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1. Introduction. Oscillation theorems for the solutions of the equation

ax

are classical. It is the purpose of this paper to develop theorems of a similar

nature for a class of equations of the type

d \ dyλ
— \K(x)—\ - G(x)y = A(x).
ax L ax 1

It will be assumed that over an interval X: a £ x £ b (b > α), the functions

K(x), G(x)9 and A(x) are continuous. All quantities used are assumed to be

real. Primes will be used to indicate derivatives with respect to x.

Use will be made of the following lemma which gives a modified form of

properties of the second-order linear homogeneous equation developed by W. M.

Whyburn[3, pp.633-634].

LEMMA 1. Lety(x), a solution of {Ky')'- Gy = 0 over X, have the m zeros
Γi> '•" > rm ( m > 2) on X. Let the inequalities K > 0, G < 0 hold, and let GK

be a nonincreasing function of x on X, If A is nonvanishing except possibly at

α, and for x > a either one of the following is true over X:

(a) A > 0 and A/G is a strictly decreasing function of x9

(b) A < 0 and A/G is a strictly increasing function of x,

then

A ( t ) y ( t ) d t \ < \fΓί + 2 A ( t ) y ( t ) d t \
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In order to prove this lemma one needs only to make straightforward modi-

fications in the arguments given by Whyburn.

LEMMA 2. Under the hypotheses of Lemma 1, the zeros of

x A(t)y(t)dt

and y(x) separate each other on a < x <_ b.

This result, which also was given by Whyburn, is an immediate consequence

of Lemma 1.

LEMMA 3 . Let u(x) be any solution of the system (Ky')' - Gy == 0 , y ( b ) = 0 .

Under the hypotheses of Lemma 1, J A(t)u(t)dt does not vanish in a £ x <

b.

Proof. If u(x) has no zero except b on X, the conclusion is obvious. Other-

wise, by Lemma 1, if q is the last zero of u(x) on X preceding b, then the

integral/ A (t)u (t )dt has the sign of f A(t)u(t)dt.

For the sake of brevity we shall henceforth let (H) represent the following

set of conditions on X.

(1) K(x) > 0, G(x) < 0.

(2) K(x)G(x) is a nonincreasing function of x

(3) Either one of the following is true:

(H)\ ( i ) β < 0, A(x) > 0 for x > a and A(x)/G(x) is a strictly de-

creasing function of x

( i i ) β 2l 0, A(x) < 0 for x > a and A(x)/G(x) is a strictly in-

creasing function of x.

Let Uγ(x) be any solution of (Ky')'— Gy = 0 such that ux(b) = 0 Choose

another solution u2(x) such that K(u2u[ — u'2ux) = 1 on X. As a final pre-

liminary result we have the following:

LEMMA 4. Under the hypotheses (H) if β φ 0, then

— £ — fb A(t)Uι(t)dt> 0
u2(b) x

over a < x < b.

Proof. By Lemma 3, J A(t)uι(t)dt has the same sign over a <_ x < b as
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J A(t)uί(t)dt9 where q, is the la s t zero of ux (x) on a _< x < b (or where

q; = a if uί(x) h a s no such zero). From K(u2u[ - u2ux ) = 1 we obtain \/u2 (&) =

K ί . Hence

—^77 Jh A(t)Uι(t)it=K(b) fb [ j84(ι) lK(*) i* i(O]ώ
u2(b) If <lf

and this latter expression is positive since the integrand is the product of two

negative quantities.

Hereafter free use will be made of the facts that any solution of (Ky'Y -

Gy — 0 can have only a finite number of zeros on X and that, under the hypothesis

GK < 0, the zeros of any two linearly independent solutions separate each other.

2. Oscillation theorems. Let yι(x) be any solution of (Ky')' ~ Gy = A

over X which satisfies the condition y(^) = jS. Then y\(x) can be expressed

in the form

yι(x)= c u ^ * ) * — — - u2(x) + uγ(x) Jx A(t)u2(t)dt
u2(b) a

u2(x) f A(t)Uι(t)dt,

where ^(x) and u2{x) are as in Lemma 4, and c is a constant. We shall prove

the following result.

THEOREM 1. Under the hypotheses (H) the zeros of yί(x) and uι(x) sepa-

rate each other on a < x < b.

