REMARKS ON THE NEUMANN-POINCARE INTEGRAL EQUATION

Lars V. AsLFroRs

1. Introduction. Neumann’s method for solving the first and second boundary
value problems lends itself readily to numerical computation. The degree of
success depends primarily on the rate of convergence of the Neumann series, and
the motivation for the present paper arose from a study of this question. The
only new result is an estimate of the convergence rate by means of quasi-con-
formal mappings, which aside from its practical applications seems to present
some theoretical interest. The rest of the paper is concerned with a generali-
zation of the classical approach.

2. The Hilbert transform. Let du be a complex mass-distribution in the plane

with compact carrier and total mass zero. The energy of the mass distribution is

defined by

dul|2 == ="' [[log |t ~ T| du(2) dp(T).

With this norm the distributions with finite energy form a linear space which can
be completed to a Hilbert space €.
The Hilbert transform

1 du(f)
1) f(z)=2—”7f€_z

defines a function which is analytic outside of the carrier with a double zero at

0. If the energy is finite one proves that f(z) exists a.e. and

2 {{W de dy = ||dul|? (z = x + iy),

where Q denotes the whole plane,
This result, to which there seems to be no convenient reference, is readily

established by use of Fubini’s theorem and the relation
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1 f dx dy

2 = =log R = log |¢ — | + O(R™).
27y, <p (6= 2)(T-32) 8 og |t - T| + )

3. The inverse transformation. We regard (1) as a mapping ¢ which carries
d p into the differential

fdz = ¢(dp.)1

considered as element of a Hilbert space 3 with the norm

fdz||2 =2 [f1f1? dx dy.
Q

The inverse transformation ¢ ! exists on a dense subspace of J. Indeed, let

3’ consist of those fdz for which f is continuously differentiable and

of _GL(of . 9f
9z 2 \az ' 9y

vanishes outside of a compact set. Now 3” is dense in &, and for fdz € 3" we
can define a mass-distribution with density — 2i df/dz. Its Hilbert transform is

1 If 9f/a¢ dE dy
g (-2

Integration by parts after removal of a small circle centered at z shows that

(C=§+ir[).

T

this integral has the value f(z).

It follows that ¢ can be extended to an isometric transformation of € onto
J.

If C is a fixed compact set the differentials f dz such that f is analytic out-

-1

side of C form a closed subspace J, of O. Its image under ¢ ' is the closure

80 of the set of mass-distributions over C.

4. Anti-linear mappings. In € an involutory anti-linear mapping J is defined
by complex conjugation:

Jdu =dpu.
A corresponding anti-linear mapping in J is defined by
I'=¢ 1] ¢".
For convenience we shall frequently write
fdz = ¢(dy),
gdz = ¢(dp),
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where gdz is thus the transform of fdz under J*. Clearly,

lfdzl| = |lgdz]|.
We shall also consider
(©) dV = i(fdz - gdz)
and its conjugate differential
dV* = fdz + gdz .
Ifdpisreal, thenf = g, and dV = — 2 d fdz, dV* = 2 R fdz.

5. Transformations in €, and J,. Given a compact set C we now restrict our
attention to the subspaces 80 and 30 introduced at the end of $2. We assume
further that C has zero area, and that the complement of C can be divided in two
open sets B; and B, the interior and exterior of C.

In these circumstances (2) is more than a formal differential; in B; + B, it
is the differential of the logarithmic potential

V() ==a S log |£ - 2] du().

Moreover, the Dirichlet integral D (V'), defined as

p(vy= [f (
Q
can be expressed by

D(V) = {Bf(mz +|gl?) dx dy = ||fdz]|? = ||dp]||?.

2 av

oV de
ox * s

Let us now introduce the linear operator A; which transforms f dz into f; dz,
where f; = f for z € B; and f; = 0 for z € B,, and a similarly defined operator
Ae. Then A; and A, are evidently projections on orthogonal subspaces, and

A+ A =1,

where [ is the identity transformation.
Corresponding to A; and A, we define the operators

Li = qs-] Ai an
Le =¢ ' Ae ¢

on &,. They are of course also projections, and L; + L, is the identity trans-
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formation.

The fundamental role in the Neumann-Poincare theory is played by the trans-
formation

T=

|~

[L; - L.+ J(L; - L,.) J].
It operates in €g; the corresponding transformation in J is

S= —[A; —Ae + J(A; = Ap) T712

ol

We note first that JTJ = T; this means that T is a real operator. Secondly,
JL;] and JL.J] are also projections. For this reason T is self-adjoint with a
norm < 1. We find explicitly

1 _ _
(dp, Tdp) = — U Lidpl1? + [ Lidp||? = || Ledp || = || Ledp]|?].

This can also be written in the form

(dp, Tdp) = éfumz w1gil? = 1fel? = |8 |?) dudy = D) - D(F.).

