

3. The set function μ. We make the following definitions.

DEFINITION 3.1. Let S C m, and let σ ' b e a finite family of disjoint 2-do-

mains contained in S . Then

μ{S') = sup Σ μ'(ί>)
σ' J9Cσ'

where

μ'(l9) = sup ff M{πfsβ,z)dz.

(If σ' is empty, then Σ μ'Φ) = 0.)
J9Cσ'

DEFINITION 3.2. A compact subset of m consisting of a denumerable

number of points, line-segments, triangles, and so on, is an elementary con-

figuration in m. If E is an elementary configuration, then | £ | is the elementary

area of E.

We observe that if S is the monotone image of a 2-cell, then μ is additive

with respect to its cyclic elements. If E is an elementary configuration, then

μ(E) = | £ | .

Now let x be continuous on Q into m. Define x on Q x Q by

x(p,q) « inf diam % (£([0,1]))
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for all continuous functions ζ defined on [0,1] such that £(0) = P><C(1) = <7> a n ( ^

range ζ = £([0,l]) is contained in Q. If \p(\ is an everywhere dense sequence of

points in Q, define x' on Q into m by x'(q) = \x(pu Φ^ Then x' is monotone

andL(*') = Ux)[7].

It is necessary, for our purposes, to extend this result to the case where x

is defined on Σ. If p £ Σ, </ £ Σ, then £ is admissible if range ( c S . Then*

and x' are defined as before. In order to show that L (x) - L (x')9 let y be de-

fined on Q by y = x * i//. The reader can verify that Λ; = y and ( y ) ' = y'. We

assume the results of Lemma 3.2 to obtain L(y) = L(γ) and L (y"') = L ( y ' ) .

Thus we have L (Λ) = L(y) = L (y) = L ( y ' ) = L(J') = LUO

LEMMA 3.1. // x is light on Q (orΣ), and D is a domain in Q° {a 2-domain

in Σ), then M{ πfg* {x \ D), z) = M( πfg \ x'(D\ z).

The proof is almost evident since x\ being monotone as well as light, is a

homeomorphism.

LEMMA 3.2. If x is continuous on Q and constant on Q*9 then P (x) ~ P(x)

and L(x) - L(x).

The argument of Cesari in [3] is valid here.

We jare now in a position to compare μ(x'{Q) with P (#')•

LEMMA 3.3. // x is light on Q or light on Q° and constant on Q*, then

μ(x'(Q)) = P(χ').

The result follows from Lemma 3.1 or Lemmas 3.1 and 3.2.

LEMMA 3.4. If x is continuous on Q into m, then P (x') = μ(x'(Q)).

Proof. The equality is a result of the cyclic additivity of P and μ, the pre-

ceding lemma, and the following three statements [5]:

(i) If x'(Q) is a 2-cell, then there exists a light function y' which is Frechet

equivalent to x\

(ii) If x'(Q) is a 2-sphere, then there exists a function y ' which is Frechet

equivalent to^ 'and which is light in Q° and constant on Q*.

(iii) If D {x'9y') = 0, then χ'{Q) = y'{Q).

LEMMA 3.5. If P(χ) = L(χ) and P(x') ϊ P(χ), then L{χ) = μ(χ\Q)).

Proof. We have P{x') £ L{x') = L(x) = P{x) ^ P(x'), and so L(%) =

P(x'). The result now follows from the preceding lemma.
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Suppose that we use, instead of x'9 the function x" defined by x"{q) =

{zk(q)\ for q G Q, where

zk(q) = x'{k + ι)/2(q) if A; is odd,

z

k(q) =xk/2 (q) if* iis even.

It is evident that \\x"{p) - x"(q)\\ = | | * ' ( p ) - * ' ( ? ) | | for p, q G Q, and

so L(x") = L(x') = L(#). It is not hard to see that P(x') Z P (#). We can now

summarize our results.

T H E O R E M 3.1. // L{χ) < + <*>, ίΛerc LU) = μ(χ'(Q)). If P(χ) = L{χ),

then L(x) - μ(x"(Q)). If x has range in E3s then L{x) = μίΛ ^C^)).

The last statement of the theorem results when we observe that we may

consider E3 as a subspace of m, and then use the fact that P (x) = L (x) [2].

4. The set function λ. In defining λ we leaned heavily on Peano area. We

shall define a (possibly) new set function λ by relying upon Lebesgue area.

Let £ be the family of elementary configurations of m, and let 3 be the family

of subsets of m each horneomorphic to an element of C.

In each class of homeomorphic subsets of m we introduce a metric d defined

by

d{A,B) = inf sup | | p - Λ(p)|j,

h p €_Λ

where h is a homeomorphism of A onto B.

LEMMA 4.1. For each F G 3 there exists a sequence \En\, En G 8, such

thatd(EnyF) -> 0.

Proof. There exists a set E G S and a homeomorphism h such that F ~ h(E).

Since E is compact, h is uniformly continuous and so, for e > 0, there exists a

δ > 0 such that ||A(p) - h(q)\\ < € if \\p - q\\ < δ. Let Tn be a triangulation

of E of mesh less than δ. Define hn on E by putting hn (p) = h (p) if p is a vertex

of Tn and extending Λn to be linear on each A -simplex of Tn. Then if q G £ ,

and p is a vertex of a A -simplex of Γ n containing q, we have

e =

We now let En = hn(E).
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D E F I N I T I O N 4.1. Define λ ' on 3 by

λ'(F) = lim inf | £ | ,
d (£, F) -> o

and λ on subsets of m by

λ(S) = sup Σ λ'(F),
σ F ζ^ σ

w h e r e σ i s a f in i te family of d i s j o i n t s u b s e t s of S a n d σ £ 9 ,

We n o t e t h e fo l lowing r e s u l t .

