# DAVIS'S CANONICAL PENCILS OF LINES 

Janet McDonald

1. Introduction. The purpose of the present paper is to contribute to the study of two pencils of lines which appear in the development of the theory of conjugate nets on an analytic nonruled surface in ordinary space. The surface is herein referred to its asymptotic curves as parametric.

In his Chicago doctoral dissertation, Contributions to the theory of conjugate nets, W. M. Davis defined and studied several canonical configurations, considering the conjugate net as parametric. Among these configurations there are two pencils of lines, called Davis's first and second canonical pencils, which are studied in this paper.

Investigation is made of certain polar relations of the lines of the two pencils with respect to the bundle of quadrics each of which has contact of at least the third order with both curves of a conjugate net at a point. Certain loci which arise in the relation of the two pencils of lines to a pencil of conjugate nets at a point on a surface are studied. A generalization of Davis's canonical quadric is made, and some properties of the resulting one-parameter family of quadrics are demonstrated. Theorems relating to all the lines of one or both of the canonical pencils are shown to include theorems previously proved about certain particular lines.
2. Analytic basis. Let the projective homogeneous coordinates $x_{1}, x_{2}, x_{3}$, $x_{4}$ of a point $P_{x}[3, \mathrm{pp} .89,105-113,115-120,180-190]$, on an analytic nonruled surface $S$ in ordinary space be given by the parametric vector equation $x=x(u, v)$. Suppose the surface to be referred to its asymptotic net. Then $P_{x}$ satisfies two partial differential equations of the form

$$
\begin{align*}
& x_{u u}=p x+\theta_{u} x_{u}+\beta x_{v}, \\
& x_{v v}=q x+\gamma x_{u}+\theta_{v} x_{v} \tag{2.1}
\end{align*} \quad(\theta=\log \beta \gamma) .
$$

Let $x_{1}, x_{2}, x_{3}, x_{4}$, the local point coordinates of $P_{x}$, be referred to the tetrahedron of reference whose vertices are the points $x, x_{u}, x_{v}, x_{u v}$.

A conjugate net $N_{\lambda}$ on an integral surface of equations (2.1) may be represented by a curvilinear differential equation of the form

$$
\begin{equation*}
d v^{2}-\lambda^{2} d u^{2}=0 \tag{2.2}
\end{equation*}
$$

$$
(\lambda \neq 0)
$$

and the associate conjugate net by a similar equation of the form

$$
\begin{equation*}
d v^{2}+\lambda^{2} d u^{2}=0 \quad(\lambda \neq 0) \tag{2.3}
\end{equation*}
$$

The class of all conjugate nets on the surface $S$ each of which has the property that at each point of the surface its two tangents form with the tangents of the net (2.2) the same ratio constitutes a pencil of nets whose equation may be written

$$
\begin{equation*}
d v^{2}-\lambda^{2} h^{2} d u^{2}=0 \quad(\lambda h \neq 0) \tag{2.4}
\end{equation*}
$$

In equations (2.2), (2.3), and (2.4), the coefficient $\lambda$ is a function of $u$ and $v$, while $h$ is a constant independent of $u$ and $v$.

The bundle (linear two-parameter family) of quadrics each of which has contact of at least the third order with both curves of the conjugate net (2.2) at the point $P_{x}$ has been shown $[5, \mathrm{pp} .700,701]$ to have the following equation:
(2.5) $A\left(x_{2} x_{3}-x_{1} x_{4}-\frac{\gamma \lambda^{2} x_{2} x_{4}}{3}-\frac{\beta x_{3} x_{4}}{3 \lambda^{2}}\right)$

$$
\begin{aligned}
& +B\left[\left(\theta_{u}-\frac{\lambda_{u}}{\lambda}+\gamma \lambda^{2}\right) x_{3} x_{4}-\lambda^{2}\left(\theta_{v}+\frac{\lambda_{v}}{\lambda}+\frac{\beta}{\lambda^{2}}\right) x_{2} x_{4}-\lambda^{2} x_{2}^{2}+x_{3}^{2}\right] \\
& +C x_{4}^{2}=0
\end{aligned}
$$

