FORCES ON THE BOUNDARY OF A DIELECTRIC

G. Power

1. Introduction. It has been shown [1 , ch. VII] that the component parallel to the axis of x of the resultant force on the matter inside any closed surface S_{1} drawn in a medium of specific inductive capacity K is given by

$$
X=-\iint_{S_{1}}\left(l P_{x x}+m P_{x y}+n P_{x z}\right) d S,
$$

where (l, m, n) are the direction-cosines of the normal to the surface,

$$
\begin{aligned}
& P_{x x}=\frac{K}{8 \pi}\left(\bar{X}^{2}-\bar{Y}^{2}-\bar{Z}^{2}\right), \\
& P_{x y}=\frac{K}{4 \pi} \bar{X} \bar{Y} \\
& P_{x z}=\frac{K}{4 \pi} \bar{X} \bar{Z}
\end{aligned}
$$

and $\bar{X}, \bar{Y}, \bar{Z}$ are given in terms of the potential by $-\partial \phi / \partial x,-\partial \phi / \partial y,-\partial \phi / \partial z$, respectively, provided the effect of electrostriction is neglected.

If any other surface S_{2} is taken, surrounding S_{1}, and if

$$
\frac{\partial P_{x x}}{\partial x}+\frac{\partial P_{x y}}{\partial y}+\frac{\partial P_{x z}}{\partial z}=0
$$

at all points between the surfaces, that is to say provided $\nabla^{2} \phi=0$ at all such points, then, by Green's theorem,

$$
X=-\iint_{S_{2}}\left(l P_{x x}+m P_{x y}+n P_{x z}\right) d S,
$$

and similarly for the other components of the resultant force on the matter inside S_{1}.

This method can be used to find the resultant forces caused by the refraction of the lines of force at a surface of discontinuity separating one medium of speccific inductive capacity K_{i} from a second of specific inductive capacity K_{0}.
2. Two-dimensional fields. Instead of applying the foregoing method to twodimensional fields, we can best obtain the results by using the complex potential. Let

$$
\Omega_{0} \equiv \phi_{0}+i \psi_{0}
$$

be the complex potential of the field in the dielectric K_{0}. The components of the resultant force on the boundary C are then given by

$$
Y_{0}+i X_{0}=\frac{K_{0}}{8 \pi} \int_{C}\left(\frac{d \Omega_{0}}{d z}\right)^{2} d z
$$

and the couple Γ_{0} is the real part of

$$
-\frac{K_{0}}{8 \pi} \int_{C}\left(\frac{d \Omega_{0}}{d z}\right)^{2} z d z
$$

These results follow from the equations of the Introduction with $Z=0$. The details are omitted since the proof is identical with that of the well-known theorem of Blasius [3, p. 163; 2, p. 91] in fluid flow. The substitution of

$$
\Omega_{0}=\sum_{n=1}^{p} \frac{c_{n}-i c_{n}^{\prime}}{n} z^{n}+\sum_{n=1}^{\infty} \frac{d_{n}+i d_{n}^{\prime}}{n} z^{-n}
$$

and

$$
\Omega_{i}=\sum_{n=1}^{p^{\prime}} \frac{a_{n}-i a_{n}^{\prime}}{n} z^{n}+\sum_{n=1}^{\infty} \frac{b_{n}+i b_{n}^{\prime}}{n} z^{-n}
$$

and separation into real and imaginary parts, yields the explicit forms
(1a) $X=\frac{K_{0}}{2} \sum_{n=1}^{p-i}\left(d_{n} c_{n+1}+d_{n}^{\prime} c_{n+1}^{\prime}\right)-\frac{K_{i}^{\prime}}{2} \sum_{n=1}^{p^{\prime}-1}\left(b_{n} a_{n+1}+b_{n}^{\prime} a_{n+1}^{\prime}\right)$,
(1b) $Y=\frac{K_{0}}{2} \sum_{n=1}^{p-1}\left(d_{n} c_{n+1}^{\prime}-d_{n}^{\prime} c_{n+1}\right)-\frac{K_{i}}{2} \sum_{n=1}^{p^{\prime}-1}\left(b_{n} a_{n+1}^{\prime}-b_{n}^{\prime} a_{n+1}\right)$,
(1c) $\Gamma=\frac{K_{0}}{2} \sum_{n=1}^{p}\left(c_{n} d_{n}^{\prime}-c_{n}^{\prime} d_{n}\right)-\frac{K_{i}}{2} \sum_{n=1}^{p^{\prime}}\left(a_{n} b_{n}^{\prime}-a_{n}^{\prime} b_{n}\right)$.
Circular cylinder in a general field. If a circular cylinder of radius a, filled with homogeneous dielectric of specific inductive capacity K, is placed at the origin of coordinates in a two-dimensional field whose complex potential is $f(z)$ in air, having no singularities inside or on $r=a$, then the complex potentials inside and outside the cylinder are respectively