[If β £ 0 the restriction that A/G be strictly increasing or decreasing may

be modified to the extent of allowing A/G to be a monotone increasing or de-

creasing function. Under the modified hypotheses it can be shown that

— £ - fb A(t)Uι(t)dt > 0 ,
u2(b) x

and since β/u? (b) is not zero the proof of the theorem is still valid.]

Proof. The functions y\(x) and ιiι(x) cannot vanish simultaneously on X

except at b; for, letting q be a zero of y\{x) and ux(x) one obtains

= u2(q) \f* A(t)Uι(t)dt + j S / i i a ί i ) ! = 0 .
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This is impossible since u2(q) φ 0 and, by Lemmas 3 (if β = 0) and 4 (if

β Φ 0), the expression in brackets never vanishes.

Suppose now that q and q' Φ b, (q < q')y are consecutive zeros of ux(x),

and that yι(x) does not vanish at any point of q < x < q'. Then, by Rollers

Theorem, [uί(x)/yί(x)Y must vanish at least once in this interval. But

fb A(t)Uι(t)dt+ β/[u2(b)]

and, as above, this expression never vanishes.

In a similar manner it can be shown that between two consecutive zeros of

Ύι{x)9 ui(x) must vanish at least once.

COROLLARY 1. If β Φ 0, the zeros ofγί(x) and ux(x) separate each other

on a < x < b.

Proof. If β ?4 0, the above argument is valid with q' - b.

COROLLARY 2. // ux(x) has m zeros on X, then Ύι(x) has either m - 1,

m, or m + 1 zeros on X.

Proof. Let q0 be the first zero of ux(x) on X and qf be the last zero of

u±(x) preceding b; Ύι(x) may or may not have a zero in a £ x < qQ. In the

interval q0 < x < q^ Ύ\(x) has exactly m - 2 zeros. If β Φ 0, then y{(x) has

exactly one zero in qr < x < b by Corollary 1. If β = 0, Ύι(x) may or may not

vanish in qr < x < b. (See Theorem 4.)

The next theorem is applicable only if the system (Ky')' - Gy = 0, y ( α ) =

y ( ό ) = O is incompatible. In this case ( i ) one can select linearly independent

solutions uι(x) and u2(x) of (Ky')' — Gy = 0 such that u ι ( i ) = u 2 (α) = 0 and

K(u2u[ — u2ui) = 1 on ί and ( i i ) the nonhomogeneous system (Ky')' — Gy = Af

y ( α ) = 0, y(b)- β has a solution, say y 2(*)* ^ e t n e n ^ a v e ι ^ e following result.

THEOREM 2. Lei ίAe hypotheses (H) be satisfied. Assume that u2(x)

oscillates on X, and let a = pl9 p2, ••• , pm (m > 3) be its consecutive zeros.

Then, for i 4 1> Ύ2(Pi) ^ 0 an^ either y2(x) has two zeros in (pj, Pι + 1 ) α ^

T&orce in (p ι + 1 , Pj + 2 ) ^ ~ ι — /n — 2 ) , or vice versa. In the interval a < x < p2,

y 2 ( # ) Aα5 either no zero or one zero. In the former case it has two zeros in

(p 2 , p3 ), in the latter case it has no zero in (p 2 , p3 ). // y2(x) has two zeros

in ( p m - 1 , pm ), it has no zero in pm < x < b.

Proof. The function y2(x) can be expressed in the form
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2(χ) + "ι(*) C A(t)u2(t)db + U2(x) f A(t)ux(t)dt.
a χf

χ

If 72 (χ) n a s three or more zeros in (pj, p ι + 1 ) ( 2 £ ί £ m — 1), Theorem 1

requires that uι(x) have more than one zero in that interval; this is impossible

since the zeros of ut(x) and u2(x) separate each other. Also, y2(x) cannot

have a single zero in (p;, P ί + 1 ) (2 £ i £ m - 1), for then y2(pi )y2(p ί + 1 ) < 0

and such a product is always positive. To see this, notice that

y 2 ( p i ) = W i ( P f ) / l A ( t ) u 2 ( t ) d t = u t ( p i ) F ( p i ) 9

where F (x) = y .4 ( ί ) u 2 ( ί ) </ί as in Lemma 2. Since the zeros of both uί(x)

and F(x) separate those of u2(x), the product uί{pι) F (pi) (2 £ i £ m) is

consistently positive or negative. Thus y2(pi ) 7 2 ( P t + i ) > 0 ( 2 £ ί £ t f i — 1) .

