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R. STEINBERG AND R. M. REDHEFFER

1. Introduction. The equation

(1) aea + beβ + . . . + seσ = 0

would be true if all coefficients a, b, , s were zero; it could be true with

nonzero coefficients if any two exponents were equal; and it could be true, with

nonzero coefficients and unequal exponents, if either the one or the other were

transcendental. Thus 1 + eιπ — 0, and e (e) — e 2 = 0. Now, the Lindemann

theorem says that the equation can be true in these cases only:

LiNDEMANN THEOREM. The number e cannot satisfy an equation of the

form (1), in which at least one coefficient a, b, ••• , s is different from zero, no

two exponents (X, β, , σ are equal, and all numbers α, b9 « , s; Gi, β, , σ

are algebraic.

The proof of this goes back to Hermite [2], Lindemann [5], and Weierstrass

[10]. Since then the theorem has been a favorite topic for expository articles,

alternative proofs, and so on, which turn up at the rate of several per decade.

One naturally asks whether any good could come of still another note on this

well-worn subject.

What we have in mind here is the following. In [3] there is a discussion by

Hubert of the transcendence of e and 77, in which the tools are chiefly analytic

in character, and in which the proof for 77 is a simple extension of the proof for

e. Hubert remarks that the general Lindemann theorem can be obtained in the

same way. This line of inquiry was followed up by Klein [4, pp. 61-77], but in the

authors' opinion the treatment is not complete. What appears to be the most deli-

cate part is relegated to a footnote. Our primary objective, then, is to supply

the details in the Hermite-Hilbert proof. Naturally we have drawn heavily on

[3] and [4], and the whole treatment is expository in character. The exposition

is made to depend on more elementary algebraic ideas than is the case, for

example, in [7, pp. 1-24] and [8, p. 40] .
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The proof divides itself naturally into two parts, analytic and algebraic. In

the analytic part, a weakened form of the Lindemann theorem is proved; this is

Theorem 1 of our paper. In the algebraic part, the hypotheses of the Lindemann

theorem and of Theorem 1 are shown to be equivalent; the statement is given in

Theorem 2.

This discussion is preceded by a proof that e is transcendental, which con-

tains the central idea of the proof of the Lindemann theorem, and yet is not

beclouded by algebraic and analytic complexities. In this way the presentation

is made sufficiently complete for classroom use, and at the same time the major

steps in the more general theorem are well motivated. We have taken care, how-

ever, that the proof of the main theorem be logically independent of the more

special discussion, and that no gaps be left for the reader to fill in by analogy.

2. Transcendence of e. Suppose e algebraic, so that one has the special

case of (1),

(2) a0 + ae + be2 + + sen = 0,

for integers α 0 , α, b, , s with a0 4- 0. We try to approximate e (k - 1, 2, ,

n) by rational numbers M^/M with error small compared to the denominator M.

Thus

(3) ek = (Mk + ek)/M,

where the M's are integers and the ε 's are small. Substituting (3) in (2) gives

(4) a0M + (aMx + bM2 + + sMn) + (αβ1 + be2 + + s€n) = 0

after multiplication by M. We set up the approximation (3) in such a way that

the part of (4) containing M's does not vanish while the part containing 6's has

absolute value less than unity. The integral character of α 0 , α, b, « , and

M9 Mx> M2, ** shows then that (4) is impossible.

To show that the integral part of (4) does not vanish it would suffice to

exhibit a prime p > a0 that divides Mx, M2, * Mn, but does not divide M.

Now, an integer which has simple divisibility properties and is at the same

time simply related to e is given by

(5) f°° e" 2 zP~ι z* rfz = I
( p - Ό ! J° 1

I m (p) (k = 0)

U ( p ) (A > 1),

Here and elsewhere we use the notation



ANALYTIC PROOF OF THE LINDEMANN THEOREM 2 3 3

(6) m(p) = multiple of p,

m(p) = integer, not multiple of p.

The truth of (5) is evident from Γ(p + k) = (p + k - 1)!, which is trivial for the

integral arguments k> p that occur here.

Having (5), we are ready to define the F s . The idea is to arrange matters so

that the second case (5) occurs for Ml9 M2> •• but the first occurs for M itself.

This is accomplished as follows. Let

(7) A f = — f e~> P(z)dz

where

(8) P(z) = zP-1[{z-l)(z-2)...(z-n)]P.

