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1, Introduction. Let A and B be n x n matrices whose elements lie in an

infinite perfect1 field F. Alfred Brauer [l ] and W. V. Parker [2] have considered

the question: "When do A and B have the same characteristic equation?" Their

results have been sufficiency conditions with special forms of A and B. W. T.

Keid [3] has considered a related problem.

The present paper is concerned with the following theorem that contains the

results of Brauer and Parker as special cases.

THEOREM. A necessary and sufficient condition for matrices A and B to

have the same characteristic equation is that there exist a nonsinguίar matrix

P (with elements in F) such that for Λ' = A — P ι BP;

Every polynomial g in A and Λ', each term of which contains N at least once,

is nilpotent.

We introduce a special canonical form in <2 and give the proof in v3.

2. Canonical forms. For any matrix A, there exists a nonsingular matrix

Pi, with elements in F, such that

(2.1) P:ιΛP, = A x + Λ 2 + • • • + A k ,

where the characterist ic equation of A{ is [ p / ( # ) ] ι = 0, and pi(x) is an

irreducible polynomial over F. Moreover, for each A{ we have the decomposition

by the nonsingular matrix P2[ with, elements in F:

(2.2) P ΰ ι A i P 2 i = A t l + A i 2 + . . + A i k . ,

i n w h i c h e a c h Ai^is n o n d e r o g a t o r y w i t h c h a r a c t e r i s t i c e q u a t i o n [pi(x)] ι^ = 0

a n d i s of t h e f o r m [ 4 , p . 7 5 0 ]

Every irreducible equation over F is separable.
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(2.3) "•in —

Ci h 0 . . . 0 \

0 Ci h . . . 0

0

where C t is the companion matrix of Pi(x)9 and occurs α ^ times down the main

diagonal; I{ is the identity matrix of order the degree of p;(%). Clearly

Letting P2 = ^21 4- P22 4- P2A; a n d P - P\ 2̂> w e have a direct sum de-

composition of A into matrices A/μ of form (2.3). We shall indicate this by

(2.4) Σ A
i μ

It should be pointed out that the existence of the canonical form (2.3) depends

only on the perfectness of the field F

3. Proof of the theorem. Necessity. Suppose A and B have the same charac-

teristic equation

m(x)= Π ίPi(x)]ai = 0.

We may then find matrices Pa and P& (see §2) such that

k ki

(3.1) Pa1 A Pa = + Σ Σ Λiμ>
1=1 μ=l

P?BPb =4- Σ Σ

where Aιμ and y4^ (for the same subscript i) are of the form (2.3) and thus have

the same blocks C( on the main diagonal. Moreover 4- Σ =1 ^'μ, a n ( l + Σ α = i ^ιM

have the same order since A and B have the same characteristic equation.

Clearly 4- Σ ^ - ^iμ * s c o n t a i n e ( ^ ^n t ^ algebra of all (X; x OCj matrices,
with elements in the field F(C(), whose elements below the main diagonal are
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zero. Moreover,

is in the radical of this algebra since all elements on or below the main diagonal

are zero. Thus g( + ^Γ ι

=ι Aiμ, l\'i)f for g satisfying the conditions of the theo-

rem, is a radical element and thus nilpotent. Hence, letting

Λ'1 = Nι + N2 + . . . + Nk = P~lAPa - PςιliPh,

we see that g( F α

- 1 A Pa, /V1) is nilpotent. Final ly, letting

P = Pb P~ι and Λ' = Pa Λ;1 P~ι = A - P~ι R P,

we have the result that

(3.2) Pa g(P-' A Pa, Nι)P~ι = g(A, N)

is nilpotent. This completes the proof of the necessity.

Sufficiency, Assume that a P exists such that every polynomial g, satisfying

the conditions of the theorem, is nilpotent. Define

Aθ = A - ΘN (N = A - P~ιBP),

mθ( λ ) = | λ / - Aθ\ = λn + ax ( 0 ) λ"""1 + . . . + an-ι(θ)λ + an(θ); where 0

is an indeterminate and aι(0) (i = 1, 2, , n) are polynomials in 0 with co-

efficients in F .

Clearly, m o ( λ ) = 0 and m ^ λ ) = 0 are the characterist ic equations of Ao ~ 4

and Ai - P~ι B P, respectively.

If we now let θ assume values from F we have

mo(Aθ) = mQ(A) + hθ{A9 N) = hθ(A,N);

moreover hβ(A, N) contains Λ; in each term and is nilpotent by hypothesis .

The characterist ic roots of mQ(Aβ) are m0{θ.lβ) (i~ 1, ••• , n), where the

C/Λ are the characterist ic roots of A@ Since mo(A$) is nilpotent we must have

(3.3) rno(al

0) = 0 (i = 1, . . . , n).

From (3.3) it is clearly seen that there can be only a finite number of different
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characteristic equations m$(λ) = 0, since all the characteristic roots of AQ are

roots of mo(λ) = 0. Since F is assumed to be infinite, this implies that a/(0) is

a constant independent of θ. Thus mo{λ) te= mί{\), and the proof of the suf-

ficiency is complete.
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