$$
\left\{\begin{array}{l}
\Omega_{i}=\frac{2}{(1+K)} f(z) \tag{2}\\
\Omega_{0}=f(z)+\frac{(1-K)}{(1+K)} \bar{f}\left(\frac{a^{2}}{z}\right)
\end{array}\right.
$$

It is assumed that there are no other boundaries present, and that the field is caused by isolated singularities (charges, dipoles, etc.). The result can easily be obtained by considering the boundary conditions. Note that by putting $K=0$ in Ω_{0} above we obtain the Circle Theorem [4, p. 84].

If the original real potential is taken to be

$$
\phi(r, \theta)=\sum_{n=1}^{p}\left(\frac{E_{n} r^{n} \cos n \theta}{n}+\frac{E_{n}^{\prime} r^{n} \sin n \theta}{n}\right),
$$

then the potentials inside and outside the dielectric are

$$
\phi_{i}=\frac{2}{(1+K)} \phi(r, \theta)
$$

and

$$
\phi_{0}=\phi(r, \theta)+\frac{(1-K)}{(1+K)} \phi\left(\frac{a^{2}}{r}, \theta\right) .
$$

Thus with the above notation we have

$$
\begin{aligned}
& a_{n}=\frac{2 E_{n}}{(1+K)}, a_{n}^{\prime}=\frac{2 E_{n}^{\prime}}{(1+K)}, b_{n}=b_{n}^{\prime}=0 \\
& c_{n}=E_{n}, c_{n}^{\prime}=E_{n}^{\prime}, d_{n}=\frac{(1-K)}{(1+K)} a^{2 n} E_{n}, d_{n}^{\prime}=\frac{(1-K)}{(1+K)} a^{2 n} E_{n}^{\prime}
\end{aligned}
$$

Hence the resultant forces on the boundary are given by

$$
\left\{\begin{aligned}
X & =\frac{(1-K)}{2(1+K)} \sum_{n=1}^{p-1} a^{2 n}\left(E_{n} E_{n+1}+E_{n}^{\prime} E_{n+1}^{\prime}\right) \\
Y & =\frac{(1-K)}{2(1+K)} \sum_{n=1}^{p-1} a^{2 n}\left(E_{n} E_{n+1}^{\prime}-E_{n}^{\prime} E_{n+1}\right) \\
\Gamma & =0
\end{aligned}\right.
$$

Equations (2) can be extended in the form of infinite series to the case where there is also present a conducting surface $r=b(b<a)$. Infinite series are also obtained when $r=b$ is a line of flow. These two cases can then be used to obtain results for a dielectric elliptic cylinder.
3. Three-dimensional fields. In spherical polar coordinates (r, θ, ω), the components of force are

$$
\left\{\begin{array}{l}
Z=\iint(F \cos \theta-G \sin \theta) d S \tag{4}\\
Y=\iint[(F \sin \theta+G \cos \theta) \sin \omega+H \cos \omega] d S \\
X=\iint[(F \sin \theta+G \cos \theta) \cos \omega-H \sin \omega] d S,
\end{array}\right.
$$

where

$$
\begin{aligned}
F & =F_{i}-F_{0}, G=G_{i}-G_{0}, H=H_{i}-H_{0} \\
F_{0} & =\frac{K_{0}}{8 \pi}\left\{\left(\frac{\partial \phi_{0}}{\partial r}\right)^{2}-\left(\frac{\partial \phi_{0}}{r \partial \theta}\right)^{2}-\left(\frac{\partial \phi_{0}}{r \sin \theta \partial \omega}\right)^{2}\right\}, \\
G_{0} & =\frac{K_{0}}{4 \pi}\left(\frac{\partial \phi_{0}}{\partial r}\right)\left(\frac{\partial \phi_{0}}{r \partial \theta}\right), \\
H_{0} & =\frac{K_{0}}{4 \pi}\left(\frac{\partial \phi_{0}}{\partial r}\right)\left(\frac{\partial \phi_{0}}{r \sin \theta \partial \omega}\right),
\end{aligned}
$$

with similar expressions for F_{i}, G_{i}, H_{i}. As before, ϕ_{0} is the potential inside the dielectric K_{0}. The integration is performed over the sphere of radius r.

