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1. Introduction. Some interest has been attached to the problem of effective

computation of the solution to boundary value and conformal mapping problems.

Birkhoff [3; 4] has given an excellent iteration precedure for the solution of the

conformal mapping problem for simply connected regions. However, the con-

vergence of his method is easily seen to be the same as that for the classical

Neumann-Poincare method in potential theory, which, while converging for all

simply connected regions [l;5], fails to converge for the computation of the

harmonic measures of multiply connected regions [l;2]. Since it is primarily

these harmonic measures which are needed in the conformal mapping problem, we

derive in the present paper a modification of the Neumann-Poincare method which

will converge in this case and apply it to the conformal mapping of doubly con-

nected regions. While the formulas involve certain ^-series, these should not

present a major problem for numerical computation since the series are very

rapidly convergent and only a few terms need be taken.

2. General formulation. Let Ω be a multiply connected region which is

bounded by a smooth curve C. Let U (z) be a continuous real-valued function

defined for z £ C. We wish to consider the problem of finding a function u + iv

which is analytic in Ω and for which

(1) u(ζ)—>U(z), as ζ^zCC.

We do not require that v be single valued in Ω, and we shall assume that at a

fixed point ζ0 £ C we have

(2) l/(£0) = 0.

L e t IF be a Riemann surface which contains Ω and for which Ω = W — Ω is

also a connected region. For example, if Ω is the plane region exterior to the

contours Cl9 ••• , Cn-t and interior to Cn, we may take W to be the double of

the region R which is bounded by circles γl9 •• , y r ι , where γι l ies inside
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C, for i = l , , n — 1, and γn lies outside Cn.

If g(z;£, <£Λ) * s t n e Green's function for IF, that is, a harmonic function of theo
variable z which has a positive logarithmic pole at ζ and a negative logarithmic

pole at ζ 9 we have the symmetry relation

(3) g(z; ζ, ζ0) - g U 0 ; 6 £ 0) = g(ζ; z, zQ) - g(£0; z, zQ).

From this it follows that the derivatives of g with respect to x and y (where

z = x + ίy) are harmonic functions of ζ

Thus if μ(z) is a continuous real-valued function defined for z £ C, then the

function

(4) α.(() = / μ(z) ds (<Γ£Ω),
1 2π J c dnz

 z

(where n is the inner normal to Ω) is a harmonic function of ζ. If further we

define

1 r dg
(5) u (£) = J μ(z) —— rfs (^CΩ),

e 2ττ c dnz

 z

then we know by the well-known boundary behavior of double layer distributions

that

due(ζ) dι(ζ)
(6) — — = — — (ζCO,

dn dn

while

(7) , ( 0 . - 1 , ( 0 •!,,(<,) • £

and

If we suppose that μ(£) = 0, then the solution of our problem is determined

if we can solve the integral equation

(9) 2U(ζ) = -μ(ζ) + - f μ(z) A dsz,
π L dnz

for μ subject to the condition that μ(ζQ) = 0. If this is done, then u is given by



NEUMANN-POINCARE METHOD FOR MULTIPLY CONNECTED REGIONS 3 8 7

(7), and υ is given by

(10) v = — / μ{z) — ds ,
2π L onz

where dh/dnz (z;ζ,ζQ) is the harmonic conjugate with respect to ζ of dg/dnz {z;

ζ, ζQ); that is, such that

_dg_ m dh

dn dn

is an analytic function of ζ.

3. Solution of the integral equation. Because of the smoothness of C, we

know that dg/dnz is a continuous function on C, and the Fredholm theory states

that either

(ID W(ζ) = - μ(ζ) + - / μ(z) p - dsf

π ϋ σnz

has a unique continuous solution for all continuous functions U(z), or else

(Λ->\ ( r\ λ C ( \ d g
 J\* *) μVζ ) = — J μ\z) as

π c dnz

has a nontrivial solution. Moreover, if we set

(13) T[φ] = — f φp- dsz,
77 c o n z

we have

(14) /zU) = - 2 2 λ Γ ^>
v = o

uniformly in z for all λ with | λ | < | λ o | , where λ 0 is the absolutely smallest

value of λ for which (12) has a nontrivial solution. Thus if we can show that

I λ 0 I > M > 1, we know that the series

(15) μ ( z ) = - 2 £ Tv U

converges with order at least 1/M and gives a solution to the integral equation

(9). For computational purposes, the series (15) is more conveniently expressed
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by the following iteration:

ι

(16)

μn(ζ) = - n χ

In order to ensure the validity of this iterative method, we need only to bound

the eigenvalues of (12) away from unity. Suppose that we have an eigenfunction

Φ = λ ι TΦ .

Then

and

are harmonic functions in Ω and Ω, respectively. For ζζ2 C we have, by (7) and

(8),

1
Uί 2

Also,

whence

(17) «,.(C) = — — -
1 + λi

By (6) we have

9 9

and

D(ui) = J ut ds = — f ue ds = — — D(ue),
^ on 1 + λi c σn λi + 1
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where

and

Thus

" ' - > -

u Uϊ

dx

2

dy

2

+ dxdy

due

dx dy.

where

ΏUe)

Since D (ue) and D (MJ) are always nonnegative, we conclude that λt is real

and

(19) > 1.

