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1. Introduction. Neumann's method for solving the first and second boundary

value problems lends itself readily to numerical computation. The degree of

success depends primarily on the rate of convergence of the Neumann series, and

the motivation for the present paper arose from a study of this question. The

only new result is an estimate of the convergence rate by means of quasi-con-

formal mappings, which aside from its practical applications seems to present

some theoretical interest. The rest of the paper is concerned with a generali-

zation of the classical approach.

2. The Hubert transform. Let dμ be a complex mass-distribution in the plane

with compact carrier and total mass zero. The energy of the mass distribution is

defined by

\\dμ\\3 = - π ~ l J J Ί o g | ί - T | dμit) d μ ( τ ) .

With this norm the distributions with finite energy form a linear space which can

be completed to a Hubert space S.

The Hubert transform

1

(i) /(*>- — / r
2πι ζ- z

defines a function which is analytic outside of the carrier with a double zero at

oo. If the energy is finite one proves that f(z) exists a.e. and

2 / / I / I 2 dxdy- \\dμ\\2 (z =x + iy),
Q

where Ω denotes the whole plane.

This result, to which there seems to be no convenient reference, is readily

established by use of Fubini's theorem and the relation
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1 CC dx dy
~γ=—- = log Λ - l o g | ί - τ | + 0 ( / Γ a ) .

2 π \z\<R ( ί ~ z ) ^ ~ 2 >

3. The inverse transformation. We regard (1) as a mapping φ which carries

d μ into the differential

fdz = φ(dμ),

considered as element of a Hubert space 3 with the norm

\\fdz\\2 = 2 J J I / I ' dx dy.
Ω

The inverse transformation <£~ι exists on a dense subspace of 3. Indeed, let

3 consist of those f dz for which / is continuously differentiable and

ϊL-°ί[tL +i iΔ
dΊ 2\dz + l dyj

vanishes outside of a compact set. Now 3 is dense in 3, and for / dz C 3 we

can define a mass-distribution with density - 2i df/dT. Its Hubert transform is

1 f(df/dζ dξdη .

π Ω £ ~ z

Integration by parts after removal of a small circle centered at z shows that

this integral has the value f(z).

It follows that φ can be extended to an isometric transformation of S onto

3.
If C is a fixed compact set the differentials f dz such that / is analytic out-

side of C form a closed subspace 3 0 of 3. Its image under φ is the closure

£ 0 of the set of mass-distributions over C.

4. Anti-linear mappings. In 8 an involutory anti-linear mapping / is defined

by complex conjugation:

/ dμ = dμ*

A corresponding anti-linear mapping in 3 is defined by

/ ' = Φ J Φ~1

For convenience we shall frequently write

f dz = φ(dμ),

g dz = φidjί).
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where gdz is thus the transform of fdz under/'. Clearly,

\\fdz\\ = | | g « * z | | .

We shall also consider

(2) dV = Hfdz - gdz)

and its conjugate differential

dV* = / dz + g dz .

If dμ is real, then / = g, and dV = - 2 A /rfz, dV* = 2 R f dz .

5. Transformations in So and 3 0 . Given a compact set C we now restrict our

attention to the subspaces Co and So introduced at the end of §2. We assume

further that C has zero area, and that the complement of C can be divided in two

open sets B( and S e , the interior and exterior of C*

In these circumstances (2) is more than a formal differential; in δj + Be it

is the differential of the logarithmic potential

V ( z ) = - 7 7 - ' fc l o g \ζ- z \ d μ ( ζ ) .

Moreover, the Dirichlet integral D (V), defined as

Ω

—
7χ~

dV
dx dy,

can be expressed by

D(V) =
Ω

| g | 2 ) dx dy = = \\dμ\\2.

Let us now introduce the linear operator Λ; which transforms f dz into /t dz,

where fi - f for z C δ / and // = 0 for z C δ e , and a similarly defined operator

Λe. Then Λj and Λe are evidently projections on orthogonal subspaces, and

Λ, Λe =

where / is the identity transformation.

Corresponding to Λ/ and Λe we define the operators

Li = φ~ι Λj φt

Le = φ Ae φ

on S o . They are of course also projections, and Li + Le is the identity trans-



274 LARS V. AHLFORS

formation.

The fundamental role in the Neumann-Poincare theory is played by the trans-

formation

T - - [Li - Le + J{Li - Le) / ] .

It operates in So; the corresponding transformation in 3 0 is

S = - [At - Λ e + /'(Λ, - Λ β ) 7']. 1

We note first that JTJ - T; this means that T is a real operator. Secondly,

]LιJ and JLeJ are also projections. For this reason T is self-adjoint with a

norm < 1. We find explicitly

( d μ , T d μ ) = - i [ | | L ^ μ | | 2 + \\Udμ\\2 - \ \ L e d μ \ \ 2 - \\Ledμ\\2].
Z

This can also be written in the form

(dμ,Tdμ) = Sj(\fi\2 + \gi\
2 - | / e | 2 - | g e | 2 ) dx dy = D ( V( ) - D ( Ve) .