If $B=0$, equation (2.5) reduces to the equation of a pencil of quadrics having second order contact with the surface $S$ at $P_{x}$ :

$$
\begin{equation*}
A\left(x_{2} x_{3}-x_{1} x_{4}-\frac{1}{3} \gamma \lambda^{2} x_{2} x_{4}-\frac{\beta x_{3} x_{4}}{3 \lambda^{2}}\right)+C x_{4}^{2}=0 \tag{2.6}
\end{equation*}
$$

3. The lines $l_{1}(k)$ and $l_{2}(k)$. Two types of congruences, $\Gamma_{1}$ and $\Gamma_{2}$, will be referred to in this paper [3, pp. 150-155]. A line $l_{1}$ at a point $P_{x}$ on the surface may be regarded as determined by the points $x:(1,0,0,0)$ and $y:(0,-a$, $-b, 1)$, and also by the planes $x_{3}+b x_{4}=0, x_{2}+a x_{4}=0$. If $a$ and $b$ are
functions of $u$ and $v$, the lines $l_{1}$ constitute a congruence $\Gamma_{1}$. The reciprocal line $l_{2}$ is the polar line of the line $l_{1}$ with respect to the quadric of Lie and may be regarded as determined by the points $\rho:(-b, 1,0,0)$ and $\sigma:(-a, 0,1,0)$, and also by the planes $x_{4}=0, x_{1}+b x_{2}+a x_{3}=0$. As in the case of the lines $l_{1}$, the lines $l_{2}$ constitute a congruence $\Gamma_{2}$ if $a$ and $b$ are functions of $u$ and $v$.

The lines $l_{1}$ and $l_{2}$ to be considered here are those for which

$$
a=\frac{1}{2}\left(\theta_{v}+\frac{\lambda_{v}}{\lambda}+k \frac{\beta}{\lambda^{2}}\right), b=\frac{1}{2}\left(\theta_{u}-\frac{\lambda_{u}}{\lambda}+k \gamma \lambda^{2}\right),
$$

where $k$ is a parameter independent of $u$ and $v$. These values of $a$ and $b$ are hereinafter denoted by $a_{k}$ and $b_{k}$, respectively. The lines $l_{1}$ and $l_{2}$ characterized by $a_{k}$ and $b_{k}$ are denoted by $l_{1}(k)$ and $l_{2}(k)$. Two lines $l_{1}(k)$ or $l_{2}(k)$ are called associate lines if they are characterized by values of $k$ which are numerically equal but opposite in sign. The pair of associate lines $l_{1}(1)$ and $l_{1}(-1)$ are the axis and the associate axis, respectively, of the conjugate net (2.2), whereas $l_{2}(1)$ and $l_{2}(-1)$ are the associate ray and the ray, respectively. The lines $l_{2}(5 / 3)$ and $l_{2}(-5 / 3)$ are the principal join and the associate principal join, respectively. The lines $l_{1}(0)$ and $l_{2}(0)$ are the cusp-axis and the flex-ray of the pencil of conjugate nets (2.4), while the lines $l_{1}(\infty)$ and $l_{2}(\infty)$ are Davis's first and second canonical tangents, respectively.

In asymptotic parameters, Davis's canonical plane [2, pp. 17,18] may be represented by the equation [ $5, \mathrm{pp} .703,706$ ]:

$$
\begin{equation*}
\gamma \lambda^{2} x_{2}-\frac{\beta x_{3}}{\lambda^{2}}-\frac{1}{2}\left[\frac{\beta}{\lambda^{2}}\left(\theta_{u}-\frac{\lambda_{u}}{\lambda}\right)-\gamma \lambda^{2}\left(\theta_{v}+\frac{\lambda_{v}}{\lambda}\right)\right] x_{4}=0 . \tag{3.1}
\end{equation*}
$$

Substitution of the coordinates of the points $x:(1,0,0,0)$ and $y:\left(0,-a_{k},-b_{k}\right.$, $1)$ in this equation shows that the lines $l_{1}(k)$ lie in Davis's canonical plane and hence in Davis's first canonical pencil, the pencil of lines in the canonical plane with center at $P_{x}$. Likewise, in asymptotic parameters the coordinates of Davis's canonical point are:

$$
\begin{align*}
& x_{1}=\frac{\beta}{2 \lambda^{2}}\left(\theta_{u}-\frac{\lambda_{u}}{\lambda}\right)-\frac{\gamma \lambda^{2}}{2}\left(\theta_{v}+\frac{\lambda_{v}}{\lambda}\right), \\
& x_{2}=-\frac{\beta^{2}}{\lambda^{2}}, x_{3}=\gamma \lambda^{2}, \quad x_{4}=0 \tag{3.2}
\end{align*}
$$

