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1. Introduction. The method of Weinstein [l] gives upper bounds for the

eigenvalues λί >, λ'2 ^_ of the projection U into a space ® of a completely

continuous positive symmetric operator L in a Hubert space § with eigenvalues

^i 2l ^2 >.•••• These upper bounds are the eigenvalues λ^1' of the projection

of L into a space of finite index m,

(1) § Θ f Pi* " >Pm\f

where plf , pm are any vectors in the space

(2) φ = § 0 ® .

The chief part of the Weinstein method is the explicit determination of the

eigenvalues λ^m' in the space (1) in terms of the eigenvalues and eigenvectors

of L in ίρ . These satisfy

(3) λjf° > λ'n.

The values λ^™' will, of course, depend on the choice of the vectors (plf

• > Pm )• It is naturally desirable that the upper bound for a particular eigen-

value λ' should be as small as possible. This paper investigates how small it

can be made for given n and m by a proper choice of the constraint vectors

( P i » • ' " 9 Pm ) •

Because of the minimax principle, λ^m^ must satisfy

Our result is that the inequalities (3) and (4) are the only restrictions on the

smallness of λ . In other words, for given n and m, there exist vectors (p t ,

• * J Pm) such that the weaker of the inequalities (3) and (4) becomes an equality.
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2. The case of a single constraint. We first prove our result for the case of

the first intermediate problem, that is, for m = 1.

THEOREM 1. For any given n, there is a vector p in the space

(5) 5β - § 0 @

such that, if the projection of L into ίξ) Q { p \ has eigenvalues

> λ >

either

(6) λ»> = A;

or

according as λ^ O Γ λ n + 1 is larger.

Proof. If λ^ = λn, then (6) is satisfied for any p and there is nothing to

prove. Our theorem thus naturally splits into the two cases λ^ > λ^ L̂ ̂ n^ι a n c ^

λ^ < λ^ + 1 , which we shall prove separately.

3. The case λn > λ'n >_ λ n + 1 Let the eigenvector of L' corresponding to

λ ' be α ' Its eigenvalue equation can be written in terms of the operator L a s

(8) Lu'n-X'nu'n=P,

where p is some vector in 5β. Let us assume for the moment that p is not a

null vector. Then (8) is an eigenvalue equation for the projection of L into ® but

not for L. Any eigenvector of L corresponding to the eigenvalue λ^ must, be-

cause of (8), be orthogonal to p and hence must belong to § Q \ p } Thus, the

multiplicity of λ^ as an eigenvalue of the projection of L into § Q { p } is one

greater than its multiplicity as an eigenvalue of L. Let the latter be r > 0. If

r = 0, then λ^ > ^n+l9 and λ^ must be λ ^ by the minimax principle. If r _> 1,

then λn > λΛ + 1 = ••• = λ n + Γ > λ π + r + 1 , and the minimax principle gives

(9) λ£.\ >λn>x'n> λ π + 1 > λ π + r + 1 >

Thus, since the multiplicity of λ^ in § Q { p } is r + 1, we must have



AN OPTIMUM PROBLEM IN THE WEINSTEIN METHOD FOR EIGENVALUES 4 1 5

do) ^ ;

so that the vector p in (8) has the property stated in our theorem.

If λ^ = λ Λ + 1 , it is possible that the vector p in (8) is a null vector. This

means that the eigenvector of L' corresponding to λ^ is a lso an eigenvector of

L. Suppose that the same is also true of the eigenvalues λ^ + 1 , ••• , λ^ + s but

not of λ ' + We then consider the projections L and L' into

{ } and @ e

respectively, and call their eigenvalues λ^ and λ .̂ Then L' has the same eigen-

values as Z/, except that the eigenvalues λ^, ••• , λ^ + s are removed. The

same is true of L and L. Then

If there is a vector p in 5β so that the π-th eigenvalue of L in

is at most λ ' , then, because of (11), the rc-th eigenvalue of L in § Q \ p

λ^ and equation (6) in our theorem will be proved. Now if

then, since by definition of s the eigenvector of 1/ corresponding to λ^ + s i s

not an eigenvector of L, the existence of such a vector p follows from the first

part of this paragraph. If, on the other hand, we have

the existence of this vector p will be assured by the results of the next para-

graph.

