
CONTRIBUTIONS TO THE THEORY

OF DIVERGENT SERIES

I. H E L L E R

I N T R O D U C T I O N

We shall be concerned throughout with methods of summability consistent

with the method of analytic continuation ( P ) . We recall that two methods are

called consistent if whenever they are simultaneously effective they yield identi-

cal generalized sums. This property is not a consequence of regularity.

The purpose of this paper is to examine in a general way the class of methods

consistent with ( P ) and subject to the following agreements.

1. For greater generality, regularity of the methods will not be assumed.

2. The class shall be closed with respect to multiplication; that is, the re-

sult of successive application of two methods of the class shall represent a

method of the class. To this end consistency is postulated, not only for the

case in which the series is summed, but in a general way (see postulates below).

We are thus led to consider the class of matrix transformations defined by

the following postulates.

(I) Any series JL un, summable (P), is transformed into a series 2^ v^,

summable (P)

( I D Σ u n (P) = Σ v k (p).

The class defined by these conditions is the exact analogue of the class

of regular matrices, which may be defined in a similar fashion if "summable

(P)" and "(P)" in ( I ) and (II) are replaced by "convergent" and "con-

vergence", respectively.

1. T H E C L A S S E α α

1.1. Notations and Definitions. The partial sums of a series 2* un will be

denoted by Un:
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154 I. HELLER

(1.1.1) Un = "0 + ^i + U2 + + un

Also for series of variable terms:

Un (z ) = u0 ( z ) + wt (z) + . + z^ (z ) .

The matrix of a series-to-series transformation will be denoted by C =

(c&rc )> where generally &, τι = 0, 1, 2, only in Theorem 1 and its proof we

suppose k, n = 1, 2, .

By 2* cjcn un = t>£ the series 2* un is transformed into the series 2* t>£.

The matrix of a sequence-to-sequence transformation will be denoted by

^ = (akn )• By Vk = 2*akn Un, the sequence ( ί/Λ ) is transformed into the se-

quence ( Vk ) .

If I un I <_ A/"+ι (Λ = 0, 1, ), then 2^ un will be said to be an analytic

series (as then 2*unz
n determines an analytic function /(z) , regular at the

origin).

By &aa w e denote the class of matrices C which transform any analytic

series into an analytic series, while by S α α we denote the class of matrices

A which transform the sequence of partial sums of any analytic series into the

sequence of partial sums of an analytic series.

1.2. Theorems. Let C = ( c ^ ) be a matrix, where k9 n = 1, 2, .

THEOREM 1. In order that C should belong to ®α α, that is to say in order

that C should transform each analytic series into an analytic series, it is neces-

sary and sufficient that to each e > 0 there exists an Me > 0 such that

(1.2.1) \Ckn\ < en Mk

e ( A , n - 1 , 2 , . . - ) .

COROLLARY 1. // C belongs to E α α , 2^un is analytic, and 2*

w^, then 2JW^ is analytic.

COROLLARY 2. If C is a triangular matrix, that is to say, if

c^n = 0 when n > k,

then condition (1.2.1) is equivalent to either of the conditions:

(1.2.2) \ckn\ <Pk,

(1.2.3) Nk < Rk, where Nk = Σ | ckn \ .

cjcn un\
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THEOREM 2. The class S α α is identical with E α α ; that is to say: in order

that A should transform the sequence of partial sums of each analytic series

into the sequence of partial sums of an analytic series, it is necessary and

sufficient that to each € > 0 there exists an M€ > 0 such that

(1.2.4) \akn\ < en Mk {k, n = 1, 2, . ) .

REMARK. If the indices k, n of the matrix begin with 0, then conditions

(1.2.1)-(1.2.4) evidently run:

(1.2.10 | c A n | < e»+ι M?\

(1.2.20 \ckn\ < Pk^ ,

(1.2.30 Nk < Rk*1 , {k, n = 0 , 1 , 2 , • • • ) •

(1.2.40 \akn\ < 6 " + 1

We first prove the corollaries and Theorem 2.

Proof of Corollary 1. The result is evident.

Proof of Corollary 2. Condition (1.2.1) implies (1.2.3) for any arbitrary

matrix; indeed, for e < 1 and

1 - £

we obtain

e«* / tL \k

Further, it is plain that (1.2.3) implies (1.2.2). Finally the chain is closed by

the proof that (1.2.2) implies (1.2.1): for e J> 1 there is nothing to prove; for

6 < 1 we put Me = P/e and obtain

\ckn\ <Pk- ek Mk

e < en Mk (k = i, 2 , . . . ) ,

the last relation holding because of n <_ k.

REMARK. In the general case, the condition of the theorem is not equivalent
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to those of Corollary 2, which continue to be necessary, but not sufficient, as

shown by the following example:

Take as the A th row of C the coefficients of the Taylor development of the

function

the matrix C thus defined satisfies (1,2.3), because of

but the series un = rn is transformed into v^ = er , which, for r > 1, is not

analytic, since

I rk\ I/* rk/k Ί

\e } - e ' —» oo as k —> oo.