The couple components are

$$
\left\{\begin{array}{l}
N=\iint H r \sin \theta d S, \tag{5}\\
M=\iint[G r \cos \omega-H r \sin \omega \cos \theta] d S, \\
L=\iint[H r \cos \omega \cos \theta-G r \sin \omega] d S,
\end{array}\right.
$$

Considering components due to F_{0}, G_{0}, H_{0} only, and making the change of variable

$$
\mu=-\cos \theta, d S=r^{2} d \omega d \mu,
$$

we obtain
(6) $\frac{3 \pi Z_{0}}{K_{0}}$

$$
\begin{aligned}
\int_{0}^{2 \pi} \int_{-1}^{1}\left\{\left(1-\mu^{2}\right)\left(\frac{\partial \phi_{0}}{\partial \mu}\right)^{2}\right. & \left.+\frac{1}{\left(1-\mu^{2}\right)}\left(\frac{\partial \phi_{0}}{\partial \omega}\right)^{2}-r^{2}\left(\frac{\partial \phi_{0}}{\partial r}\right)^{2}\right\} \mu d_{\omega} d \mu \\
& -2 \int_{0}^{2 \pi} \int_{-1}^{1}\left(\frac{\partial \phi_{0}}{\partial r}\right)\left(\frac{\partial \phi_{0}}{\partial \mu}\right)\left(1-\mu^{2}\right) r d \omega d \mu
\end{aligned}
$$

and proceed similarly for $X_{0}, Y_{0}, N_{0}, M_{0}, L_{0}$.
These integrals can be evaluated if the potential ϕ_{0} is expanded with the usual notation [1, ch. VII, p. 239, and elsewhere], in the form

$$
\begin{equation*}
\phi_{0}=\sum_{n=1}^{p} r^{n} S_{n}+\sum_{n=1}^{\infty} \frac{W_{n}}{r^{n+1}}, \tag{7}
\end{equation*}
$$

where

$$
\begin{align*}
& S_{n}=A_{0, n} P_{n}+\sum_{s=1}^{n}\left(A_{s, n} \cos s \omega+B_{s, n} \sin s \omega\right) P_{n}^{s}, \tag{8}\\
& W_{n}=a_{0, n} P_{n}+\sum_{s=1}^{n}\left(a_{s, n} \cos s \omega+b_{s, n} \sin s \omega\right) P_{n}^{s},
\end{align*}
$$

and P_{n}^{s} satisfies the differential equation

$$
\frac{d}{d \mu}\left\{\left(1-\mu^{2}\right) \frac{d P_{n}^{s}}{d \mu}\right\}=-\left\{n(n+1)-\frac{s^{2}}{\left(1-\mu^{3}\right)}\right\} P_{n}^{s}
$$

With the usual notation for associated Legendre functions of the first kind, we have

$$
p_{n}^{s}=\left(1-\mu^{2}\right)^{s / 2} \frac{d^{s} P_{n}}{d \mu^{s}}=\frac{1}{2^{n} n!}\left(1-\mu^{2}\right)^{s / 2} \frac{d^{n+s}}{d \mu^{n+s}}\left(\mu^{2}-1\right)^{n} .
$$

The potential ϕ_{i} has a similar expansion.
The recurrence and integral formulae used are
(a)

$$
\sqrt{\left(1-\mu^{2}\right)} P_{n}^{s}=\frac{1}{(2 n+1)}\left(P_{n+1}^{s+1}-P_{n-1}^{s+1}\right),
$$

