## SOME HYPERGEOMETRIC IDENTITIES

## J. D. NIBLETT

1. Introduction. T. W. Chaundy [3] has given some hypergeometric identities of which the most general is

(1) 
$$F(a, b; c; x) = h \sum_{n=0}^{\infty} \frac{(h - \alpha n + 1)_{n-1} (e)_n}{n! (c)_n}$$

$$\times {}_{4}F_{3} \begin{bmatrix} a, b, 1 + h (1 - \alpha)^{-1}, -n \\ e, h (1 - \alpha)^{-1}, h - \alpha n + 1 \end{bmatrix} (-x)^n F(e + n, h + (1 - \alpha) n; c + n; x).$$

In this paper we give a generalisation of (1), namely,

(2) 
$$p+sF_{q+t}\begin{bmatrix} a_{p}, b_{s}; \\ c_{q}, d_{t}; \end{bmatrix} = h \sum_{n=0}^{\infty} \frac{(h-\alpha n+1)_{n-1}}{n!} \frac{(b_{s})_{n} (e_{q})_{n}}{(d_{t})_{n} (c_{q})_{n}} \times p+2F_{q+2} \begin{bmatrix} a_{p}, 1+h(1-\alpha)^{-1}, -n \\ e_{q}, h(1-\alpha)^{-1}, h-\alpha n+1 \end{bmatrix} (-x)^{n} \times s+q+1F_{t+q} \begin{bmatrix} b_{s}+n, e_{q}+n, h+(1-\alpha)n; \\ d_{t}+n, c_{q}+n; \end{bmatrix},$$

where  $(h - \alpha n + 1)_{-1}$  means  $(h - \alpha n)^{-1}$  and  $a_{\lambda}$ ,  $(a_{\lambda})_n$ ,  $a_{\lambda} + n$  denote  $a_1 \cdots a_{\lambda}$ ;  $(a_1)_n \cdots (a_{\lambda})_n$ ; and  $a_1 + n$ ,  $a_{\lambda} + n$ , respectively; and from (2), we deduce some other identities.

2. Proof of (2). The following is a simple extension of Dr. Chaundy's proof. Comparing the coefficients in (2) of  $(a_p)_N/N!$ , we have to prove that

$$\frac{(b_s)_N x^N}{(c_q)_N (d_t)_N} = \{h + (1 - \alpha)N\} \sum_{n=N}^{\infty} \frac{(h - \alpha n + 1)_{n-1} (b_s)_n (e_q)_n (-n)_N}{n! (d_t)_n (c_q)_N (e_q)_N (h - \alpha n + 1)_N} (-x)^n$$

$$\times$$
  $s+q+1F_{t+q}$ .

Writing n = N + r, we find that this reduces to

$$1 = \{ h + (1 - \alpha) N \} \sum_{r=0}^{\infty} \frac{[h + (1 - \alpha) N + 1 - \alpha r]_{r-1} (b_s + N)_r (e_q + N)_r}{(d_t + N)_r (c_q + N)_r r!} (-x)^r$$

$$\times s + q + 1 F_{t+q} \begin{bmatrix} b_s + N + r, e_q + N + r, h + (1 - \alpha)(N + r); \\ d_t + N + r, c_q + N + r; \end{bmatrix}$$

The term independent of x on the right is unity. It remains to be proved that the coefficient of any positive power of x vanishes on the right, that is, when M > 0.

$$\frac{(b_s + N)_M (e_q + N)_M}{(d_t + N)_M (e_q + N)_M} \sum_{r=0}^{M} (-1)^r \frac{[h + (1 - \alpha) N + 1 - \alpha r]_{M-1}}{r! (M-r)!} = 0.$$

But this is the coefficient of  $x^{M-1}$  in

$$\frac{(b_s + N)_M (e_q + N)_M}{M (d_t + N)_M (c_q + N)_M} (1 - x)^{-h - (1 - \alpha)N - 1} [1 - (1 - x)^{\alpha}]^M,$$

in which the lowest term is  $x^{M}$ .

This completes the formal proof of (2). The rearrangement of the infinite series requires absolute convergence, which is secured when x is "sufficiently small", at least for the case p = q + 1, s = t, in which we are particularly interested.