It will be observed that Theorem 1 is quite analogous to the theorem of

Toeplitz-Schur, which establishes "Λ .̂ bounded" as a necessary and sufficient

condition in order that C should transform every bounded sequence into a bound-

ed sequence. This analogy persists also in the proof of Theorem 1 (see 1.3).

Proof of Theorem 2. If f(z)~ 2* unz
n is convergent in a circle of radius

/?, and g{z) = 2* zn, then the Cauchy product

f{z) . g{z) = h { z ) = Σϋnz
n

is convergent in a circle of radius r = minimum (/?, 1).

Conversely, if h(z) = 2* ϋnz
n converges in a circle of radius r, then

h(z)/g(z) = f(z)=2L unz
n converges in the same circle.

This signifies that either the series 2* un and 2* Un are both analytic, or

neither of them is analytic. The series 2* υ^ and 2* V^ behave in the same way.

Hence, to say that A transforms the partial sums of each analytic series

2*/un into the partial sums of an analytic series 2*v^, is the same as to say

that A transforms each analytic series 2* Un into an analytic series 2* V^.

1.3. Proof of Theorem 1. a) The condition is sufficient: If \un\ £ Mn,

then, for e < ilί"1, which implies eU = q < 1, we obtain

I "* I - \ Σ c k n » n \ < Σ \ c k n u n \ < Σ e » Mk

e M" = Mk

£Σ
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Mk
e < (—— . hi) = Rk (k > 1 ) .

\ l - q € l ~~1 - 9

b) The condition is necessary: We first remark that in order for C to be

applicable to each analytic series, the rows of C must necessarily represent

integral functions, that is,

(1.3.1) 2L ckn zn must converge for every z .

Secondly, the columns of the unit matrix must be transformed into analytic

series; this signifies that each column of C is analytic:

(1.3.2) \ckn\ < Mk.

Now the proof follows indirectly. From the hypothesis that C belongs to 6 α α

without satisfying (1.2.1), a contradiction is derived by constructing a certain

analytic series, the transform of which is not analytic.

If (1.2.1) is not satisfied, then for a certain 6 there exists no M such that

(1.2.1) holds; for this 6 and any M there exists a nonempty set EM of the ckn,

such that

(1.3.3) \ckn\ > en Mk for all ckn of EM .

EM may be supposed infinite.

By variation of M > 0 we obtain a family of sets E^ such that Ey C £^*

when M >_ M .

We now remark:

(a) A row of C can contain only a finite number of elements of E^; if it

contained an infinite number of elements, we would have, for that row, because

of (1.3.3),

limsup \ckn\
ί/n > e,

in contradiction to (1.3.1).

(b) Given a fixed column (or a finite number of columns) of C, there exists

an Ms such that, for M >_ MS9 Ey contains no element of this column (these

columns). In fact (1.3.2) implies

Mk

%n\ < < ^ U

en
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h e n c e , for Ms = M n / e n , w e h a v e \ c k n \ >_ en Mk
s ,

(Here we have supposed that e < 1; if e >̂  1, we set Ms - Mn).

After these preparations there can be constructed an analytic series, the

transform of which is not analytic.

To that effect we first define, by induction, three increasing sequences of

positive integers

For the index 1 the three numbers are chosen arbitrarily. Supposing the se-

quences constructed up to the index i - 1 , we define the terms belonging to the

index i as follows:

1. Mi _> Mi-1 + 1, and [Remark (b ) ] such that

\ckn\ — €™ ^i ^OΓ n < ni-ι a n ( l every k;

2. Ml = (1 + n._x) Mi + 1;

3. k( = the first index > k(^x , such that the relation

holds for some n (certainly > T^ - J ) ;

4. n' is such that \c, I < en M' l for n > n' [Remark ( a ) ] ;

5 n{ > n' and such that

V | C L - . Λ | < 1 (the rows being convergent).
n=πi

Setting now, for 0 <_ n < nx ,

and, for /zι-.1 <_ n < i%i,

(1.3.4)
when c, J O ,

n, in

0 w h e n ckin
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we obtain, for i > 1,

n Un I > Σ
H-i

> A/.'*' - IH., . il/f£ - 1 > W*£

thus

I % I > *ί'
The ser ies (un), which is certainly analytic s ince

1
— or 0,

is transformed into the series (v^), of which a partial sequence (v^.) is mi-

orized by (Mp ) .

The sequence (Mi) tends to infinity because of

Mi > Mi-γ + 1;

therefore lim sup | v, \1' = oc, which implies that (VL.) is not analytic, in

contradiction to the hypothesis. This completes the proof of Theorem 1.

1.4. Corresponding transformations. The product of two matrices of S α α ex-

ists, and belongs to (Sαα . The multiplication is associative:

(1.4.1) A (B C) = (A B) C = A B C.

We have to show that

(1.4.2) Σ Σ akλ hv Cvn = Σ Σ «fcλ \ v Cvn
λ V V λ

λ n

We write i | b^ cyn \

v

By (1.3.2) and Corollary 1 of Theorem 1, the sequence w-^n (n fixed) is analytic.

Hence ^ΛΣ \ a , , w, I
Λ I Λ λ An I
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is convergent. This absolute convergence of the double series of (1.4.2) implies

that the summations are invertible.