The function ux{x) has a zero in each of (p, , P ι + 1 ) and (p ί + 1> P,+ 2 ^ ^ —

ΐ £ Hi — 2 ) . By Theorem 1, y 2 ( * ) m u s l ; have a zero in (p;, P i + 2 ) If 72(^)

has no zero in (pi, Pι + ι)» it must have one, and therefore two, in ( p ι + 1> Pj + 2 )

Now assume that y2(x) has two zeros in (p t , p ι + 1 ) H y2^χ) a^so ^ a s t w o zeros

^n ^P* + i ' Pi + 2^' ^ e n u i ^ % ^ must have three zeros in (p t , Pj+2)? t u t this is

impossible. Hence y 2 ( # ) h a s no zero in (p ι + ι> Pj+ 2 )

This same type of argument can be used to prove the part of the theorem

pertaining to the interval a < x < p2 and the interval pm < x < 6.

REMARK. Theorems 1 and 2 are not true in case β ^ 0 without the re-

striction βA(x) < 0, x > α . This is shown by the example

ί— y'\ y ( 0 ) = 0, y(\/"^Γ) = -9π.

Here βA(x) = 9πx3 > 0 on 0 < x < \J9π. The solution of the given system is

y(%) = -% 2 , which does not oscil late. However, each of ux(x) = - cos (x2/2)9

u2(x) = sin (x2/2) has five zeros on 0 £ x £ \f 9π.

3. Application to a system involving a parameter. It will now be supposed

that K, G, and A are continuous functions of (x, λ) when a £ x £ b, Ax <

λ < Λ2. The system

[K{x, λ)y'Y - G(x, λ)y = 0, y(a, λ) = 0, y(b9 λ) = 0,

is a system of Sturmian type. Let K and G satisfy conditions sufficient to assure

the validity of known oscillation theorems for this system [ 1 , p. 66] to the
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extent that there exists an infinite set of characteristic numbers λi, Λx < ΛQ <

• < λm < < Λ2, having no limit point except Λ2, and such that if um is the

characteristic function corresponding to ̂  then υ^ has TO zeros in a < x < b.

Let v2(x, λ) be the solution of

[K(x,λ)y'Y - G(x,λ)y = 0

satisfying the initial conditions v2(a, λ) = 0, v2(a, λ) = σ, where σ is a posi-

tive constant. By the fundamental existence theorem [ l , p. 7], v2(x, λ) is a

continuous function of x and λ. It is well known [2, pp. 229, 232] that as λ in-

creases from Λt a new zero of v2(x, λ) appears at b for λ = λj ( i = 0, 1, •)>

and that each such zero moves continuously towards a as λ increases continu-

ously.

For each λ, let vι(x9 λ) be a solution of

[K(x,λ)y'Y - G(r,λ)y =0

satisfying the condition vx{b, λ) = 0. If λ = λ; ( i = 0, 1, •)> v^x, λ) is simply

a constant multiple of v2(x, λ) . For λ ^ λj, vx(x, λ) and i>2(#, λ) are linearly

independent. It follows that on X, for λ < λ 0 , vx(x, λ) has a zero only at b;

for λm £ λ < λ m +i (m = 0, 1, •••)> ^ι(*> λ) has m + 2 zeros. Theorem 1 and

its corollaries apply to give the following result.

THEOREM 3. Let the system

[K(x,λ)y'Y - G(x,λ)y = A(x,λ), y(b, λ) = β(λ),

for each fixed λ in (Ai9 Λ2 ), satisfy the hypotheses (//). Let yχ(x, λ) be a

solution. Over X: a < x _< b, if

β(λ) Φ 0 and λ < λo, then y\(x, λ) has either no zero or one zero,

λ = λm (m :> 0), then yx(x, λ ) has m + 1 zeros,

λm < λ < λ m + 1 (m >, 0), ίAerc yι(x, λ) Λαs m + 1

or m + 2 zeros;

β(\) = 0 αncί λ < AQ, then yι(x9 λ) Aαs either one zero or two zeros,

λ = λm (TO >_ 0), then yχ{x, λ) A«5 m + 1 or m + 2 zeros,

λm < λ < λ m + ! (TO 2l 0) then yt(x9 λ ) has m + 1, TO + 2,

or TO + 3 zeros.
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COROLLARY. AS λ increases in (Λ l f Λ2 ) the number of zeros of the so-

lutions jγ (x, λ) increases indefinitely.