Substitution of these coordinates in the equations

$$
x_{4}=0, x_{1}+b_{k} x_{2}+a_{k} x_{3}=0
$$

shows that the lines $l_{2}(k)$ pass through the point (3.2) and thus lie in Davis's second canonical pencil, the pencil of lines in the tangent plane at $P_{x}$ with center at the canonical point.
4. Polar relationships. This section deals with some of the polar relationships of the lines $l_{1}(k)$ and $l_{2}(k)$ with respect to the bundle of quadrics (2.5) and the pencil of quadrics (2.6).

It is known [5, p. 702] that the locus of the polar line of a line $l_{2}$ of the congruence $\Gamma_{2}$ with respect to the quadrics of the bundle (2.5) is a quadric cone. For the lines $l_{2}(k)$ the equation of this cone may be written in the following form:

$$
\begin{equation*}
\lambda^{2}\left(x_{2}+a_{1} x_{4}\right)\left(x_{2}+a_{k-2 / 3} x_{4}\right)+\left(x_{3}+b_{1} x_{4}\right)\left(x_{3}+b_{k-2 / 3} x_{4}\right)=0 \tag{4.1}
\end{equation*}
$$

Evidently, the axis and the line $l_{1}(k-2 / 3)$ lie on this cone. Thus we have proved the following theorem:

Theorem l. The cone which is the locus of the polar lines of any line $l_{2}(k)$ with respect to the quadrics of the bundle (2.5) is intersected by Davis's canonical plane in the axis of the conjugate net (2.2) and in the line $l_{1}(k-2 / 3)$.

In particular, for $l_{2}(5 / 3)$ equation (4.1) may be written

$$
\lambda\left(x_{2}+a_{1} x_{4}\right)= \pm i\left(x_{3}+b_{1} x_{4}\right) .
$$

Hence, for the principal join the cone (4.1) is composed of two planes which intersect in the axis of the net $N_{\lambda}$.

The polar line of $l_{2}(k)$ with respect to the pencil of quadrics (2.6) is the line $l_{1}(k-2 / 3)$, whose equations are

$$
x_{2}+a_{k-2 / 3} x_{4}=0, \quad x_{3}+b_{k-2 / 3} x_{4}=0
$$

The point through which pass the polar planes of a point $P_{y}$ not on the tangent plane with respect to all the quadrics of the bundle (2.5) has been shown [ 5, p. 703] to have the following coordinates:

$$
\begin{align*}
& x_{1}=\lambda^{2} y_{2}^{2}+y_{3}^{2}-\frac{1}{3}\left(\gamma \lambda^{2} b_{1}+\beta a_{1}\right) y_{4}^{2}+\lambda^{2} a_{1 / 3} y_{2} y_{3}+b_{1 / 3} y_{3} y_{4}, \\
& x_{2}=y_{4}\left(y_{3}+b_{1} y_{4}\right), \quad x_{3}=\lambda^{2} y_{4}\left(y_{2}+a_{1} y_{4}\right), \quad x_{4}=0 . \tag{4.2}
\end{align*}
$$

It has also been shown that for $P_{y}$ on the axis of the net $N_{\lambda}$ this point is indeterminate and all the polar planes pass through the principal join.

Consider, now, $P_{y}$ to be any point on a line $l_{1}(k)$. The coordinates (4.2) may then be written

$$
\begin{aligned}
& x_{1}=-\frac{1}{2}(1-k)\left[\frac{\beta}{\lambda} a_{k+2 / 3}+\gamma \lambda b_{k+2 / 3}\right] \\
& x_{2}=\frac{1}{2}(1-k) \gamma \lambda, x_{3}=\frac{\beta}{2 \lambda}(1-k), x_{4}=0 .
\end{aligned}
$$