L E M M A 4.2. If d{An>A) -> 0, then λ(A) ^ lim inf λ(An).

We require the following information from [6]. If zr i s a plane (in m), then

there exis t s a projection 77* of m onto 7Γ such that | τ τ * ( Δ ) | ^ | Δ | for each

triangle Δ Furthermore, if p and q are points of m then 11 π* (p) - π* {q) \\ ύ

2 | 1 P - ? I | .

LEMMA 4.3. If E C S, and σ is a finite family of disjoint subsets F of £,

each F C 3, ίAerc Σ F £~ σ ^ (F) ύ \ £ |

The proof will be sketched for the special case where £ consists of a single

triangle T in a plane 7τ. Let F ζi σ* By virtue of the remarks preceding this

lemma, we may assume, without loss of generality, that there exists a sequence

\En\, En C 8, with En C 77, d{EmF) -> 0, and | £ n | -> λ ' (F) . If £ C 8, and

£ C F°, then £ C En for sufficiently large n. Hence λ 7(F) ^ Lebesgue measure

of F ° [ 6 ] .

Let σ ' C 8 be a family of disjoint subsets of F. Then it is easy to see that

2Lp/£~ / λ ' ( F ' ) ^ Lebesgue measure of F°, and so λ(F) = Lebesgue measure

of F ° . The lemma results for the special case considered.

The general case follows when the lemma has been proved under the as-

sumption that £ consists of a finite number of triangles.

LEMMA 4.4. / / F G S, then λ(F) = λ '(F).

Proof. It is sufficient to show that λ(F) ^ λ ' (F) . Let σ be as in Defin-

ition 4.1. If d{EmF) -> 0 such that \En\ -> λ '(F), then there exist homeomor-

phisms ΛΛ of F onto £ „ with d{Fk,Fk) -* 0, where F ^ C σ and F ^ = hn{Fk).

We use the preceding lemma and the lower semi-continuity of λ to obtain

2-,Fkf-σλ{Fn) ^ | £ w [ a n d λ ( F ^ ) S Πm inf^^^ λ{Fn). Consequently
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Σ λ{Fk) 1 Σ [lim inf λ{Fk

n)}
Fk C σ F * C σ 1 / n o J

^ Urn inf Σ λ(Fk

n) I lim inf \En\ = λ'(F),
n -> oo Fk €1 σ rc->oo

and the lemma follows.

LEMMA 4.5. If x is light on Q, then L(χ) = λ{χ'(Q)).

Proof. If &' is the (Frechet) surface determined by x\ then there exists a

sequence of polyhedra Ψn such that D(Pn,J&') -> 0 and ielementary area of Pn}

-> L(J&') = L(%'). We may suppose that P Λ has a topological representation πn

on ρ. Since πn(Q) G £ for each Λ , and ^(77^(<?),%'((?)) = D(Pn,&') - 0, we see

that

Now if En -> Λ ' ( 0 SO that \En\ •* λ'{x'(Q)), then we define x'n on ^ by

%^ = hn* x\ where hn is a homeomorphism of x'(Q) onto En such that
s u P p C x / ( Q ) lip ~* nn(p)\\ < d{x'{Q),E^) + 1/n. It is clear that %^ represents

a polyhedron P Λ whose elementary area is \En\. Also, D(x^9 x') < d{E n,x'{Q))

+ l//ι. Therefore D{x'mx') -> 0 and

L(%') ^ lim inf L U O = lim inf \En\ = λ ' ( * ' ( £ ) ) ^ λ ( % ' ( ( ? ) ) .

LEMMA 4.6. //% i5 /igΛί in Q° and constant on Q , then L(x) = λ(x'(Q)).

The proof that L(x) = λ{x'(Σ)) is similar to that of Lemma 4.5. The lemma

results from the observation that L (x) - L (£) = λ(£ '(Σ)) = λ(x'(Q)).

T H E O R E M 4.1. We have L(χ) = λ(*'(<?)).

The proof of this theorem is similar to that of Lemma 3.4.

REFERENCES

1. S. Banach, Theorie des operations ίineaires, Monografje Matematyczne 1 Warsaw,
1932.

2. L. Cesari, Caratterizzazione analitica delίe superficie continue di area finita
secondo Lebesgue, Ann. Scuola Norm. Super. Pisa (2), 10 (1941), 253-294; 11 (1942),
1-42.

3. , Suίle superficie di Frechet, Rivista Mat. Univ. Parma, 1 (1950), 19-44.



250 EDWARD SILVERMAN

4. H. Federer, Essential multiplicity and Lebesgue area, Proc. Nat. Acad. Sci. U.S.A.
34(1948), 611-616.

5. T. Rado, Length and area, Colloquium Publications Amer. Math. Soc, 30, New York
1948.

6. E. Silverman, Definitions of Lebesgue area for surfaces in metric spaces, Rivista
Mat. Univ. Parma, 2 (1951), 47-76.

7. , An intrinsic property of Lebesgue area, Rivista Mat. Univ. Parma, 2
(1951), 195-201.

KENYON COLLEGE