(b)

$$
(2 n+3) \mu P_{n+1}^{s}=(n+s+1) P_{n}^{s}+(n-s+2) P_{n+2}^{s}
$$

(c) $2 s \mu P_{n+1}^{s}=\sqrt{\left(1-\mu^{2}\right)} P_{n+1}^{s+1}+(n+s+1)(n-s+2) \sqrt{\left(1-\mu^{2}\right)} P_{n+1}^{s-1}$,
(d)

$$
(n+s+1) P_{n}^{s}=(n-s+1) \mu P_{n+1}^{s}+\sqrt{\left(1-\mu^{2}\right)} P_{n+1}^{s+1},
$$

(e)

$$
\left(1-\mu^{2}\right) \frac{d P_{n+1}^{s}}{d \mu}=(n+2) \mu P_{n+1}^{s}-(n-s+2) P_{n+2}^{s}
$$

$$
\begin{aligned}
& =(n+s+1) P_{n}^{s}-\mu(n+1) P_{n+1}^{s} \\
& =\sqrt{\left(1-\mu^{2}\right)} P_{n+1}^{s+1}-s \mu P_{n+1}^{s}, \\
\text { (f) } \quad \int_{-1}^{1} P_{n}^{s} P_{n}^{s}, d \mu & =\left\{\begin{array}{l}
0 \text { if } n \neq n^{\prime}, \\
\frac{(n+s)!}{(n-s)!} \cdot \frac{2}{(2 n+1)} \text { if } n=n^{\prime},
\end{array}\right.
\end{aligned}
$$

(g) $\quad \int_{-1}^{1} P_{n}^{s+1} P_{n}^{s-1} d \mu=\left\{\begin{array}{l}0 \text { if } n^{\prime}>n \text { or } n-n^{\prime} \text { odd, }, \\ -\frac{(n+s-1)!}{(n-s-1)!} \cdot \frac{2}{(2 n+1)} \text { if } n=n^{\prime}, \\ \frac{4 s(n+s-3)!}{(n-s-1)!} \text { if } n=n^{\prime}+2,\end{array}\right.$
(h) $\int_{-1}^{1} \mu P_{n}^{s} P_{n}^{s}, d \mu=\left\{\begin{array}{l}0 \text { if } n^{\prime} \neq n \pm 1, \\ \frac{(n+s+1)!}{(n-s)!} \cdot \frac{2}{(2 n+1)(2 n+3)} \text { if } n^{\prime}=n+1,\end{array}\right.$

$$
\begin{equation*}
\int_{-1}^{1} \frac{P_{n}^{s} P_{n+1}^{s+1}}{\sqrt{1-\mu^{2}}} d \mu=\frac{2(n+s)!}{(n-s)!} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\int_{-1}^{1} \frac{P_{n}^{s} P_{n+1}^{s-1}}{\sqrt{1-\mu^{2}}} d \mu=0, \tag{j}
\end{equation*}
$$

(k) $\int_{-1}^{1} \sqrt{1-\mu^{2}} P_{n}^{s} P_{n}^{s+1} d \mu=\left\{\begin{array}{l}0 \text { if } n^{\prime} \neq n \pm 1, \\ \end{array}\right.$

$$
\frac{2}{(2 n+1)(2 n+3)} \cdot \frac{(n+s+2)!}{(n-s)!} \text { if } n^{\prime}=n+1,
$$

(l)

$$
\int_{-1}^{1} \frac{P_{n+1}^{s} P_{n+1}^{s}}{\left(1-\mu^{2}\right)} d \mu= \begin{cases}\frac{(n+s-1)!}{s(n-s-1)!} & \text { if } n=n^{\prime}+2, \\ \frac{(n+s+1)!}{s(n-s+1)!} & \text { if } n=n^{\prime} .\end{cases}
$$

Some of these formulae may be found in textbooks [1].
The Z force is given by

$$
Z=Z_{i}-Z_{0},
$$

where Z_{0} is given by (6) above with a similar expression for Z_{i}. Consider, first, the integral

$$
\begin{aligned}
I_{1} & =\int_{0}^{2 \pi} \int_{-1}^{1} \mu\left(1-\mu^{2}\right)\left(\frac{\partial \phi_{0}}{\partial \mu}\right)^{2} d \omega d \mu \\
& =\int_{0}^{2 \pi} \int_{-1}^{1} \mu\left(1-\mu^{2}\right)\left[\sum_{n=1}^{p} r^{n} S_{n}^{\prime}+\sum_{n=1}^{\infty} \frac{\Psi_{n}^{\prime}}{r^{n+1}}\right]^{2} d \omega d \mu,
\end{aligned}
$$

