SOME HYPERGEOMETRIC IDENTITIES

J. D. NIBLETT

1. Introduction. T. W. Chaundy [3] has given some hypergeometric identities
of which the most general is
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In this paper we give a generalisation of (1), namely,
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where (A — 0n + 1)-; means (A — an)”! and ayy (ay)ny @y +n denote ay -+, a; ;
(ap)p 7+« (ay)p; and ay +n, +++, ay+n, respectively; and from (2), we deduce
some other identities.

2. Proof of (2). The following is a simple extension of Dr. Chaundy’s proof.
Comparing the coefficients in (2) of (a,)y/N!, we have to prove that
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Writing n = N + r, we find that this reduces to
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The term independent of x on the right is unity. It remains to be proved that

the coefficient of any positive power of x vanishes on the right, that is, when

M> 0,
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in which the lowest term is xM,
This completes the formal proof of (2). The rearrangement of the infinite

3

series requires absolute convergence, which is secured when x is ‘‘sufficiently

small’’, at least for the case p = ¢ + 1, s = ¢, in which we are particularly inter-

ested.

3. A special case. If in (2) we write s=¢, by = dy for k=1,2,--+,s, and

e =cy for k=1, +++, q, then we obtain

(3) Q- qu[CP’. x]

<  (h—Un+1)p-y ap, L+ h(l =)™}, —n —x n
= h Z P+2Fq+2 .
n=o0 1

nl cq,h(l—a)—l,h-—otn+ O

4., Other cases, If
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then (2) and (3) reduce to simpler expressions.
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4.1, In the case p=q+1, (2) becomes
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and (3) becomes
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which, for appropriate values of &, gives a relation between hypergeometric
functions of argument x and —x (1 — x)*71,

4.2. In the case ¢=1, & =1/2, a; = a, a, = 2k, c=2a, (4) is summedby
Watson’s Theorem [1, p.16], and vanishes for odd powers of n. Then (6) becomes
(see [2, formula (4.22), with &+ B8 = a, & = A])
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and the corresponding formula (5) is
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(4) can be summed by Nougall’s formula [1, p. 25],
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equation (5) becomes
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69% 0, bs;
(10) s+3Fs+2 %

clyczyds;
B i (B+n+1p—y (bs)y Q+B)m A+B-y—0h (—x)
n=o n! (ds)n(cl)n (c2)n
bs +n, 1+ B~y+n, 1+B~-8+n, B+2n;
X s+3Fs+2 x5
dg +n, ¢y +n, cy +1n;

and (6) becomes Whipple’s formula [2, p. 250, where references are given]:
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then using Whipple’s transformation [1, p. 25],

Bs1+B/2, v » 5 €, 6 , -n
(12) ,F
B/2,1+B-vy, 1+B-6,1+B-6 1+B-0,1+B+n

1+B)n A+B-€=0) 1+B~y=8, & 0, —n
S 0+B-n U+B=0n 148 -y, 1485, €e+0-B-n]|

in place of (4), we obtain
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bs +n, 1+ 3=y +n, 1+-0+n,
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dg +n, ¢y + 1, Cyg +n, C3 +n,
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If bp=dp for k=1,-0,s, ci=1+fl-y, ca=1+B-8c3=1+f-5¢
c; =1+ 3~ 6, this reduces to
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by Bailey’s result [1, p.30, formula (1.3)],
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this becomes
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4.4. 1f we take o =0, ¢ = 0 and use Vandermonde’s theorem in place of (4),

we obtain
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(bs)n (h—a)
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and if by =dy for k=1,.-+s~1, bs = b, d; = h this reduces to Euler’s identity,

b a, b; h—a, by «
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4.5. Multiplying (7) by (1 - x)™* and equating coefficients of x, we obtain
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which is a particular case of Saalschutz’ theorem.

Similarly from (16) we get
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This is a special case of
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which is, in Whipple’s notation, a particular case of the relation between the
quantities Fy, (05 4, 5) and Fp (2; 4, 5). [1, p.85; 4]. This gives a generalisation
of (16),
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where 6, ¢ are the roots of m*—2am + (e —c~1) (22 + 1 — €) = 0. Comparing
with (14), we have
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e—-60-1,1+¢, e-=c-1, -n (¢ (20 — P)p

(23) 4F - .
e 20 ~0, e, p+e—~c—2a-n (e)y 1 +2a—-¢—e+c)y

This is a generalisation of (15); we obtain (15), (16) from (22), (23) by taking
a=(a~2b)/4, c=a—-2b, e=l+a-b, 6=~-b, p=a/2

[ should like to take this opportunity of thanking Dr. Chaundy for many
kindnesses and especially for allowing me to see his most recent paper before
it was published.
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