In order for equality to occur in (19), we must have either ue constant or u(

constant. In either case the constant must be zero since ui (ζ ) = 0 and ue (ζQ) =

0, while Ω and Ω are connected. Thus equality is excluded in (19) and we have,

taking λx to be λo» the absolutely smallest eigenvalue,

(20) K
this ensures the convergence and correctness of the iteration (16).

In order to obtain an estimate for | λ 0 | and consequently for the rate of con-

vergence of (20), we suppose that Ω and Ω are topologically equivalent. Then

following Ahlfors [l] we take a quasi-conformal mapping f(z) of Ω onto Ω with

dilation quotient < K. Then the functions V{ and υe, which are the harmonic

conjugates of ui and ue with the conditions that viiζ ) = ve {ζ ) = 0, are har-

monic functions in Ω and Ω with the same values on C by (6). Moreover, Ό{VJ) =

Dim); D(ve) = D{ue).

But now ve [f(z) ] is a continuous function in Ω which has the same periods

and boundary values as v{. Hence by the Dirichlet principle we have

D{ve[f(z)]\ >D\Vi\.
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But

Hence

DlvΛfiz)] 1 <KD{v\.

K >
D{ve

In a similar manner, using f , we obtain

K >
D\ve

D{vi

λ 0 -

λ 0 +

λ 0 +

λ 0 -

Hence either

that is,

(21)

- (K + 1) K + 1
λ 0 < , or λ n >

0 - Uί + l ) ° - x - l

K + 1

K - 1

4. The doubly connected case. We now suppose that Ω is a doubly connected

region in the plane contained in the circle \z\ < 1 and containing the circle

I z I S. ? 2 within its inner contour. We take our Riemann surface W to be the torus

formed by identifying the points z and q2z.

Now we shall show that the Green's function for W is

1 lθg I z

2 log?
log(22) g ( z ; ί , C 0 ) ^ l o g

where

/I \ °° 2
(23) tf#(l) = ^ 4 1 — log ί , g) = 1 + Σ ^~ ) Λ 9Λ ( ί Λ + t~n

From (23), we see that ϋ^. is a single-valued function of t and that

+2Π 1 Σ <-
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Hence

«(? «; 6 Co) = log
2 log

log

so that g is a single-valued function of z on the torus. By (23) we see that g has

poles at ζ and ζ 9 since

Moreover, ^ 4 has only one zero for (1/2 i) log t in the rectangle whose corners

are a9 a + π, a + π - i log q, a - i log q [6, p. 465]. Thus ϋ-Jj) has only one

zero for q2 < \t\ < 1, and consequently g is the Green's function of W.

5. Computation. The iteration (16) becomes now

(24) μ χ { ζ ) = - 2 U { ζ ) ,

- / μ n . ( z ) A — z ' ( s ) ώ ,
π L dz

since

vhile

and so

^/i dz dn dz dn dz dn

dz dz
= i

dn d s

i ! - 2 R
dn

- 2 « &

dg dz

dz ds

dz

Clearly (24) is independent of the choice of the parameter s, and hence

need not be arc-length, but may be any conveniently chosen parameter σ

Now
1 log

(25) ' " "M*/O log
log
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whence

(26)

where

(27)

2 - ^ =/U, ζ) -f(z, ζ0),

f(z, ζ) =
-ϋ'^qz/ζ) q/ζ + 1 log I ί I

#tiqz/ζ) 2z log q

Thus (24) becomes

(28) μιU) =

~ i {μn-t(z) Ufiz,ζ)-f(z,ζ0K z'ds

This is equivalent to

(28') - μ[0)
-

Near z - ζ the boundary has the following expansion in terms of arc length

s:

(29) O(s3) ] ,
where primes denote differentiation with respect to arc-length and K is the curva-

ture at ζ. Then, since

have

C

Also

vhile
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Hence

(30)

whence

(31)

/ y *

γ = - j - [ 1 + iKS + 0{s2)].

qz'/ζ 1 C
_ i κ s _ i _
2 ζ

O(s2)

In terms of an arbitrary parameter σ, this becomes

(31') A * ) z ' = — κ(z) — - il —
2 dσ z

2 log q

1 log

2 log

where now the primes denote differentiation with respect to σ.

For computational purposes, it would seem best to calculate

(32)

and

(33)

(->" 1n

= l

= 1

for the different values of ί = qz/ζ which occur. Then

(34)
t&'Λt) . 1 log I ζ I

The conjugate function v is given by the integral

(35)

where

(36)

and

v = J μ(z) & f(z, ζ) z' do ,
277 C

f(z,ζ) * ' =
2 log
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(37) A / U z) z' ,

σ

with primes denoting differentiation with respect to σ. The integral (35) has to be

taken to mean its Cauchy principle value if ζ C C. However, since

/ A f(z,ζ) z' do = 0 ,

we may write (35) as

(38) v = -ϊ- jΓ [μ{z) - μiζ)} & f{z, ζ) z'dσ,

with

6. An application to conformal mapping. In order to map the doubly connected

region Ω onto the annulus r < | w \ < 1, it is only necessary to find, say using

the method of the preceding section, that analytic function u + iv in Ω for which

u = 0 on the outer boundary of Ω and u = 1 on the inner contour. For if ω is the

period of vf then

(2π/ω) (u +iv)
w = e

maps Ω onto the annulus, and v/ω gives the angular correspondence on the

boundaries.
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