If $k=1$, then $l_{1}(k)$ is the axis, as was discussed in the preceding paragraph. If $k \neq 1$, then the coordinates (4.2) become

$$
\begin{align*}
& x_{1}=-\left[\frac{\beta}{\lambda} a_{k+2 / 3}+\gamma \lambda b_{k+2 / 3}\right] \\
& x_{2}=\gamma \lambda, x_{3}=\frac{\beta}{\lambda}, x_{4}=0 \tag{4.3}
\end{align*}
$$

This is the point of intersection of the line

$$
\frac{\beta x_{2}}{\lambda}-\gamma \lambda x_{3}=0, \quad x_{4}=0
$$

and the line $l_{2}(k+2 / 3)$. Hence we have the following result:
Theorem 2. The polar planes of the points on a line $l_{1}(k)$ with respect to the quadrics of the bundle (2.5) pass through the point (4.3), which is the point of intersection of the line $(\beta / \lambda) x_{2}-\gamma \lambda x_{3}=0, x_{4}=0$ and the line $l_{2}(k+2 / 3)$.
5. Certain loci and an envelope. The associate conjugate tangents intersect any line $l_{2}(k)$ in the points

$$
\begin{equation*}
\left(-b_{k} \mp i \lambda a_{k}, 1, \pm i \lambda, 0\right) \tag{5.1}
\end{equation*}
$$

and the conjugate tangents intersect the associate line $l_{2}(-k)$ in the points

$$
\begin{equation*}
\left(-b_{-k} \mp \lambda a_{-k}, \quad 1, \quad \pm \lambda, 0\right) \tag{5.2}
\end{equation*}
$$

Homogeneous elimination of the parameter $h$ yields, for each of the points (5.1) and (5.2), the equations of a cubic in the tangent plane:

$$
\begin{equation*}
l x_{2} x_{3}-k\left(\beta x_{2}^{3}+\gamma x_{3}^{3}\right)=0, \quad x_{4}=0 \tag{5.3}
\end{equation*}
$$

where

$$
l=2 x_{1}+\left(\theta_{u}-\frac{\lambda_{u}}{\lambda}\right) x_{2}+\left(\theta_{v}+\frac{\lambda_{v}}{\lambda}\right) x_{3} .
$$

Thus we have proved the following theorem:
Theorem 3. The locus of the points of intersection of the associate conjugate tangents with the line $l_{2}(k)$ and of the points of intersection of the conjugate tangents with the line $l_{2}(-k)$ is a cubic in the tangent plane with equations (5.3).

For $k=5 / 3$ and $k=1$, equations (5.3) represent the principal cubic and the ray-point cubic, respectively [5, p. 705].

It is obvious that for the pencil of lines $l_{2}(k)$ the equations (5.3) represent a pencil of cubics in the tangent plane. This pencil constitutes a subclass of those studied by Bell [1, p.401] in the investigation of the locus of the point $K_{\bar{\lambda}, j, \bar{k}}^{-}$, the point of intersection of the tangent $t_{\bar{\lambda}}$ with the $R_{\bar{\lambda}, j, \bar{k}}^{-}$-associate of a line $l$. In the notation of this paper, the point $K_{\bar{\lambda}, j, \bar{k}}$ coincides with the point of intersection of $l_{2}(-k)$ with the tangent $t_{h \lambda}$ if $\bar{\lambda}=h \lambda, j=\bar{k}=k / 2$, and $l$ is the flex-ray of the pencil (2.4).

A line $l_{2}(k)$ intersects the cubic (5.3) in the points (5.1) and in the point

$$
\begin{equation*}
\left(-b_{k} \gamma \lambda+\frac{a_{k} \beta}{\lambda}, \gamma \lambda,-\frac{\beta}{\lambda}, 0\right), \tag{5.4}
\end{equation*}
$$

which also lies on the line

$$
\begin{equation*}
\frac{\beta x_{2}}{\lambda}+\gamma \lambda x_{3}=0, \quad x_{4}=0 \tag{5.5}
\end{equation*}
$$

The line (5.5) is the $R_{\lambda}$-correspondent [1, pp. 392, 393] of the tangent $t_{\lambda}$ of the net (2.2). The line $l_{2}(\infty)$, Davis's second canonical tangent, intersects the line $l_{2}(k)$ in the point

$$
\begin{equation*}
\left(-\frac{b_{k} \beta}{\lambda^{2}}-a_{k} \gamma \lambda^{2}, \frac{\beta}{\lambda^{2}}, \gamma \lambda^{2}, 0\right) . \tag{5.6}
\end{equation*}
$$