If we imagine the bracket in P (z) expanded and use (5), we see that M = m(p)

whenever p > n» (Note, however, that if P (z) had contained z? as a factor, then

we should have obtained m(p). This fact, which dictates the rather strange form

(7), will be fully exploited.) From (3) we have Uk + €k = e M, which suggests

(9)
Λ ( p - Ό !

when we divide the range of integration at the point k and put e inside. The

change of variable z — k = u in (9) gives

(11) Mk =

Equation (8) shows that P (u + k) contains uP as a factor, for k = 1, 2, « « , n,

so that we have the second case (5); and hence M^ = m(p) (k = 1, 2, , n).

On the other hand for €, one obtains the estimate

(12) | € A | < K / / P / ( p - l ) ! U = 0, 1, . . . ,τι)

by inspection of (10), and this tends to zero as p—»oc. First make the prime

p > n, so that M - m(p); then make p > α 0 , so that also aQM = m(p); and

finally make p so large that the part of (4) involving the e's is less than 1 in

absolute value.
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3. Lemmas. The subsequent discussion requires certain lemmas, which we

present now so that we shall not have to break the thread of the argument later.

Only Lemma 1 is needed for the proof of Theorem 1; the others are required,

however, for Theorem 2.

LEMMA 1. Let p , p , , p be the roots of the polynomial equation

azm + bzm ι + czm 2 + = 0 with integral coefficients α, i, c, . Then

any symmetric polynomial in the quantities ap^, ap2, ••• , αpm> with integral

coefficients, is an integer.

LEMMA 2. Suppose given a polynomial in m variables Cίj , in n variables

βi> ••• j and in k variables σ{9 which is symmetric in the θCs> in the β's, ••• ,

and in the σ's, and which has rational coefficients. If the OL's are chosen to be

all the roots of a polynomial equation with rational coefficients, and similarly

for the β's, , and for the σ's9 then the value of the polynomial is rational.

A polynomial is said to be irreducible over the rationale if it cannot be

factored into polynomials of lower degree with rational coefficients.

LEMMA 3. Any polynomial with rational coefficients can be factored into

irreducible polynomials with rational coefficients.

If &! is a root of an irreducible equation with rational coefficients, whose

other roots are α 2 , Ct3, ••• , α^, then the numbers GLif α 2 , ••• , Cίn are said to

be the conjugates of 0Lι. That the conjugates are well determined is shown by

the following:

LEMMA 4. Over the field of rationals, an algebraic number is a root of a

unique irreducible polynomial with rational coefficients and leading coefficient

unity. Such an equation has no multiple roots.

LEMMA 5. The Van der Monde determinant det | (p^)1 l \ vanishes only if two

or more of the p9s are equal.

Lemma 1, which follows (for example) from [9, pp.63, 264], is the only one

whose proof presents any difficulty. Lemma 2 follows easily from Lemma 1, by

induction on the number of sets of variables; Lemmas 3 and 4 follow from the

elementary theory of polynomials [ l , pp.94, 95]; and Lemma 5 is a simple exer-

cise in determinants [9, p. 214, ex.4].

Besides the algebraic lemmas given above, we shall need the following

analytic ones:
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LEMMA 6. Let a, b, « , s he any complex numbers, and let p. be any com-

plex numbers no two of which are equal. If φ(z) = az + bz + + sz n = 0

in z, then α = 6 = = s = 0.

To see this, let z — 1 + x with | x | < 1 and expand by the binomial theorem

to get φ{l+ x) as a convergent power series in x. Since the series vanishes

identically by hypothesis, each coefficient does. Thus

(13) α + & + . . + s = 0,

(14) apι + bp2 + . . . + spn = 0,

(15) api(pι - 1 ) + i p 2 ( p 2 - 1 ) +•••+ sp π (p π - D = 0,

Combining (14) with (15) changes the latter to

(16) ap\ + bp\ + . . . + sp2

n = 0 ,p\ + . . . + spn

a similar use of (14), (16) on the next equation gives

(17) ap\ + bp\ + . . . + sp3

n = 0 ,

and so on. The lemma now follows from (13), (14), (16), (17), « , and Lemma 5.

LEMMA 7. If a finite product of expressions like those in Lemma 6 is identi-

cally zero, then at least one expression is identically zero.

For proof, suppose that each expression has only a finite number of zeros in

1 < z < 2. Then so does the product. At least one expression therefore has

infinitely many zeros in 1 < z < 2; hence it has a limit point of zeros; and

hence, by analyticity, it is identically zero.