A sequence may be written as a matrix having the sequence as first column,

while the other columns contain only zeros.

Evidently it means just the same to say that the sequence is analytic, or

that the matrix belongs to S α α .

The sequence of partial sums U^ of a sequence un is obtained in transform-

ing un by a matrix B,

(1.4.3) Uk = B ( « „ ) ,

where

(1.4.4) * - < * * „ > . **.- [I
0 when n > k

when n < k.

Evidently B and its inverse B ι belong to E α α .

In S α α a matrix A, regarded as a sequence-to-sequence transformation, and

a matrix C, regarded as a series-to-series transformation, may be said to be

corresponding or associated when, for each analytic series, the /1-transform of

the partial sums is the sequence of partial sums of the C-transform of the series.

This correspondence is biunique. We demand indeed that

Σ ckn Un = υk* ^akn V" = Vk ( ^ ) ( π )

should imply

(Vk ) = B (vk), that i s to s a y , AB (un) = BC (un),

for each analytic series 2* un .

This is equivalent to A B = B C, which yields

(1.4.5) A = B C B~\ C = B"1 A B.

2. T H E C L A S S E S E ί t AND S@ί

2.1. Definitions of the Classes. If the method ( P ) of analytic continuation

is restrained to the open Mittag-Lefiler star, then it will be denoted by (Pt).

Thus an analytic series 2*un will be said to be summable ( P i ) , if the point

z = l is situated in the Mittag-Leffler star (briefly: star) of the principal

branch of the analytic continuation of f(z) = 2*unz
n.
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Defin i t ion of the c l a s s S ί ί # (&tt i s d e f i n e d a s t h e c l a s s of m a t r i c e s t r a n s -

forming e v e r y s e r i e s t h a t i s s u m m a b l e (Pt), into a s e r i e s s u m m a b l e (Pt) to the

s a m e (Pt) s u m . T h e y t h u s t rans form a p o i n t b of the s t a r of a funct ion F(z) i n t o

t h e p o i n t y - 1, s i t u a t e d w i t h i n the s t a r of a f u n c t i o n / / ( y ) , s u c h t h a t F(b) =

We s h a l l u s e t h e fo l lowing n o t a t i o n s :

Σckn un z n = υ k ( z ) Σ v k ( z ) y k = f ( z , y )

F{z): analytic continuation of / ( z ) along straight lines through the

origin [uniform principal branch, represented, for small z, by f ( z ) ]

F(z,y): analytic continuation of f(z,y), with regard to γ (uniform principal

branch), for each fixed z.

For the geometric ser ies we write g and G instead of / and F; thus :

g ( z ) = Σ z n , G ( z ) = 1 / ( 1 - z ) , g ( z , y ) , G ( z , y ) .

Under certain conditions the behaviour of a transformation when applied to

the geometric series 2* zn admits conclusions about how it will behave in the

general case of an arbitrary analytic series. This principle is used throughout

the remainder of this paper. The conclusions on behaviour will pass from a

given domain (8 of G (z ) to a certain domain % of F(z), where Q depends on F

and G.

Definition of % = $ ( F , ©). We denote by

(S*: the star of 1/(1 - z ) (that is, the whole z -plane except [l,oo] of the

real axis);

@ : an open connected domain containing z = 0, and situated within ®*; it

is further supposed that for each R > 0, the part of @ situated in the

circle I z \ < R has a rectifiable boundary;

$*: the star of F{z);

S : the border of ^*;

s : a point of b;

^ s : the domain symbolically defined by s . @, that is, the set of points

obtained by multiplying every point of @ by a fixed s of S.
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Then g i s defined as the intersection of all g . We may write symbolically

$(F,®) = 3 (g s ) = 3(s . @) (s C δ ) .

REMARKS. 1. If (S is star-shaped, then g does not change when 6 is de-

fined as consisting of all boundary points of g a n ( ^ a n additional arbitrary set

of points exterior to g . Especially 6 may be the part of the plane complementa-

ry to g , or, in the case of a single-valued function, the set of all singular

points.

Indeed, if p is a point exterior to g*, then on the segment Op there is a

singular point s, and p = r s, where r > 1. Hence

g^ = p . @ = Γ 5 ® = Γ g s .

This implies that § contains g s , and consequently g has no influence on the

intersection 3( g s ).

2. 5 ^ s ° P e n a n d contains the origin (and thus is never empty). To see that

it is open, we have to show that if b belongs to g then so does a certain neigh-

borhood of b* By definition of g, the set b/Q is contained in @. As S i s closed,

and does not contain the origin, b/Q is closed and bounded. Since ® is open,

there is a certain r > 0 such that, for each s of 6, the circle K(b/s,r), of

centre b/s and radius r, is in ®. Then § s = s ® contains in particular the set

s . K(b/s9r) = K(6, r | s \). Now let σ > 0 be such that σ < \ s \ for each s of 6 .

Then, for each s of S, K(b,r σ) is contained in g s , and consequently in g .

3. Special cases:

(a) If @ is the circle | z | < 1, then g i s t n e circle of convergence of F(z).