The points (5.4) and (5.6) separate harmonically the points (5.1).
Similarly, the line $l_{2}(-k)$ intersects the cubic (5.3) in the points (5.2) and in a third point which lies on the line

$$
\begin{equation*}
\frac{\beta x_{2}}{\lambda}-\gamma \lambda x_{3}=0, \quad x_{4}=0 \tag{5.7}
\end{equation*}
$$

The line $l_{2}(\infty)$ intersects $l_{2}(-k)$ in the point

$$
\begin{equation*}
\left(-b_{-k} \frac{\beta}{\lambda^{2}}-a_{-k} \gamma \lambda^{2}, \frac{\beta}{\lambda^{2}}, \gamma \lambda^{2}, 0\right) \tag{5.8}
\end{equation*}
$$

The latter two points separate harmonically the points (5.3).
The lines (5.5) and (5.7) are the tangents of the $R_{\lambda}$-derived conjugate net [1, pp. 392, 393].

Thus we have established the following result.
Theorem 4. A line $l_{2}(k)$ intersects the cubic (5.3) in three points, one of which lies on each of the associate conjugate tangents and the third of which lies on the $R_{\lambda^{-}}$-correspondent of the tangent $t_{\lambda}$. The two points on the associate conjugate tangents are separated harmonically by the point on the $R_{\lambda}$-correspondent and the point of intersection of $l_{2}(k)$ by Davis's second canonical tangent.

A similar statement expresses the relationship among the cubic (5.3), a line $l_{2}(-k)$, the conjugate tangents, the other tangent of the $R_{\lambda}$-derived conjugate net, and the line $l_{2}(\infty)$.

It may be pointed out here that since the ray, the associate ray, the flex-ray, and any other $l_{2}(k)$ are characterized by the values of $k:(-1,1,0, k)$, the cross-ratio of these lines, in the order named, is $(1-k) /(1+k)$. Lane has discussed [4, p. 699] this cross-ratio for $k=5 / 3$ and $k=-5 / 3$, for which $l_{2}(k)$ represents the principal join and the associate principal join, respectively. For the lines $l_{2}(3)$ and $l_{2}(-3)$, Davis's line and associate line of collineation, the cross-ratios are $-1 / 2$ and 2 , respectively.

The equations of any line $l_{2}(k)$ for a general net of the pencil (2.4) are

$$
x_{1}+\frac{1}{2}\left(\theta_{u}-\frac{\lambda_{u}}{\lambda}+k \gamma \lambda^{2} h^{2}\right) x_{2}+\frac{1}{2}\left(\theta_{v}+\frac{\lambda_{v}}{\lambda}+\frac{k \beta}{\lambda^{2} h^{2}}\right) x_{3}=0, \quad x_{4}=0 .
$$

By the usual method the envelope of this line is found to be

$$
\begin{equation*}
4 k^{2} \beta y x_{2} x_{3}-l^{2}=0, \quad x_{4}=0, \tag{5.9}
\end{equation*}
$$

where $l$ is defined as for equations (5.3). Equations (5.9) represent a conic in the tangent plane for a particular value of $k$, and a pencil of conics if $k$ is allowed to vary. Among the conics of this pencil which have been studied before [5, p. 705] are the ray conic and the principal conic.
6. Generalization of Davis's canonical quadric. This section is devoted to the study of the equation of a quadric at a point $P_{x}$ of a conjugate net having the following properties:

1. The quadric has second-order contact with the surface sustaining the net.
2. A line $l_{1}(k)$ of the first canonical pencil and the line $l_{2}(-k)$ are reciprocal polars with respect to the quadric.
3. The quadric passes through the point $P_{y}$ which is the harmonic conjugate of the point $P_{x}$ with respect to the focal points of the line $l_{1}(k)$.
The equation of the most general noncomposite quadric surface having second-order contact with a surface (2.1) at $P_{x}$ can be written [3, p. 142] thus:

$$
x_{2} x_{3}-x_{1} x_{4}+k_{2} x_{2} x_{4}+k_{3} x_{3} x_{4}+k_{4} x_{4}^{2}=0
$$