LEMMA 8. Suppose an expression φ(z) of the type considered in Lemma 6

has coefficients α, b, , s which are functions of certain variables (X, β, ,σ

If φ (z) is a symmetric function of (X, β9 , σ for every zy then the coefficients

a> b> , 5 are themselves symmetric functions of CC, β, « , σ.

To see this, interchange two of the variables 0C, β, , σ. The two functions

φ and φ after interchange are identically equal in z by hypothesis, and hence

corresponding coefficients are equal by Lemma 6: a = al9 b = b ί9 , 5 = s t .

Thus the interchange did not alter a> b> , s, so that these are symmetric

functions by definition.
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4. Analytic part of the proof. Here we prove the following theorem, which

has a generality intermediate between that of the Lindemann theorem and that of

the result established in §2:

THEOREM 1. The number e cannot satisfy an equation of the form

(18) α0 + a{eH + e*2 + . + < > )

+ s(e * + e 2 + ••• + e J) = 0,

where a0> a9 b, , s are nonzero integers and where the Cί's are all of the

nonzero roots of an algebraic equation with integral coefficients and leading

coefficient Ay the β's are the same for an equation with leading coefficient ;>,

and so on, up to the σ's for which the leading coefficient is S.

We try first to approximate the various blocks of terms in (18) by rational

numbers, so that

(19) eaι + e α 2 + . . . + eΛm = (A/t + eJ/M,

where the /lf's are integers and the e ' s are small. Substitution of (19) into (18)

gives (4) again, after multiplication by M. We define .!/ by (7), where P (z) now

has the form

(20) Piz) = zP~ι [ϊl(z - α, ) Π(z - βi) - lUz - σ, )] P (ΛB . . S)df

instead of the form (8), and where d — 1 is the degree of the expression in

brackets .

The hypothesis concerning the OC's shows that A ίl(z - Ot/) is a polynomial

with integral coefficients, and similarly for B il(z - βi), , S Π U - α/). Hence

any product of these polynomials has integral coefficients, and therefore P (z)

does. The coefficient of z? 1 in P (z) i s
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(21) ± [(11 α,-) (Π βj) . . (Π σk)f U S . . . S)dp = ± Gp,•k)ϊ U t f . . O ) ' = ± (y , s a y ,

which is not zero by the hypothesis of Theorem 1. Upon substitution into (7)

this term gives m(p) by (5), provided p > G in (21). But the other terms in the

expansion of P (z) give m(p) when substituted in (7), as we see again by (5); and

hence M = m{p) for p > G.

In defining Mι and €x we are guided by (9) and (10), but we take care that

complete symmetry among the α's be preserved; then Lemmas 1 and 8 will show

(perhaps) that certain expressions which arise are integers. Let

*• / 1 \ l «"^ Λ)~ . \ / 7

(23) £ — ? C«α'~Ip«^
and similarly for M2, €2, . , Mn, €n9 the role taken by the OC's in (22), (23)

being taken respectively by the β's, , or by the σ's. The paths of integra-

tion are, in (23), the straight lines from the origin to 01/, and, in (22), the straight

lines parallel to the real axis from 0t/ to + oo. The truth of (19) is a simple

consequence of Cauchy's theorem.

The substitution z — 01/ = u combines with (22) to give

(24) Mγ = Γ e~u Σ P(u+<Xi)du

when we interchange the order of (finite summation and integration. If we con-

sider P (u + w), with w a variable, it is evident from (20) that each power of u

has a s coefficient a polynomial in w with integral coefficients. But because of

the high power of A that occurs a s a factor of P (z) in (20), these coefficients

are in fact polynomials in Aw with integral coefficients. Setting w = <Xl9 w =

α 2 , , w - QLm in success ion and adding, we see that P(u + Cλ{) has coef-

ficients which are symmetric polynomials in A(λu Ad2j ••• > A Cλm with integral

coefficients. By Lemma 1, then, they are integers.

Since P (z) is divisible by (z — U()P, we know that P (u + Cce ) is divisible by

υP. Hence P (u + CCj) is also divisible by υP, and the fact that the coefficients

are integers combines with (24) and (5) to give Mι = m ( p ) . Similarly M2 -

m(p), •• , Mn = m(p).