(b) If 0 is the half-plane K(z) < 1, then g is the Borel polygon of F(z).

(c) If @ = ®*, then g = g* .

(d) If S is empty, then g is the whole plane.

Definition of the class S^ . C belongs to Sβt. means C transforms any series

Σun zn = F(z),

for each z of g = g( F, (3), into a series summable ( P i ) , to the same (Pt) sum.

Evidently, when @ = @* then E^^ becomes E w , by (c ), above.

2.2. An inclusion. Denoting by

g: a simply closed rectifiable curve, situated in ® and containing the

origin; the limit-case g = 0 is included;
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/ : a domain (open, connected) in the y-plane, containing the closed interval

lo, i],
we have the following result.

THEOREM 3. / /

(I) C belongs to E α α ,

( I I ) for each g there exists a J such that G(z,y) is

( a ) a regular function of y in J for each fixed z of g,

(b) a continuous function of both variables (z,y), for z on g, γ in J,

and

(III) G(z, 1) = 1 / ( 1 - 2 ) for z in ®,

then C belongs to (Ly .

COROLLARY. Conditions ( Π a , b ) are in particular satisfied when G(z,γ)

is regular in ( ®, [ 0, 1 ] ) .

Proof of the corollary. If G(z,y) is regular in ((S, [ 0 , 1 ] ) , then in par-

ticular it is regular in the closed set (g, [0, 1 ] ) , and consequently also in some

open domain containing (g, [ 0 , 1 ] ) . Hence it is certainly regular in {g,J) for

some / containing [ 0 , 1 ] , and this implies the conditions (Ha, b) of the theorem.

To prove the theorem, we first note this:

C O R O L L A R Y 3 O F T H E O R E M 1. // C belongs to E α α , 2*un zn is analytic,

and R > 0, then the two series

(2.2.1) Σvk(z)yk,

(2.2.2) Σc π (y) un zn

converge absolutely, uniformly, and to the same sum f(z,y), for all z with

\z \ <^ R, and all γ of a certain neighborhood of the origin, \γ\ <^ p - p (R)

Proof. It follows from Theorem 1 that the double series

Σ Σ ckn*»*nyk

k n

converges absolutely for | z | £ R, \y\ <^ p{R), and this implies the corollary.

Proof of Theorem 3. Let f{z) = Δ^un zn [supposed continued by F (z ) ], and

let d be a closed Jordan curve around the origin, s i tuated, together with its

interior, within the star of F (z ).



1 6 4 I. HELLER

We o b t a i n , fo r I z j < R , \ y \ < p :

f(z,y) = Σvk(z) yk = Σcn(y) un zn

, Σ [cn{y) z» .-L f/Jϊl dx

1 y r , , l*\n F(x)
= — Σ Jf, cn(y) - dx.

2πi d \x I x

When x varies on d, z/x remains bounded, say | z/x \ < R'. By Corollary 3
there exists a certain p ' such that the series

and (because F(x)/x is bounded on d) also the series

y (ZV1 F(X)

are (absolutely and) uniformly convergent for all x of d and for | z \ <_ /L, j y \ <

Therefore summation and integration are permutable, and we obtain

f(z,: B ( y ) - — —
\ X I X

[ \ z \ < R , \ y \ < p " = m i n ( p , p ' ) ] .

Carrying out the summation we obtain

, r) = τ L Γ Jl9
2 d \

(2.2.3) /U, r) = τ L Γ Jl9y\ ίίϊl dx ( \ z \ < R, \y\ < p "
2 i d \x I x -2πi d \x I x

We need F(z,y), the analytic continuation of f(z,y) with regard to γ. We

first look for what is obtained by continuation of the integrand; that is to say,

we consider

(2.2.4) — f c(-,
2πί d \x
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We now suppose that z is a fixed point of £ξ, and choose the curve d as follows:

As (see proof of Remark 2) z/G is closed, bounded and situated in ®, it can

be included, together with the origin, in the interior of a rectifiable curve g,

entirely situated in 0 (the latter domain being open). In the involutory corre-

spondence t = z/x (z fixed), g is the image of a rectifiable curve d. The segment

Oz is in the interior, S on the exterior of d (because [l,oo] is exterior, while

the set z/G and the origin are interior to @). Thus d is rectifiable, includes

the segment 0z9 and is situated, together with its interior, within the star of

F(z). When x describes d, then z/x = t describes g, and by hypothesis (IIa, b)

of the theorem there exists a /such that G( z/x, y) = G(t,y) is regular in γ and

continuous in {t, γ) (t on g, y in /.)• This is equivalent to:

(2.2.5) Gl — , y) is regular in y and continuous in (x, y) (x on d, y in / ),

because ί= z/% is continuous in x on d (the origin not being on d).

As also F (x)/x is continuous on d, it may be verified that

Iz \ F ( * )
(2.2.6) Gl— , y) is regular in y and continuous in (x, γ) (x on d, y in / ) .

\ * / x

This implies the regularity of (2.2.4), that is to say:

(2.2.7) H(z,y) is regular, with regard to y, in / .