Since

| | r fμ | | 2 - D(F, ) + D(Ve),

we obtain

\(dμ, Tdμ)\ < \\dμ\\2,

and this inequality implies

\\Tdμ\\ < \\dμ\\.

As a matter of fact, the norm of T is given by

\D(Vi) ~ Z ) ( F e ) |
(3) | | Γ | | = sup

D{Ve)

6. The Neumann problem. In the classical Neumann-Poincare theory, C is

a smooth curve and dμ a very regular mass-distribution on C. Under these condi-

The operator 5/ ' = j'S is closely related to the operator T introduced by Schiffer
and Bergman [ l ] . If j'S fdz = Fdz, the function F is equal to the Schiffer-Bergman
transform T/ in Bι.
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tions the Hubert transform

L ζ - z

satisfies the fundamental saltus-condition

where fiiζ) and fe(ζ) are the interior and exterior boundary values on C

For the differentials dV and dV* the corresponding saltus-conditions are

(4) dVi -dVe = 0 ,

dV* - dV* = 2 dμ .

To solve Neumann's problem for the interior means to solve an equation of

the form

(5) dV* = dγ,

where dγ is subject to the condition

Because of (4) the equation (5) can also be written in the form

(6) dμ + — (dV* + dV*) = dγ,

and the corresponding problem for the exterior would lead to the equation

(7) dμ- - (dV* +dV*e) =dγ.

In the general case there is no way of defining dV* and dV* directly. How-

ever, fiiζ) dζ may be interpreted as the saltus of fidz where, as before, /j = /

in the interior and fi = 0 in the exterior. For this reason, we can represent

fiiζ) dζby φ~ιifidz)9 and a similar representation is obtained for feiζ) dζ.

With these interpretations, we find that (1/2) idV* + dV* ) is represented by Tdμ,

and the equations (6), (7) obtain the form

(8) dμ ± Tdμ = dγ .

In this sense the Neumann problem has a meaning under extremely general

circumstances.
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Equation (8) is solved by Neumann's series

(9) dμ = dγ + Tdγ + T2dγ + ,

provided that the series converges. Here, convergence is interpreted in terms

of the energy-norm, and the necessary and sufficient condition for convergence is

that the norm of T is < 1. More precisely, if | | Γc?μ|| < k | |c?μ| | the series has

a geometric majorant with the ratio k.

It is thus of practical and theoretical importance to find upper bounds for the

norm of T.

7. Quasi-conformality. We shall pursue the study of the convergence only

for the case that C is a Jordan curve, B( and Be being then simply connected on

the sphere 2. It may be expected that the norm of T depends on the regularity and

near-circularity of C, However, instead of introducing explicit regularity condi-

tions, we shall make use of an implicit condition which seems to influence the

norm much more directly.

Our only assumption will be that there exists a quasi-conformal mapping ζ(z)

of Bi onto Be which leaves C fixed. More exactly, ζ(z) is supposed to be a topo-

logical mapping of Bi + C onto Be + C such that ζ( z) = z on C. In B( we assume

ζ(z) to be continuously differentiate, and we write

q dz 2 \dx dy

The Jacobian of the mapping is \p\2 — \q\2; in the present case the mapping is

sense-reversing, and hence \p\ < | g | . The condition of quasi-conformality con-

s i s t s in requiring that

I P I < * M
for some k < 1. The mapping is then said to have a maximal eccentricity < k

or a maximal dilatation < ( 1 + A ) ( 1 — A).

It can be shown that the existence of a quasi-conformal mapping is compatible

with corners but excludes cusps.

If Bi is a multiply connected region, the harmonic measures of the contours corre-
spond to solutions of dμ - Tdμ. In this case the norm is thus exactly one. However, a
significant problem arises if we consider only the sub-space for which the total mass
vanishes separately on each contour. An even more natural approach is to embed B( in a
surface of higher genus so that Be becomes connected [4].
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8. Theorem. Our result can now be expressed as follows:

THEOREM. If BI and Be are complementary simply connected regions bound-

ed by a Jordan curve C, and there exists a quasi-con formal mapping of Bi onto Be

which leaves C fixed and whose maximal eccentricity is < k9 then the norm of

the transformation T is at most k.