Since
|dull? = D(V;) + D(V,),
we obtain
|(dp, Tdp)| < |ldpll?,
and this inequality implies
I Tdp |l < |ldpll.
As a matter of fact, the norm of T is given by

|D(V;) = D(Ve)|

) T = sup D(V,) + D(V,)

6. The Neumann problem. In the classical Neumann-Poincare theory, C is

a smooth curve and dy a very regular mass-distribution on C. Under these condi-

1 The operator SJ’ = J’S is closely related to the operator T introduced by Schiffer
and Bergman [1]. If J’S fdz = Fdz, the function F is equal to the Schiffer-Bergman
transform Tf in B;.
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tions the Hilbert transform

1
f(z) = - -/c‘

27i

du({)
-z

satisfies the fundamental saltus-condition
[fi(g) - fe(C)] d¢ = dp(),

where f;({) and f, () are the interior and exterior boundary values on C.

For the differentials dV and dV* the corresponding saltus-conditions are

(4) v, - dv, =0,
7%
vt - dvt =2dp.

To solve Neumann’s problem for the interior means to sclve an equation of

the form
(5) dV? =dy,
where dy is subject to the condition

‘/C dy =0.

Because of (4) the equation (5) can also be written in the form
1 * *
(6) dp + -2-(dVi +dVe)=dy,
and the corresponding problem for the exterior would lead to the equation
d 1 £ 3 £ 3
(7 p,—';(dVi +dV]) = dy.

In the general case there is no way of defining dV:‘ and a’V:< directly. How-
ever, f;({) d{ may be interpreted as the saltus of f;dz where, as before, f; = f
in the interior and f; = 0 in the exterior. For this reason, we can represent
fi(Z) d¢ by ¢ 7' (fidz), and a similar representation is obtained for f.({) d{.
With these interpretations, we find that (1/2) (dV? + dV:) is represented by Tdy,
and the equations (6), (7) obtain the form

(8) dp * Tdp =dy.

In this sense the Neumann problem has a meaning under extremely general

circumstances.



276 LARS V. AHLFORS

Equation (8) is solved by Neumann’s series
9) du =dy ¥ Tdy + T*dy ¥ --+,

provided that the series converges. Here, convergence is interpreted in terms
of the energy-norm, and the necessary and sufficient condition for convergence is
that the norm of T is < 1. More precisely, if || Tdp|| < & ||du|| the series has
a geometric majorant with the ratio k.

It is thus of practical and theoretical importance to find upper bounds for the
norm of T.

7. Quasi-conformality. We shall pursue the study of the convergence only
for the case that C is a Jordan curve, B; and B, being then simply connected on
the sphere®. It may be expected that the norm of T depends on the regularity and
near-circularity of C. However, instead of introducing explicit regularity condi-
tions, we shall make use of an implicit condition which seems to influence the
norm much more directly.

Our only assumption will be that there exists a quasi-conformal mapping £(z)
of B; onto B, which leaves C fixed. More exactly, {(z) is supposed to be a topo-
logical mapping of B; + C onto B, + C such that {(z) = z on C. In B; we assume
{(z) to be continuously differentiable, and we write

o0 1o ¢

= ee— DT e— 1l
P dz 2 \dx ay |
a¢ 1 (0¢ | 9¢
g= —= = |— +i —|.
dz 2 \dx dy
The Jacobian of the mapping is |p|? — |¢|?; in the present case the mapping is

sense-reversing, and hence |p| < | g|. The condition of quasi-conformality con-
sists in requiring that

lpl < klql

for some k£ < 1. The mapping is then said to have a maximal eccentricity < %
or a maximal dilatation < (1 + k) (1 - k).
It can be shown that the existence of a quasi-conformal mapping is compatible

with corners but excludes cusps.

e ] B; is a multiply connected region, the harmonic measures of the contours corre-
spond to solutions of du = Tdy. In this case the norm is thus exactly one. However, a
significant problem arises if we consider only the sub-space for which the total mass
vanishes separately on each contour. An even more natural approach is to embed B; in a
surface of higher genus so that B, becomes connected [4].
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8. Theorem. QOur result can now be expressed as follows:
THEOREM. If B; and B are complementary simply connected regions bound-

ed by a Jordan curve C, and there exists a quasi-conformal mapping of B; onto B
which leaves C fixed and whose maximal eccentricity is < k, then the norm of

the transformation T is at most k.