On the other hand, for | y \ <_ p " , we have

c(H •£•')•
and from (2.2.3) and (2.2.4) it follows that

f(z,y) = H(z,y) (\y\ < p").

Hence for the analytic continuation we still have the identity:

1 Iz \ F (x)
F(z,y) = H(z,y) = f G - , y) dx (yinj),

2πι d \x I x
(2.2.8)

and, for each point z of %, F(z,y) is regular, with regard to y, in / = J (z).

Using now the hypothesis that / contains the segment 0 <_ y <_ 1, we have

thus establ ished that
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(2.2.9) F(z, y) is regular in 0 £ y £ 1 for each fixed z of %.

To complete the proof of the theorem, we have still to verify that

(2.2.10) F ( z , l ) = F ( z ) (z point of 2 ) .

Setting y = 1 in (2.2.8), and using the hypothesis (III), which implies

\ xl x - z

we obtain

1 r F{x)
F(z, 1 ) = — f dx-F(z).

2πi d x - z

3. A S S O C I A T E D F U N C T I O N S

3.1. A biunique correspondence. By Theorem 1 and its Corollary 3, with

each matrix of (Sαα is associated a function G(z, y), which, for each given

R > 0, is regular in both variables for | z \ < R and \y\ < p (p depending on

R). Theorem 3 has been expressed in terms of this function.

There is a biunique correspondence between the class of functions G(z,y)

regular in (0,0), and a certain class of matrices C ± (c^), containing the

class S α α , and characterised by the condition

(3.1.1) \ckn\ < Pk+ι Qn+ι ( * , B = 0 , 1 , 2 ,

The correspondence is established by the two formulae

(3.1.2) G(z,y) = ΣΣckn zn yk

a b s o l u t e l y c o n v e r g e n t f o r \ z \ < P ~ ι , \ y \ < Q~ι,

1 d
(3.1.3) c.A = — — G(z,y) (z = 0, y = 0 ) .

k l n l dyk dzn

The condition of Theorem 1 may be expressed in terms of the associated

function. We then obtain:

THEOREM 4. In order that C should belong to (Sαα, it is necessary and

sufficient that G(z,y) be regular in (z,0) for each z.
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Proof. The necessity is implied by Theorem 1, Corollary 3.

To see that the condition is sufficient, let z be a fixed point of the z -plane.

Regular in (z,0) means regular in a certain neighborhood of (z, 0), say

U + ζ, η), ( \ζ\ < p, \η\ < p)

where p = p ( z ) .

We t a k e the n e i g h b o r h o o d s half a s l a r g e , t h u s p ' = p / 2 . By B o r e l ' s theorem,

the c l o s e d and b o u n d e d domain (\z\ < R, y = 0 ) may be c o v e r e d by a f inite

number of the p' n e i g h b o r h o o d s . L e t ( z , 0 ) , ( / = 1,2, ••• , k), be the i r c e n t e r s ,

a n d pQ the s m a l l e s t of their r a d i i . An arbi t rary point (z, 0 ) of the domain ( | z \ £

R, y - 0 ) i s s i t u a t e d in a t l e a s t one of the cover ing n e i g h b o r h o o d s , s a y c e n t e r

z. and r a d i u s p' - p'(z ). H e n c e the p ' ne ighborhood of ( z , 0 ) is s i t u a t e d in

the 2 p ' = p neighborhood of ( z , 0 ) , in which G{z,y) h a s b e e n s u p p o s e d r e g u l a r .

C o n s e q u e n t l y G(z,y) i s r e g u l a r in

( 1 * 1 < R + P 0 , \y\ < P 0 ) ,

and its Taylor series (3.1.2) is certainly absolutely convergent in

( | z | < R , \ y \ < σ < p 0 ) .

From this it follows that if | un \ _< Rn, and evidently also if | un \ < Rn + ι , then

2*ι un is transformed by C into an analytic series. As R has been chosen arbi-

trarily, the proof is complete.

3.2. A corollary. If we substitute the condition of Theorem 4 for condition

(I) in Theorem 3, then this theorem is entirely expressed in terms of the as-

sociated function G(z,y). Because of its importance for applications, we ex-

plicitly state the particular case of its corollary:

T H E O R E M 5. //

(I) G(z9y) is regular

( a ) in ( z , 0 ) for each z,

( b ) in each (z,y) of ( @ , 0 < y £ 1 ) , and

(II) G(z,l) = 1 ( 1 - z) for each z of (S ,

then C belongs to 2vα .

3.3. Inverse considerations. The preceding two paragraphs show that it

may offer some methodical advantages, especially for applications, if investi-

gation of matrices is replaced by investigation of their associated functions.
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Inversely we may start from functions in order to construct matrices by means

of formula (3.1.3); the theorems of this section may then be considered as ex-

amples showing how certain properties of the function yield corresponding

properties of the associated matrix.

In view of the condition G(z, 1 ) = 1/(1 — z), a particular and most simple

class of functions is obtained if we choose

(3.3.1) G(z,y) =
1 - z h(y) '

as we have but to postulate // (1) = 1 in order to satisfy the above condition.