To make the essential steps of the proof clear, let V be the potential of a

distribution dμ. The restrictions of V to B{ and Be being denoted by Vι and Ve,

as above, we compare V{(z) with Ve (ζ(z)). These functions are equal on C,

and hence

< D{Ve(ζ(z)))

by Dirichlet's principle. But

D(VAζ(z))) = 2 / /
dz

dVf

dx dy

dV dVPe w r e

P + — Q dx dy

dζ

dζ

2

2

dVe

dVe

dζ

2\

!

2

( | p I + \q\)2 dx dy

and we have proved that

\q\ - | p |

1 + Jc
V.) < D(Ve).

J- """ ft

1 - k

Since the inverse mapping of ζ{z) is also quasi-conformal with the same maxi-

mal dilatation, we obtain similarly

These inequalities imply

\D(Vt) - D(Ve)\ < D(Ve)),

and it follows by (3) that the norm of T is < Ic

In this proof the use of Dirichlet's principle needs justification. In other
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words, we must prove that the mixed Dirichlet integral

D(V.(z) - Ve(ζ(z)), ? . (*))

vanishes . For this purpose it is sufficient to know that the potential V(z) is

continuous on C. Then V{ (z) - Ve (ζ{ z)) i s continuously zero on the boundary.

Moreover, we have shown that Ve (ζ(z)) h a s a finite Dirichlet integral. Under

these conditions the mixed Dirichlet integral vanishes according to a familiar

theorem.

We have thus to show that V{ z) i s continuous for a dense se t of distributions

in 8 0 . Suppose that w = φ(z) defines a conformal mapping of Be onto \w\ > 1.

Set

e
(10) w = φ(z) for zCBe

w = \/φ{ζ{z)) for z CBr

This is a quasi-conformal mapping of the whole z-plane onto the w-plane except

for C where the mapping is only known to be continuous. It is an important theo-

rem in the theory of quasi-conformal mappings that such a mapping satisfies a

Lipschitz condition of order (1 — &)/( 1 + A) on any compact set 3. We have thus

\ φ ( Z ι ) - φ { z 2 ) \ < M \ z r -

in a neighborhood of C.

From this behavior we draw two conclusions: 1) if a mass-distribution dμ of

finite energy is carried from the z-plane to the w-plane by means of the mapping

(10), then the energy remains finite, and vice versa; 2) if the potential is con-

tinuous in one plane, then it is also continuous in the other.

In the u -plane the distributions with continuous density in | w \ = 1 are dense

and have a continuous potential. The corresponding distributions in the z-plane

have the same property. This completes the proof.

9. An application. As an application, we consider the case of a star-shaped

region B( whose boundary has the equation r = r(φ) in polar coordinates. A

3 Assume that ζ(z) maps |z| < 1 quasi-conformally onto | £ | < 1 with dilatation < K =
(1 + k)/(l — &). The mapping can be extended to the double discs with branch-points at
z 1 > z 2

 a n d £( z i)> £ ( z 2 ) Conformally speaking the double discs can be regarded as annuli,
and the existence of the mapping implies that the ratio of their modules must be < K. As
z 1 and z2 approach each other the modules are asymptotic to — log | z± — z2\ and
~ l°g l £ ( z i ) "~ ζ(z2 )|» an<* l ^ e Lipschitz condition follows. The proof is inspired by
reasonings of Teichmuller.
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quasi-conformal mapping ζ{z) is obtained as a transformation by reciprocal radii:

Z

Since

dφ 1 dφ 1

σz 2ιz dz 2iz

we obtain

<?£ r 2 rr'
q = —r = - — + ί — .

dz z2 p
Hence

lpl \r'\ a= . = cos β9

\q\ y r

2 + r'2

where Θ is the angle between the tangent and the radius vector. If θ0 = min θ the

Neumann series has thus a convergence ratio < cos #0 .

10. Rate of convergence* For practical purposes it may not be sufficient to

know that the series (9) converges in the energy norm. If C is rectifiable we con-

sider the Banach space B of distributions dμ with continuous density on C (and

total mass zero) and use the maximum of the density as norm. Under sufficiently

strong regularity conditions it is proved in the classical theory that T maps B

upon itself, and even that T is completely continuous on B.

If this is so, T has a pure point-spectrum in B. But it is clear that every

eigen-value in B belongs to the spectrum with respect to Eo. In Eo the absolute

value lλo( of the spectral point nearest to the origin is reciprocal to the norm.

The smallest eigen-value in B is > | λ0 |, and it follows that the Neumann series

dγ + XTdγ + X2T2dγ + •••

converges in the B-norm for | λ | < | λ0 |. Therefore the convergence rate of

dγ + Tdγ + T2dγ + •••

is comparable to that of a geometric series with ratio | λ0 I""1.

An upper bound for the norm of T in So can therefore serve as a practical esti-

of the rate of convergence in solving a Neumann problem by the iterative method.
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