3. A special case. If in (2) we write s=t,  $b_k=d_k$  for  $k=1,2,\dots,s$ , and  $e_k=c_k$  for  $k=1,\dots,q$ , then we obtain

(3) 
$$(1-x)^h {}_p F_q \begin{bmatrix} a_p; \\ c_q; x \end{bmatrix}$$
  

$$= h \sum_{n=0}^{\infty} \frac{(h-\alpha n+1)_{n-1}}{n!} {}_{p+2} F_{q+2} \begin{bmatrix} a_p, 1+h(1-\alpha)^{-1}, -n \\ c_{n-h}(1-\alpha)^{-1}, h-\alpha n+1 \end{bmatrix} \left( \frac{-x}{(1-x)^{1-\alpha}} \right)^n.$$

4. Other cases. If

(4) 
$$p+2F_{q+2}\begin{bmatrix} a_{p}, 1+h(1-\alpha)^{-1}, -n \\ e_{q}, h(1-\alpha)^{-1}, h-\alpha n+1 \end{bmatrix} = \frac{(\sigma_{\mu})_{n}}{(\rho_{\nu})_{n}},$$

then (2) and (3) reduce to simpler expressions.

4.1. In the case p = q + 1, (2) becomes

$$(5) \quad q+s+1F_{q+t}\begin{bmatrix} a_{q+1}, b_s; \\ c_q, d_t; \end{bmatrix} = h \sum_{n=0}^{\infty} \frac{(h-\alpha n+1)_{n-1} (b_s)_n (e_q)_n (\sigma_{\mu})_n}{n! (d_t)_n (c_q)_n (\rho_{\nu})_n} (-x)^n \\ \times \quad q+s+1F_{q+t} \begin{bmatrix} b_s+n, e_q+n, h+(1-\alpha) n; \\ d_t+n, c_q+n; \end{bmatrix};$$

and (3) becomes

(6) 
$$(1-x)^h \ _{q+1}F_q \begin{bmatrix} a_{q+1}; \\ c_q; \end{bmatrix} = h \sum_{n=0}^{\infty} \frac{(h-\alpha n+1)_{n-1}}{n!} \frac{(\sigma_{\mu})_n}{(\rho_{\nu})_n} \left( \frac{-x}{(1-x)^{1-\alpha}} \right)^n,$$

which, for appropriate values of  $\alpha$ , gives a relation between hypergeometric functions of argument x and  $-x(1-x)^{\alpha-1}$ .

4.2. In the case q=1,  $\alpha=1/2$ ,  $a_1=a$ ,  $a_2=2h$ , c=2a, (4) is summed by Watson's Theorem [1, p.16], and vanishes for odd powers of n. Then (6) becomes (see [2, formula (4.22), with  $\alpha+\beta=a$ ,  $\alpha=h$ ])

(7) 
$$(1-x)^{h} {}_{2}F_{1} \begin{bmatrix} a, 2h; \\ 2a; \end{bmatrix} = {}_{2}F_{1} \begin{bmatrix} h, a-h; \\ a+1/2; \end{bmatrix} = \frac{-x^{2}}{4(1-x)}$$

and the corresponding formula (5) is

(8) 
$$s+2F_{s+1} \begin{bmatrix} a, 2h, b_s; \\ 2a; d_s; \end{bmatrix} = \sum_{m=0}^{\infty} \frac{(b_s)_{2m} (h)_m (a-h)_m}{(d_s)_{2m} m! (a+1/2)_m} \left( \frac{-x^2}{4} \right)^m$$

$$\times {}_{s+2}F_{s+1} \begin{bmatrix} b_s + 2m, 2a + 2m, h + m; \\ d_s + 2m, 2a + m; \end{bmatrix} .$$

If  $\alpha = -1$ , q = 2,  $a_1 = \beta$ ,  $a_2 = \gamma$ ,  $a_3 = \delta$ ,  $e_1 = 1 + \beta - \gamma$ ,  $e_2 = 1 + \beta - \delta$ ,  $h = \beta$ , (4) can be summed by Dougall's formula [1, p. 25],

(9) 
$${}_{5}F_{4}\begin{bmatrix} \beta, 1+\beta/2, \gamma, \delta, -n \\ \beta/2, 1+\beta-\gamma, 1+\beta-\delta, 1+\beta+n \end{bmatrix} = \frac{(1+\beta)_{n} (1+\beta-\gamma-\delta)_{n}}{(1+\beta-\gamma)_{n} (1+\beta-\delta)_{n}};$$

equation (5) becomes

(10) 
$$_{s+3}F_{s+2}\begin{bmatrix} \beta, \gamma, \delta, b_s; \\ c_1, c_2, d_s; \end{bmatrix}$$

$$= \beta \sum_{n=0}^{\infty} \frac{(\beta + n + 1)_{n-1} (b_s)_n (1 + \beta)_n (1 + \beta - \gamma - \delta)_n}{n! (d_s)_n (c_1)_n (c_2)_n} (-x)^n$$

$$\times {}_{s+3}F_{s+2} \begin{bmatrix} b_s + n, & 1 + \beta - \gamma + n, & 1 + \beta - \delta + n, & \beta + 2n; \\ d_s + n, & c_1 + n, & c_2 + n; \end{bmatrix};$$

and (6) becomes Whipple's formula [2, p. 250, where references are given]:

(11) 
$$(1-x)^{\beta} {}_{3}F_{2}\begin{bmatrix} \beta, & \gamma, & \delta; \\ 1+\beta-\gamma, & 1+\beta-\delta; \end{bmatrix}$$

$$= {}_{3}F_{2}\begin{bmatrix} \beta/2, & (1+\beta)/2, & 1+\beta-\gamma-\delta; & -4x \\ 1+\beta-\gamma, & 1+\beta-\delta; & (1-x)^{2} \end{bmatrix}.$$

4.3. If 
$$\alpha = -1$$
,  $q = 4$ ,  $a_1 = \beta$ ,  $a_2 = \gamma$ ,  $a_3 = \delta$ ,  $a_4 = \epsilon$ ,  $a_5 = \theta$ ,
$$e_1 = 1 + \beta - \gamma$$
,  $e_2 = 1 + \beta - \delta$ ,  $e_3 = 1 + \beta - \epsilon$ ,  $e_4 = 1 + \beta - \theta$ ,  $h = \beta$ ,

then using Whipple's transformation [1, p. 25],

in place of (4), we obtain

(13) 
$$_{s+5}F_{s+4}\begin{bmatrix} \beta, \gamma, \delta, \epsilon, \theta, b_s; \\ c_1, c_2, c_3, c_4, d_s; \end{bmatrix}$$

$$=\beta \sum_{n=0}^{\infty} \frac{(\beta+n+1)_{n-1} (b_s)_n (1-\beta-\gamma)_n (1-\beta-\delta)_n (1+\beta)_n (1+\beta-\epsilon-\theta)_n}{n! (d_s)_n (c_1)_n (c_2)_n (c_3)_n (c_4)_n}$$

$$\times {}_{4}F_{3}$$
  $\begin{bmatrix} 1+\beta-\gamma-\delta, & \epsilon, & \theta, & -n \\ 1+\beta-\gamma, & 1+\beta-\delta, & \epsilon+\theta-\beta-n \end{bmatrix} (-x)^{n} \times$ 

$$\times s + 5 \dot{f} s + 4 \begin{bmatrix} b_{S} + n, & 1 + \beta - \gamma + n, & 1 + \beta - \delta + n, \\ d_{S} + n, & c_{1} + n, & c_{2} + n, & c_{3} + n, \end{bmatrix}$$

$$\frac{1 + \beta - \epsilon + n, & 1 + \beta - \theta + n, & \beta + 2n;}{c_{4} + n;} x$$

If  $b_k=d_k$  for  $k=1,\cdots$ , s,  $c_1=1+\beta-\gamma$ ,  $c_2=1+\beta-\delta$ ,  $c_3=1+\beta-\epsilon$ ,  $c_4=1+\beta-\theta$ , this reduces to

$$(14) \quad (1-x)^{\beta} \, {}_{5}F_{4} \left[ \begin{array}{c} \beta, \, \, \gamma, \, \, \delta, \, \, \epsilon, \, \, \theta; \\ 1+\beta-\gamma, \, \, 1+\beta-\delta, \, \, 1+\beta-\epsilon, \, \, 1+\beta-\theta; \end{array} \right] \\ = \sum_{n=0}^{\infty} \, \frac{(\beta+n+1)_{n-1} \, (1+\beta)_{n} \, (1+\beta-\epsilon-\theta)_{n}}{n \, ! \, (1+\beta-\epsilon)_{n} \, (1+\beta-\theta)_{n}} \\ \times \, {}_{4}F_{3} \left[ \begin{array}{c} 1+\beta-\gamma-\delta, \, \, \epsilon, \, \, \theta, \, -n \\ 1+\beta-\gamma, \, \, 1+\beta-\delta, \, \, \epsilon+\theta-\beta-n \end{array} \right] \left( \frac{-x}{(1-x)^{2}} \right)^{n}.$$

If

$$\beta = \frac{1}{2} a - b$$
,  $\gamma = 1 - b$ ,  $\delta = -\frac{1}{2} a$ ,  $\epsilon = 1 + \frac{1}{2} a$ ,  $\theta = b$ ,

by Bailey's result [1, p. 30, formula (1.3)],

(15) 
$${}_{4}F_{3}\begin{bmatrix} a, 1+a/2, b, -n \\ a/2, 1+a-b, 1+2b-n \end{bmatrix} = \frac{(a-2b)_{n} (-b)_{n}}{(1+a-b)_{n} (-2b)_{n}},$$

this becomes

(16) 
$$(1-x)^{-b+a/2} {}_{5}F_{4} \begin{bmatrix} -b+a/2, \ 1-b, -a/2, \ 1+a/2, \ b; \\ a/2, \ 1+a-b, -b, \ 1-2b+a/2; \end{bmatrix}$$

$$= {}_{3}F_{2} \begin{bmatrix} (a-2b)/4, (a-2b+2)/4, \ a-2b; \ \frac{-4x}{(1-x)^{2}} \end{bmatrix}.$$