Demanding that $l_{1}(k)$ and $l_{2}(-k)$ be reciprocal polars with respect to this quadric yields the following result:

$$
k_{2}=k \gamma \lambda^{2}, \quad k_{3}=k \beta / \lambda^{2} .
$$

Demanding that the quadric pass through the point $P_{y}$ which is the harmonic conjugate of $P_{x}$ with respect to the focal points of $l_{1}(k)$ requires that

$$
k_{4}=-\frac{1}{2} \theta_{u v}+\frac{1}{4} k \gamma_{v} \lambda^{2}+\frac{1}{4} k \frac{\beta_{u}}{\lambda^{2}}+\frac{1}{2} k \gamma \lambda^{2}\left(\theta_{v}+2 \frac{\lambda_{v}}{\lambda}\right)
$$

$$
\begin{equation*}
+\frac{1}{2} k \frac{\beta}{\lambda^{2}}\left(\theta_{u}-2 \frac{\lambda_{u}}{\lambda}\right)+\left(k^{2}-1\right) \beta \gamma . \tag{6.1}
\end{equation*}
$$

Hence, if $k$ is allowed to vary, we have the equation of a one-parameter family of quadrics:

$$
\begin{equation*}
x_{2} x_{3}-x_{1} x_{4}+k \gamma \lambda^{2} x_{2} x_{4}+k \frac{\beta}{\lambda^{2}} x_{3} x_{4}+k_{4} x_{4}^{2}=0 \tag{6.2}
\end{equation*}
$$

where $k_{4}$ is defined by (6.1).
For $k=1$ and $k=-1$, equation (6.2) represents Davis's canonical quadric and associate canonical quadric, respectively. For $k=0$, the line $l_{1}$ is the cusp-axis, the line $l_{2}$ is the flex-ray, and the quadric (6.2) is the quadric of Darboux for which $k_{4}=-(1 / 2)\left(2 \beta \gamma+\theta_{u v}\right)$. This quadric has been investigated by Môri [6, p. 59]. If $k=\infty$, the line $l_{1}$ is the first canonical tangent, and the quadric is composite, the two planes intersecting in the first canonical tangent.

A short computation leads to the following result:
Davis's canonical point and canonical plane are pole and polar with respect to any quadric of the family (6.2).

Two quadrics of this family may be called associate if they are characterized by values of $k$ which are equal numerically but opposite in sign. For $k=0$, the associate quadrics coincide. For any two associate quadrics for which $k \neq 0$, the plane of the residual conic of intersection has the equation

$$
\begin{aligned}
& 2 \gamma \lambda^{2} x_{2}+2 \frac{\beta}{\lambda^{2}} x_{3}+\left[\frac{1}{2} y_{v} \lambda^{2}+\frac{1}{2} \frac{\beta_{u}}{\lambda^{2}}\right. \\
& \left.+\gamma \lambda^{2}\left(\theta_{v}+2 \lambda_{v \lambda}\right)+\frac{\beta}{\lambda^{2}}\left(\theta_{u}-2 \frac{\lambda_{u}}{\lambda}\right)\right] x_{4}=0
\end{aligned}
$$

Hence we have the theorem:
Theorem 5. The residual conics of intersection of pairs of associate quadrics of the family of quadrics (6.2) form a pencil of conics lying in the plane (6.3).

## References

1. P.O. Bell, A study of curved surfaces by means of certain associated ruled surfaces, Trans. Amer. Math. Soc. 46 (1939), 389-409.
2. W. M. Davis, Contributions to the theory of conjugate nets, doctoral dissertation, Chicago, 1932.
3. E. P. Lane, A treatise on projective differential geometry, Chicago, 1942.
4. $\qquad$ Invariants of intersection of two curves on a surface, Amer. J. Math. 54 (1932), 699-706.
5. J. McDonald, Conjugate nets in asymptotic parameters, Bull. Amer. Math. Soc. 50 (1944), 697-709.
6. Yasuo Môri, Über einige Eigenschaften der polaren Kongruenzen, I, Proc. Imp. Acad. Japan 10 (1934), 59-61.

Vassar College