By inspection of (23) we get an estimate of the type (12); specifically,
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(25) ( p - 1 ) ! l e j < m | ά | e1*1 [ α ^ " 1 IP,

where | α | stands for the maximum | α t | , and where

fl = max | Π ( z - 0 C i ) . . . Π ( 2 - σ i ) | |Uf i S ) | d .

1*1 < 1*1

The factor m in (25) arises from the summation in (23), the first | α | arises from

the path of integration, and the remaining factors from the integrand. Similarly

for €2, • • • , €n. To complete the proof pick p > G so that M = m(p), then pick

p > α 0 so that a0M = m(p), and finally pick p so large that the part of (4) in-

volving the e's is less than 1 in absolute value.

5. Algebraic part of the proof. Having proved Theorem 1, we show that the

Lindemann theorem can be deduced from it. The proof involves three stages,

described by Lemmas 9, 11, and 12; the final result is stated as Theorem 2.

LEMMA 9. If e satisfies an equation of the type considered in the Lindemann

theorem, then e satisfies an equation of the same type in which α, ό, , s are

integers.

To establish Lemma 9, consider the expression aza + bz^ + ••• + szσ which

arises from the expression in the Lindemann theorem when we replace e by a

variable z* Since at least one of the numbers α, 6, , s is different from zero

we may assume that they all are. Suppose a has conjugates ax = α, a2, , β m ,

while b has conjugates bj, ••• , and 5 has conjugates s^. Form the product of

the various expressions that arise when α, b, , s are replaced by their conju-

gates, thus:

(26) Π (aiz
a+bjz

β+.. + skz
(T)

if j , •••, k

(27) EE AzPι

 +BzP2 + *.. + KzPn.

It is understood that all formally distinct factors are present in (26); the number

of factors is equal to the product of degrees of the irreducible equations satis-

fied by α, b, , s. In (27) we have collected terms and simplified as much as

possible, so that no two exponents p^ are equal. This is important.

At least one coefficient in (27) is different from zero. For, if not, the product

(26) is identically zero; by Lemma 7 one of the factors in (26) is identically

zero; and by Lemma 6, then, each of the coefficients in this factor is zero. But

the original coefficients a, b, 9 s are nonzero by hypothesis, and the conju-

gates are nonzero by definition.
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We assert next that the coefficients A, B, ••• 9K in (27) are rational. For

every z9 it is clear that the product (26) is a symmetric function in the α 's, re-

garded as variables; interchanging two α's only changes the order of the factors

in (26). By Lemma 8, the coefficients A, B, ••• , K in (27) are also symmetric

functions of the α's. Similarly, they are symmetric in the fe's, ••• , and in the

s's. Since (27) is obtained by expanding (26), the coefficients A, B9 , K are

polynomials in the α;, bj, , s^ with integral coefficients. By Lemma 2, then,

they are rational.

When z has the value e, the expression (26) vanishes, since the first factor

does. Therefore (27) also vanishes when z = e, and Lemma 9 follows when we

multiply (27) by a suitably chosen integer.

LEMMA 10. // e satisfies an equation of the type considered in the con-

clusion of Lemma % then e satisfies an equation of the form

ae ι + be z + •• + se = 0,

where a, b, , s are integers not all zero, where the exponents d; are all of

the roots of a polynomial equation with integral coefficients, and where no two of

these exponents are equal.

The proof of Lemma 10 involves little more than a change in notation. In the

conclusion of Lemma 9 we may assume that all the coefficients α, b, , 5 are

integers different from zero. It may happen that some of the conjugates of CC

appear among the other exponents β, , σ. Collect these together at the begin-

ning of the expression, and add enough terms, taking zero coefficients, so that

not only some, but all of the conjugates of CC appear. Thus one obtains

(aie
 ι + a2e

 2 + + ane
 n) + geΎ + . . . + fe® = 0

where α t = α, Cί2, * # # » &n a r e t n e conjugates of (X, and where y, , φ are a

subset of the exponents β, , σ in (1). Repeat, starting with the term ey, and

so on.

We note, first, that the process terminates after a finite number of steps,

since there are only finitely many exponents in (1). Second, no two exponents in

the final result are equal, by Lemma 4. Third, at least one coefficient is different

from zero; an example is aι — a Finally, the exponents are the roots of the

product of the various irreducible polynomials which have (Xj, yy, as their

roots; and since these polynomials have integral coefficients, so does their

product. Lemma 10 now follows by a trivial change in notation.