4.4. If we take  $\alpha = 0$ , q = 0 and use Vandermonde's theorem in place of (4), we obtain

(17) 
$$s+1F_{s} \begin{bmatrix} a, b_{s}; \\ d_{s}; \end{bmatrix}$$

$$=\sum_{n=0}^{\infty} \frac{(b_s)_n (h-a)_n}{n! (d_s)_n} (-x)^n {}_{s+1}F_s \begin{bmatrix} b_s+n, h+n; \\ d_s+n; \end{bmatrix}$$

and if  $b_k = d_k$  for  $k = 1, \dots s - 1$ ,  $b_s = b$ ,  $d_s = h$  this reduces to Euler's identity,

(18) 
$$(1-x)^b {}_2F_1 \begin{bmatrix} a, b; \\ h; \end{bmatrix} = {}_2F_1 \begin{bmatrix} h-a, b; \\ h; \end{bmatrix} .$$

4.5. Multiplying (7) by  $(1-x)^{-h}$  and equating coefficients of x, we obtain

(19) 
$${}_{3}F_{2}\begin{bmatrix} a-h, -n/2, & (1-n)/2 \\ a+1/2, & 1-h-n \end{bmatrix} = \frac{(a)_{n} & (2h)_{n}}{(2a)_{n} & (h)_{n}},$$

which is a particular case of Saalschutz' theorem. Similarly from (16) we get

(20) 
$$_{3}F_{2}\begin{bmatrix} a-2b, a/2-b+n, -n\\ 1+a/2-2b, 1+a-b \end{bmatrix} = \frac{(1-b)_{n} (-a/2)_{n} (1+a/2)_{n} (b)_{n}}{(a/2)_{n} (1+a-b)_{n} (1+a/2-2b)_{n}}.$$

This is a special case of

(21) 
$${}_{3}F_{2}\begin{bmatrix} a, b, -n \\ e, 2+a+b-e-n \end{bmatrix} = \frac{(e-b-1)_{n} (e-a-1)_{n} (\omega+1)_{n}}{(e)_{n} (e-a-b-1)_{n} (\omega)_{n}},$$

where

$$\omega = \frac{(e-a-1)(e-b-1)}{e-a-b-1}$$
,

which is, in Whipple's notation, a particular case of the relation between the quantities  $F_p(0; 4, 5)$  and  $F_p(2; 4, 5)$ . [1, p. 85; 4]. This gives a generalisation of (16),

(22) 
$$(1-x)^{2a} {}_{5}F_{4}\begin{bmatrix} 2a, e-c-1, 2a-e+1, 1+\phi, 1+\theta; \\ 2a+c+2-e, e, \theta, \phi; x \end{bmatrix}$$

$$= {}_{3}F_{2}\begin{bmatrix} a, a+1/2, c; -4x \\ e, 2+c+2a-e; (1-x)^{2} \end{bmatrix},$$

where  $\theta$ ,  $\phi$  are the roots of  $m^2 - 2am + (e - c - 1)(2a + 1 - e) = 0$ . Comparing with (14), we have

(23) 
$$_{4}F_{3}\begin{bmatrix} e-\theta-1, 1+\phi, e-c-1, -n\\ 2a-\theta, e, \phi+e-c-2a-n \end{bmatrix} = \frac{(c)_{n}}{(e)_{n}} \frac{(2a-\phi)_{n}}{(1+2a-\phi-e+c)_{n}}.$$

This is a generalisation of (15); we obtain (15), (16) from (22), (23) by taking a = (a - 2b)/4, c = a - 2b, e = 1 + a - b,  $\theta = -b$ ,  $\phi = a/2$ .

I should like to take this opportunity of thanking Dr. Chaundy for many kindnesses and especially for allowing me to see his most recent paper before it was published.

## REFERENCES

- 1. W. N. Bailey, Generalised hypergeometric series, University Press, Cambridge, England, 1935.
- 2. \_\_\_\_\_, Products of generalised hypergeometric series, Proc. London Math. Soc. (2) 28 (1928), 242-254.
- 3. T. W. Chaundy, Some hypergeometric identities, J. London Math. Soc. 26 (1951), 42-44.
- 4. F. J. W. Whipple, A group of generalised hypergeometric series: relations between 120 allied series of the type  $F\left[ {a,b,c\atop e,f} \right]$ , Proc. London Math. Soc. (2) 23 (1925), 104-114.

University of Nottingham