To make the essential steps of the proof clear, let V' be the potential of a
distribution dy. The restrictions of V to B; and B, being denoted by V; and V,,
as above, we compare V;(z) with V, ({(z)). These functions are equal on C,

and hence

D(V,(2)) < DV, (£(2)))

by Dirichlet’s principle. But

EVAK V.| 2
DV =2 1= + |—| | dx dy
e B; dz dz
if ( av, av, |2 |ov. v, |2
=2 —p+ T = g | — + = dx d
5 \la¢ e a¢ 1T e P g
ave|2 |av. 2)
<2 Jf ==l | Gpl + g% dx dy
5 (ac Y !
Vel 2 |9Vel?) Ipl + 1q| 1+ k
_o ff wl= | =L d£dyp < —— DV,
3, (acl ¢ ) lql - Ipl S1-k 0 C
and we have proved that
1+ £k
D(V,) < —— D(V,).
< T .

Since the inverse mapping of ¢(z) is also quasi-conformal with the same maxi-

mal dilatation, we obtain similarly

1 +k
D(Ve)_<_ . D(Vi).

These inequalities imply
ID(V)) = D(V,)| < k(D(T,) + DV, ),

and it follows by (3) that the norm of T is < k.
In this proof the use of Dirichlet’s principle needs justification. In other
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words, we must prove that the mixed Dirichlet integral
D(V,(2) -V, ({(2)), v,(2))

vanishes. For this purpose it is sufficient to know that the potential V' (z) is
continuous on C. Then V;(z) -~ V,({(z)) is continuously zero on the boundary.
Moreover, we have shown that V, ({(z)) has a finite Dirichlet integral. Under
these conditions the mixed Dirichlet integral vanishes according to a familiar
theorem.

We have thus to show that V(z) is continuous for a dense set of distributions

in €,. Suppose that w = ¢ (z) defines a conformal mapping of B, onto |w| > 1.
Set

(10) w=¢(z) for zE€B,,

w=1/¢(L(2)) for z € B;.

This is a quasi-conformal mapping of the whole z-plane onto the w-plane except
for C where the mapping is only known to be continuous. It is an important theo-
rem in the theory of quasi-conformal mappings that such a mapping satisfies a

Lipschitz condition of order (1 ~ £)/(1 + k) on any compact set®. We have thus
lp(z) = p(2)] < M|z, ~ z,| " B/G*E)
lz, =z, <M|p(z,) = p(z,)|17F/Q+E)

in a neighborhood of C.

From this behavior we draw two conclusions: 1) if a mass-distribution du of
finite energy is carried from the z-plane to the w-plane by means of the mapping
(10), then the energy remains finite, and vice versa; 2) if the potential is con-
tinuous in one plane, then it is also continuous in the other.

In the w-plane the distributions with continuous density in |w| = 1 are dense
and have a continuous potential. The corresponding distributions in the z-plane

have the same property. This completes the proof.

9. An application. As an application, we consider the case of a star-shaped
region B; whose boundary has the equation r = r(¢) in polar coordinates. A

3 Assume that {(z) maps |z| < 1 quasi-conformally onto |¢| < 1with dilatation < K =
(1 + k)/(1 = k). The mapping can be extended to the double discs with branch-points at
z,,2, and C(zl), 4(22 ). Conformally speaking the double discs can be regarded as annuli,
and the existence of the mapping implies that the ratio of their modules must be < K. As
z, and z, approach each other the modules are asymptotic to — log |z, — z,| and
- log Ig(z‘) - g( 2 )I, and the Lipschitz condition follows. The proof is inspired by
reasonings of Teichmiiller.
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quasi-conformal mapping {( z) is obtained as a transformation by reciprocal radii:

r(¢)?
() - 22
z
Since
d¢ I 1
dz  2iz 0z - 21?,
we obtain
al rr
p = Ep = i \zl2 s
¢ 2 rr
q==—— === 4+ .
dz z2 z2
Hence
Pl _ |r*| - cos 0,
lql r¢ + r?

where 0 is the angle between the tangent and the radius vector. If 6, = min 6§ the

Neumann series has thus a convergence ratio < cos @ .

10. Rate of convergence. For practical purposes it may not be sufficient to
know that the series (9) converges in the energy norm. If C is rectifiable we con-
sider the Banach space 1B of distributions d pu with continuous density on C (and
total mass zero) and use the maximum of the density as norm. Under sufficiently
strong regularity conditions it is proved in the classical theory that T maps B
upon itself, and even that T is completely continuous on B.

If this is so, T has a pure point-spectrum in B. But it is clear that every
eigen-value in 1 belongs to the spectrum with respect to E,. In E, the absolute
value |\ | of the spectral point nearest to the origin is reciprocal to the norm.

The smallest eigen-value in B is > |Ag |, and it follows that the Neumann series
dy + Aldy + X2T2%dy + -
converges in the B-norm for || < | A, |. Therefore the convergence rate of
dy + Tdy + T'zdy + e
is comparable to that of a geometric series with ratio |A, |72,

An upper bound for the norm of T in €, can therefore serve as a practical esti-

of the rate of convergence in solving a Neumann problem by the iterative method.
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