If h{y) is supposed to be regular at the origin, then G(z,y) is regular in

(0,0), and the associated matrix is calculated by (3.1.3); this yields

(3.3.2) ckn=± J- [h(y)V.

Theorems 4 and 5, applied to this class of functions, yield the following

two theorems:

THEOREM 6. In order that C should belong to E α α , it is necessary and

sufficient that

(I) h (y) is regular at the origin, and

( I I ) h(0) = 0 .

THEOREM 7. // A(0)= 0, then the following conditions are necessary and

sufficient in order that C should belong to Em :

(I) h(y) is regular in 0 £ y £ 1,

(II) z h(y) φ 1 for each (z,y) of ( @ , 0 < y < 1 ) , and

(III) M l ) = 1.

REMARK. // @ = ®*, condition (II) of Theorem 7 is equivalent to

(II*) 0 < h(y) < 1, when 0 < y < 1.

Proof of Theorem 6. The condition of Theorem 4, namely "G(z,y) is regular

in (2,0) for each z," is equivalent to: "h(y) is regular at y = 0 and zh(0) φ 1

for each z " . The second part of this latter condition is further equivalent to

Proof of Theorem 7. The necessity is evident, as the conditions merely

signify that C behaves as a method of the respective class when applied to the
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g e o m e t r i c s e r i e s 2* zn. A s for s u f f i c i e n c y , t h e c o n d i t i o n s ( l a ) , ( I b ) a n d ( I I )

of T h e o r e m 5 h e r e a r e r e s p e c t i v e l y e q u i v a l e n t t o :

h(y) i s r e g u l a r a t y = 0 a n d h(0) - 0 ;

zh(y)^l for e a c h (z,y) of ( ®, [0, l ] )

h(l) = 1 .

4. S E Q U E N C E - T O - S E Q U E N C E TRANSFORMATIONS

4.1. A sequence equivalent of Theorem 3. Theorems 1 and 3 dealt with

series-to-series transformations C. Theorem 2, expressed in terms of sequence-

to-sequence transformations A, is equivalent to Theorem 1. We now want to

translate also Theorem 3 in terms of A.

Let A be a sequence-to-sequence transformation of Eα α, and C the corre-

sponding series-to-series transformation (in the sense of §1.4), so that from

there follows

for each analytic series 2L un (we always write u0 + + un = Un, v0 + +

Preserving the notations of (2.2), we have the following:

DEFINITIONS. The statement that A belongs to (Sjt means that A transforms

the sequence of partial sums of any series summable (Pt) into the sequence

of partial sums of a series summable (Pt) to the same (P t) sum; A belongs

to Sgjj means that A transforms the sequence of partial sums of a series Z^UnZ71^

F(z), for each z of %= $(F, ©), into the sequence of partial sums of a series

summable (P t) to the same (P t) sum.

Evidently "A belongs to (S/j (or &fet)" is equivalent to " C belongs to &tt (or

In the case of a sequence-to-sequence transformation, the associated function

will be denoted by T(z,y), represented, for each fixed 2, at the origin of the

y-plane, by

(4.1.1) T(z,y) =Σtk(z) yk, where tk (z ) = Σ akn zn .

Using the notation ®, ξξ, g, J of Theorem 3, we now may state its equivalent:
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THEOREM 8. //

(I) A belongs to S α α ,

(II) for each g there exists a J such that T(z9y) is

(a) a regular function of y in J for each fixed z of g,

(b) a continuous function of both variables ( z , y ) for z on g, y in J,

and

(III) (1 - y ) Γ(l,y) is

(a) regular in 0 £ y £ 1, and

(b) = 1, for y = 1,

ίλerc ^ belongs to E@ί .

C O R O L L A R Y . The conditions ( I I a , b ) are satisfied in particular when

T(z,y) is regular at each (z,y) of ( ® , [0, l ] ) .

Proofs. The corollary is identical to the corollary of Theorem 3, which has

already been proved.

As for the theorem itself, we like to prove not only that it holds but also

that it is not weaker than the corresponding Theorem 3; we shall therefore prove:

THEOREM 8a. The conditions of Theorem 8 are equivalent to those of

Theorem 3.

For this purpose there must first be found a relation between T{z9y) (as-

sociated with A ) and G (z 9 y) (associated with C).

Setting

Un{z) = z° + zι + +

 n

n + 1 when z = 1,

when z

Ckn *n = Vk

we see that the correspondence between A and C implies

(4.1.2) Σakn ί / n ( z ) = Vk(z).

Calculating the left side, we obtain

Lakn Vni*) = ϊ**kn γ _ ^ = y —
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Thus (4.1.2) is equivalent to

(4.1.3) [tk(l) - z tk(z)] = Vk(z) U / l ) ,

(4.1.4) Σakn (n + 1 ) = Vk (1).

Substitution of these formulae in

G ( z , y ) = Σ v k ( z ) y k = Σ [Vk (z) - ^ _ χ U ) ] y k = ( l - y ) Σ F A ( z ) y *

yields

G ( z , y ) = 1 1 1 Σ [ ί A ( l ) - : i j ( 2 ) ] γk ( * j * l ) .