LEMMA 11. // e satisfies an equation of the type considered in the con-
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elusion of Lemma 10, then e satisfies an equation of the type (18), where the

α's are all the roots of an irreducible equation with integral coefficients, the

β's are all the roots of a different equation of the same type, and so on? up to

the σ's, which are the roots of still another such equation. The value of α0>

however, may be zero.

Starting from the result mentioned in the conclusion of Lemma 10, we take

the product of all expressions that can be obtained by permuting the α's. This

product is to be computed formally, without any simplification or combining of

terms; the formal character may be emphasized by considering the α's and α's

as variables. Each term of the product has the form Re^, where R is a product of

the α's, and Q is a linear combination of the α's with integral coefficients*

Symbolically,

(28) Π ( « i ^ + a2e
Cij + + %e fc) (ΐ, / , . . . , £ #

(29) k

with n\ factors in (28), nnl terms in (29).

If we change the order of the factors in (28), we get exactly the same product,

hence the same collection of terms (29). Now, interchanging two of the α's

amounts merely to changing the order of the factors in (28); hence such an inter-

change does not alter the collection (29). (It is insufficient for our purposes that

the value of the sum (29) is unaltered; we need to know that the sums obtained

before and after interchange actually consist of the same terms. That is why we

speak of a "collection" rather than a "sum").

Let us fix attention on a particular product of the α's, say Rp, and collect all

terms in the sum (29) that contain Rp as factcr:

(30) Rp(eQm + e Q h + . . . + eQi).

By the previous remarks the collection of terms (30) remains the same after any

interchange of the α's, and hence the exponents in (30) are merely permuted by

such an interchange. Thus it is that the product

(31) fit) = Π ( ί -<?/),

where Q; runs over the set of exponents in (30), is a symmetric function of the

α's: interchanging two α's permutes the Q's in (30), hence permutes the factors

in (31), hence does not alter f{t). By Lemmas 8 and 2, then, f{t) has rational

coefficients.
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Lemma 3 shows that f(t) in (31) can be written as a product of irreducible

polynomials over the rationale. Corresponding to each factor of f{t) is a set of

Q's, which we lump together to form a block of terms of the type desired in

Lemma 11. This process is repeated for each (different) R in (29), until the /?'s

are used up. Finally, we group together any blocks of terms that may be identi-

cal, to obtain a sum of the type described in the conclusion of Lemma 11.

We must still show that at least one coefficient is different from zero. But

this follows at once as in the paragraph after (27): replace e by a variable z,

recall that the OC's in (28) are unequal by Lemma 10, and use Lemmas 7 and 6.

We remark in passing that the work up to this point already contains the

fact that π is transcendental [3, (cf. also [6] )• For, if iπ is an algebraic number

Cί, we have 1 + ea = 0, and the product over the conjugates gives

The terms for which βfc = 0 combine with the 1 to give a term α 0 > 1> and a

simplified version of the discussion leading to Lemma 11 shows that the re-

maining β's are all the roots of a polynomial equation with integral coefficients.

Theorem 1 now applies.

LEMMA 12. // e satisfies an equation of the type considered in the con-

clusion of Lemma 11, then e satisfies an equation of the type (18).

The equation reached in the conclusion of Lemma 11 has the form (18) with

a0 possibly equal to zero and with the Oί's all the roots of one irreducible e-

quation, the β9s of another, and so on. The coefficients α, b, are not zero,

by Lemma 11, and no two exponents are equal, in view of Lemma 4. Our task is

to produce a nonzero term α 0 if it is not already present.

To this end, we suppose α0 absent and multiply (18) by e ι + e 2 + +

e ; . Actual calculation gives

KόZ) (e ~σi
+ e

The exponents on the right of (32) are the roots of Π(ί - (θLj - σ;)] = 0, which

has rational coefficients by the (now familiar) use of Lemmas 8 and 2. Since

none of these exponents is zero —this is important"we get a block of terms like

those in (18). Similarly for (χ_̂ e ι) ( ^ e ; ) , and so on. But when we reach the

σ's the situation changes: now some of the exponents are zero. Specifically,

we have
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where the terms e° arise from the choice i = /. These furnish the term α0 that

we are seeking: a0 = ms. As to the other terms in (33), the exponents are non-

zero, and are the roots of

Π [ί-(σ; -σ;)] = 0.

Thus we have proved:

THEOREM 2. If e satisfies an equation of the type considered in the

Lindemann theorem, then e satisfies an equation of the type considered in

Theorem 1.
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