A final possibility* is that there is no integer s such that the eigenvector

wΛ + s of U is not also an eigenvector of L. In other words, all but the first

n - 1 eigenvectors of L' are also eigenvectors of L. Then, since λ^ = λ/ι + 1> the

vectors u'9 ••• , M^ are the only eigenvectors of Z/ which are not orthogonal

to ul9 U2J , Un Therefore there is one linear combination p of u2, ••• , un

which is orthogonal to all eigenvectors of L' and hence belongs to Sβ. There can

*This possibility was pointed out by C. Arf in the course of an alternative proof of
the results here presented.
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be at most n ~ 1 eigenvectors of the projection of L into § © ί p 5 which are

not orthogonal to ul9 -•• , un. Therefore, the rc-th eigenvalue of this projection

is λ^+1 = λ^, and both equalities (6) and (7) hold.

4. The case λ^ < λ n + 1 We now show that if λ^ < λ n + 1 then the equation

(7) can be made to hold. This will be done by induction. We first replace the

space 5β by a finite space. Since L is completely continuous it follows that

λ m —>0 as m—»oo; therefore there is an integer m such that

It has been shown by the author [1,2] that if we let pi be the projection in

ty of Uj, then the eigenvalues λ^1' of L in ίρ © { pl9 , pm \ satisfy

( i s ) λ^m) < Λ; +

Combining this with (14), we obtain

Thus, it will suffice to show that if the inequality (16) holds where λ^m' is

the 7i-th eigenvalue of L in a space ξ> © { pl9 , pm }, then there is a linear

combination p of the vectors pl9 ••• , pm such that the τι-th eigenvalue of L in

§ © { P 1 is λ Λ + 1 Our induction proof consists of showing that if (16) holds for

m > 1 then there is a linear combination p ' of pm-χ and pm such that the n-th

eigenvalue of L in ίρ © { pϊ9 , P m _ 2 , p ' ] is at most λ Λ + If λ^m~1^ £ λ Λ + 1 ,

this is obviously true, for we must only take p ' = P m - 1 Thus, we need to ex-

amine only the case

(17) λ (

n

m ~ 2 ) > λim~ι) > λM + > λ < m ) .
n — n TIT i — n

Since, by the minimax theorem,

(18) λ^+1 > λ ( ^ 2 ) ,

our induction step will be proved if we find p so that the rc-th eigenvalue of L

in § © {pi, ••• , Pm-2> P'J i s e c l u al to either λ^m' or λ j^~ 2 ' . In other words,

the induction step is just Theorem 1 in the special case in which 5β is a 2-

space.

Thus if λ^m' >̂  ^nΊi t n e induction is proved by the results of §3. Note

that in the case of a common eigenvector where one had to reduce the proof
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in §3 to the proof of this section, the reduction is to the case λ^m' < λj^~ ,

which will now be treated.

If λ^m' < λ ^ ~ 2 , we must construct a linear combination p ' of p m - ι and pm

so that ^l\ is t n e rc-th eigenvalue of L in § 0 \pl9 ••• , Pm-2> P'^ ^° °̂

this, we take for p ' the linear combination of P m . ι and pm which is orthogonal

to the eigenvector corresponding to λj™~2'. Then λ ^ ~ 2 ' is an eigenvalue of

L in ξ) 0 { p l f , Pm_2> p ' }• By the minimax principle, the (ra + l)-st eigen-

value in this space is at most λ ^ < λ ^ ~ 2 \ Therefore λ ^ 2 ^ must be the rc-th

eigenvalue in this space, and p ' has the desired property.

Thus, our induction step is proved and Theorem 1 has been shown to hold

in all possible cases.

5. The general intermediate problem. We are now in a position to prove the

more general result announced in the introduction.

THEOREM 2. For any fixed integers m and n, there are vectors pl9 •• , pm

in P̂ which, if used as constraints in the n-th intermediate problem, yield either

(19) λ l m ) = λ'

or

(20) λ? 0 -*„+„•

Proof. We first prove the possibility of the equality (20) when

According to Theorem 1 with n + m — 1 substituted for rc, there is a vector

p t such that

(22) λ ^ = λ
n+m.

We then apply Theorem 1 to the projection of L into § 0 ί Pi ! to assert

the existence of a vector p2 such that

(23)

This process is repeated until the equality (20) is obtained. Inequality (21)

assures us that the equality (7) of Theorem 1 will always be attainable.

If λ^+m <_ λ^, then there is an integer I < m such that
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(24) K+l<K< W i

We shall show that there are I vectors p l 5 , p, for which

(25) λ<f> = K

The equality (19) will then hold for any m - 1 vectors Pj + 1> , Pm appended to

the first I.

Since λ^ >. >. λ^+ j_j, we can proceed as in the proof of (20) to show

that there are I - 1 vectors p t , , p^_ χ for which

(26)

We now apply Theorem 1 to L in ξ> © { p x , , P^χ ί According to (24) and

(26) it is the equality (6) which can be made to hold by a constraint p^. We thus

obtain (25), and Theorem 2 is proved.
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