We thus have

(4.1.5) G ( z , y ) = — - [ Π l , y ) - zT(z,y)] U ^ l ) ,
1 — 2

(4.1.6) G(l,y) = (1 - y) Σ Jk Σ U + 1) akn.
k n

The relation wanted is (4.1.5).

To prove the equivalence of the conditions of Theorems 3 and 8, we first

observe that, by Theorem 2, the condition (I) of Theorem 8 is certainly equiva-

lent to (I) of Theorem 3.

Further by (4.1.5) it is plain that if the conditions of Theorem 8 are satis-

fied, then those of Theorem 3 also are satisfied. This already establishes the

truth of Theorem 8.

To complete the proof of Theorem 8a, there remains to show: If all condi-

tions of Theorem 3 are satisfied, then conditions (II) and (III) of Theorem 8 are

satisfied.

We now suppose all conditions of Theorem 3 to be satisfied; C then belongs

to <% t.

The series

1 + 0 + 0 + = ^un, where uQ = 1, un = 0 (n >_ 1 ) ,
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which may be considered a s the Taylor ser ies of F{z) = 1, is summable ( P i )

to the sum 1, and so must be i ts C transform. Hence, it for this ser ies we write

^ckn un = vk> ^vky
k = H(y)

then

(4.1.7) H(y) i s regular in [ 0 , 1 ] , and H(l) = 1 .

On the other hand we have

H(y) =Σvky
k =Σ(vk- F A _ t ) y k = (1 - y) Σ Vk γk

- U - y ) Σ ( Σ akn Un)yk=(l-y) Σ ( Σ ak\ y k

A V Λ / k \ n I

thus, by (4.1.1),

(4.1.8) # ( y ) = (1 - y ) Π l j ) ,

so that (4.1.7) is exactly the condition (III) of Theorem 8.

It remains to show that conditions (Ha, b) of Theorem 8 are satisfied.

It is plain that ( 1 - y ) Γ ( l , y ) is still regular in an open domain / contain-

ing [ 0 , 1 ] .

The conditions ( H a , b ) of Theorem 8 will be satisfied if T(z,y) is replaced

by (1 — y ) T ( l , y ) (as this function does not depend on z),

or by G(z,y) (because we then obtain (Ha, b) of Theorem 3),

or by (I - z) G(z9y) (as g does not pass through z - 1 ) ,

orfinallyby ( 1 - y ) T(lfy) - (1 - z) G U , y ) = ( l - y ) z T(z,y) (the e-

quality following from (4.1.5) )•

Further from

G(z,y) = 1/(1 - z) when y = 1,

(1 - y) T(l,y) = 1 when y = 1,

it follows that

(I - y) z T(z,y) = 0 when y = 1.

H e n c e z T ( z , y ) i s r e g u l a r i n y w h e r e v e r ( 1 - y ) z T ( z , y ) i s r e g u l a r i n y , a n d

t h e c o n d i t i o n s ( I I a , b ) w i l l b e s a t i s f i e d , i f T ( z , y ) i s r e p l a c e d b y z T ( z , γ ) .
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Now, for z ^ 0, T(z, y) is regular in y wherever z T(z,γ) is regular in y.

Consequently the conditions (II a, b) of Theorem 8 are certainly satisf ied when

z φ 0.

For z - 0 we may calculate Γ ( 0 , y ) in the same way as we did for z =? 1. We

start from the ser ies

l - 1 + O + O + . . ,

which is the Taylor ser ies of F(z) = 1 — z for z - 1, and certainly summable

(Pt).

Its C transform 2^ v^9 where

vk = ̂  c A π ^ (= c^o - ckι),

must also be summable (Pt); that is to say, if we write Z* v^ y = P (y), then

(4.1.9) P ( y ) is regular in [0 ,1] , and P ( l ) = 0.

On the other hand we obtain

P(y) = (l-y)Σ(Σakn Un), where now Uo = 1, Un = 0 (n > 1).

Thus, by (4.1.1),

(4.1.10) P ( y ) = (1 - y) Γ(0 ,y) ,

so that Γ(0,y) is regular in 0 <_ y <^ 1, and consequently also in an open

domain / containing [0,1] . This signifies that the conditions (IIa, b) of Theo-

rem 8 are also satisfied when z = 0, and completes the proof that all conditions

of Theorem 8 are implied by those of Theorem 3.

4.2. Sequence equivalents of other results. Finally we state the equivalents

of the formulae and theorems of §3

The biunique correspondence between the matrices A of S α α and the class

of associated functions T{z,y) is given by the two formulae:

(4.2.1) t(z,y) = Σ Σ α A n zn yk ,

and

•l -\ k+n

(4.2.2) ak = - — T(z,y) (z = 0, y = 0) .
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T(z,y) is the analytic continuation of t{z,y) with respect to y9 for each

fixed z.

If A = (a/ςn) belongs to S α α , then for each R > 0 the double series is abso-

lutely convergent for

1*1 < R> \y\ < p = P ( « ) .

In terms of T(z9y)9 Theorem 2 and Theorem 8, Corollary, respectively yield

the following two theorems.