Interesting and more precise results can be obtained in connection with the

two-point system

[K(x,λ)y'Y- G(x,k)y = A{x,\),
(5 λ)

y(a,λ) = 0, y(δ,λ) = 0,

where K, G, A conform to the hypotheses (H) for each fixed λ in (Λ^ Λ2 ). If

λ = λ, (f= 0, 1, )f then (Sy) is of course incompatible. Otherwise, for each

λ one can choose υx {x, λ) such that

Vi(b, λ) = 0, v[(b, λ)
K(b,k)v2(b,λ) '

so that

K(x,λ)[v2(x,λ)vί(x,λ) - vί(x9λ)vx(x,λ)]

^ K(b9\)[v2(b,λ)υί(b,λ)]= 1

on X. It follows that vι(a, λ) = - l/[σK(a, λ)] is negative for all λ.

The solution of (S^) can be expressed as

y2(*.λ) = vi(*,λ) fa

x A{t9λ)v2(t,λ)dt

+ va(*.λ) fχ

b A(t, λ)vι(t,λ)dt.

We now consider an interval Lm: λm < λ < λm+i, and let Xo represent the

interval a < x < b. For a fixed λ in L m , each of vx{xy λ) and v2(x, λ) has

m+ 1 zeros on >Y0 For the sake of definiteness let A(x, λ) be positive over

X0Lm; and let m be odd so that, for λ in Lm, vt(x, λ) and v2(x, λ) each has

an even number, m + 1, of zeros in Xo. Then f[ (ό, λ) > 0 and, by virtue of

Lemma 3,

y ί ( α , λ ) = σ fb A{t,λ)vι(t,λ)dt

is negative. Let qΛλ) represent the last zero of vι(x, λ) preceding b. By The-

orem 1 it follows that y2[qf(λ), λ] is positive over Lm. However, y2 (6, λ) is
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negative for λ sufficiently close to λm, positive for λ sufficiently close to

because

y 2 ' (*»λ)= υ{{b,λ) fa

b A(t,k)v2(t,λ)dt,

and by Lemma 3

fa A(t, λm)v2(t, λm)dt < 0 and ^ A (t, λm+ι)v2(t, λm+ t) dt > 0.

Since y2(x, λ) is a continuous function of (x, λ) over XLm [l, p. 114], it follows

that there exist €m > 0 and 6 m + ι > 0 such that for λ' - λm < €m and λm + t -

λ" < £m + i> 72(̂ > λ') has no zero in qλλ') < x < b, and y2(xy λ") has one

zero in qΛλ") < x < b.

A similar argument can be made in case m is even or in case A(x, λ) is

negative over /to This proves the following result.

THEOREM 4. £e£ (Sλ) satisfy the hypotheses (H) for each λ in (Al9 Λ2 ).

On Xθ9 y2(x, λ) has m zeros for λ sufficiently close to λm, /n + 1 zeros for λ

sufficiently close to λm+ι (m = 0, 1, 2, ) •

Letting po(λ) be the first zero of v2(xr\) to the right of α, one readily

sees that

y 2 [p 0 (λ) , λ] = vt[Po(λ)9 λ] j[ P o λ ) ^ ( ί , λ ) t ; 2 ( ί , λ)Λ

is positive or negative according as A is positive or negative. If A > 0, then

y2{a, λ) = α J /4 (ί, λ) vγ{t, λ) ώ is positive or negative over Lm according

as m is even or odd. If A < 0, y2 (o, λ) is negative or positive over Lm accord-

ing as m is even or odd. If one uses these relations as well as Theorem 1 and

Theorem 2 to sketch graphically several typical cases, he obtains a striking

illustration of the effect of the discontinuities of the function y2^χy λ) at the

characteristic values of λ. Finally, one may observe that, regardless of the

sign of A, for an even value of m the first zero of v2(x, λ) on a < x < b pre-

cedes the first zero of y2(x, λ), and for an odd value of m the opposite is the

case.

REFERENCES

1. M. Bocher, Lecons sur les methodes de Sturm, Paris, 1917.



SECOND-ORDER DIFFERENTIAL SYSTEMS 289

2. E. L. Ince, Ordinary differential equations, Dover, New York, 1926.

3. W. M. Whyburn, Second-order differential systems with integral and k-point bounda-
ry conditions, Trans. Amer. Math. Soc. 30(1928), 630-640.

UNIVERSITY OF CALIFORNIA

DAVIS, CALIFORNIA