THEOREM 9. In order that A = (akn ) of (4.2.2) should belong to Eα α, it is

necessary and sufficient that T(z9y), considered as a function of both vari-

ables, be regular at (z, 0) for each z.

THEOREM 10. / /

(I) T (z, y), as a function of two variables, is regular

(a) in (z,0) for each z, and

( b ) in each (z9y) of ( 0 , [ 0 , l ] ), and

(II) ( 1 - y ) T(l9y), as function of y, is

( a ) regular in 0 £ y j< 1, and

( b ) = 1 when y = 1,

then A belongs to CL« .

A very particular and simple class of functions T(z,y)9 satisfying the condi-

tions of Theorem 8, may be obtained as follows:

Condition (IΠb), postulating

(1 - y) T(l,y) = 1 when y = 1,

is satisfied when we place

( 1 -y) T(l,y) Ξ 1;

thus

(4.2.3) T(l,y) = .
1 - 7

Among the functions T{z9y) satisfying (4.2.3), we may choose the special

class

(4.2.4) T(z,y) = 2—— ,
1 - y h ( z )
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where we have only to postulate h(l) = 1 in order to obtain (4.2.3).

If A ( z ) is regular at the origin, then T{z,y) is regular at (0 , 0) and formula

(4.2.2) gives the assoc ia ted matrix A.

As for (z , y) = ( 0 , 0 ) , we have here

k ι n ] dykdzn n ] dzn

and the matrix A is determined by

(4.2.5) αfeπ = Λ [h(z)]k.
" ! dz"

The possibility of associating a matrix A with a function h(z) by formula

(4.2.5) was pointed out by J. Sonnenschein [ l], who gave the conditions

A ( l ) = 1, and h{z) ^ 1 when z ^ 1,

in order that A be consistent with analytic continuation, when applied to the

sequence of partial sums of the geometric series 2^ zn and its finite linear

combinations

thus to ser ies 2* un, where

«« = λ t z»+...+ λp zn

p (n = 0, 1, •••)•

In view of (4.2.4) we may easily verify the following two theorems, as im-

mediate applications of Theorems 9 and 10 respectively.

THEOREM 11. // h(z) is an integral function, then A belongs to E α α .

THEOREM 12. / /

(I) h(z) is an integral function,

( I I ) h(z) is not in [ l , o o ] , when z in®, and

( I I I ) A ( l ) = 1,

then A belongs to Em .

Theorem 12a. In Theorem 12 the conditions (II) and (III) are necessary.
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Proof of Theorem 1 1 . E v i d e n t l y if h (z) i s r e g u l a r in t h e w h o l e p l a n e t h e n ,

by (4 2 .4) , T(z9y) i s r e g u l a r when 1 - yh(z) 4 0. Now l e t z be a f ixed p o i n t .

A s h{z ) i s b o u n d e d in a n y b o u n d e d r e g i o n , we h a v e

| y A ( z ) | < 1 ; c o n s e q u e n t l y 1 — yh(z) £ 0 in a c e r t a i n n e i g h b o r h o o d of (z, 0 ) .

Proof of Theorem 1 2 . C o n d i t i o n ( I I ) y i e l d s

yh(z) ^ 1 (0 < y < 1, z in 0 ) ,

which implies condition ( I b ) of Theorem 10. Further h(l)~ 1 yields ( l - y ) x

T{l,y) = 1, which implies (II a, b) of Theorem 10.

Proof of Theorem 12a. For the necessity of condition (III) evidence is

obtained by application of A to the sequence 1,1,1, , which is the sequence

of partial sums of 1 + 0 + 0 + ••• . The necessity of condition (II) is verified

by application of A to the sequence of partial sums of the geometric series 2Lzn,

thus to the sequence

1

[ +ι] {ZiL 1 ) .

5. SOME R E M A R K S

5 1. For applications, the class E^ = Sβj* may be of more importance than

any other Eg . Theorems on the particular case are obtained by replacing ® by

@* in Theorems 3, 5, 7, 8, 10, and 12. See also the remark following Theorem 7.

5.2. This paper is not concerned with summability. However we point out

that replacement of the domain / by an open circle ( γ | < r with r > 1 in con-

ditions and proof of Theorem 3, readily yields:

If in the conditions of either of the theorems mentioned in (5.1) the domains

[θ, l ] and / (containing [0, l ] ) are replaced by

\y\ < 1 and | y | < r (r > 1)

respectively, then a transformation (C or A ) satisfying the new conditions of

the theorem certainly sums Z* un zn to the sum of analytic continuation, for

each z of % = %{F, @). In Theorem 12, "h{z) is not in [ l , o o ] " then is to be

replaced by " \h(z)\ < 1 " (compare proof of the same theorem).

[l - zn+ι] = α + bzn
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5.3. Theorem 1 characterizes the linear operations defined at any point of

the space of all analytic sequences, and can also be proved by the methods of

operator theory; however it takes some pages to establish the basic properties

of this space, after introduction of an appropriate metric (for instance \x\ =

sup \xn\l/>ri °Γ an only locally defined distance | % - y | = {Σ(xn- Ύn) J I / 2

or the corresponding hermitian expression).
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