where, from (8) and (9),

$$
S_{n}^{\prime}=A_{0, n} \frac{\partial P_{n}}{\partial \mu}+\sum_{s=1}^{n}\left(A_{s, n} \cos s \omega+B_{s, n} \sin s \omega\right) \frac{\partial P_{n}^{s}}{\partial \mu}
$$

$$
W_{n}^{\prime}=a_{0, n} \frac{\partial P_{n}}{\partial \mu}+\sum_{s=1}^{n}\left(a_{s, n} \cos s \omega+b_{s, n} \sin s \omega\right) \frac{\partial P_{n}^{s}}{\partial \mu}
$$

Now the integral has to be independent of r, so that

$$
\begin{aligned}
I_{1}= & \int_{0}^{2 \pi} \int_{-1}^{1} 2 \mu\left(1-\mu^{2}\right) \sum_{n=1}^{p-1} S_{n+1}^{\prime} W_{n}^{\prime} d \omega d \mu \\
= & 2 \pi \sum_{n=1}^{p-1} \int_{-1}^{1}\left[2 A_{0, n+1} a_{0, n+1} \frac{\partial P_{n+1}}{\partial \mu} \frac{\partial P_{n}}{\partial \mu}\right. \\
& \left.\quad+\sum_{s=1}^{n}\left(A_{s, n+1} a_{s, n}+B_{s, n+1} b_{s, n}\right) \frac{\partial P_{n+1}^{s}}{\partial \mu} \frac{\partial P_{n}^{s}}{\partial \mu}\right] \mu\left(1-\mu^{2}\right) d \mu
\end{aligned}
$$

But

$$
\begin{equation*}
\int_{-1}^{1} \mu\left(1-\mu^{2}\right) \frac{\partial P_{n+1}^{s}}{\partial \mu} \frac{\partial P_{n}^{s}}{\partial \mu} d \mu \tag{10}
\end{equation*}
$$

$$
=\int_{-1}^{1}\left(1-\mu^{2}\right) \frac{\partial P_{n}^{s}}{\partial \mu}\left[\left(\frac{n+s+1}{2 n+3}\right) \frac{\partial P_{n}^{s}}{\partial \mu}+\left(\frac{n-s+2}{2 n+3}\right) \frac{\partial P_{n+2}^{s}}{\partial \mu}\right] d \mu
$$

$$
+(n-s+1) \int_{-1}^{1} P_{n+1}^{s} P_{n+1}^{s} d \mu-(n+1) \int_{-1}^{1} \mu P_{n}^{s} P_{n+1}^{s} d \mu(b y(b),(e))
$$

$$
=\left(\frac{n+s+1}{2 n+3}\right) \int_{-1}^{1} P_{n}^{s}\left[n(n+1)-\frac{s^{2}}{\left(1-\mu^{2}\right)}\right] P_{n}^{s} d \mu
$$

$$
+\left(\frac{n-s+2}{2 n+3}\right) \int_{-1}^{1} P_{n}^{s}\left[(n+2)(n+3)-\frac{s^{2}}{\left(1-\mu^{2}\right)}\right] P_{n+2}^{s} d \mu
$$

$$
+(n-s+1) \frac{(n+s+1)!}{(n-s+1)!} \cdot \frac{2}{(2 n+3)}
$$

$$
\begin{equation*}
-(n+1) \frac{(n+s+1)!}{(n-s)!} \cdot \frac{2}{(2 n+1)(2 n+3)} \tag{f}
\end{equation*}
$$

$=\frac{(n+s+1) n(n+1)}{(2 n+3)} \int_{-1}^{1} P_{n}^{s} P_{n}^{s} d \mu-s^{2} \int_{-1}^{1} \frac{\mu P_{n}^{s} P_{n+1}^{s}}{\left(1-\mu^{2}\right)} d \mu$

$$
+\frac{(n+s+1)!}{(n-s)!} \frac{2 n}{(2 n+3)(2 n+1)}
$$

which gives an expression for I_{1}.
In a similar manner,
(11) $l_{2}=\int_{0}^{2 \pi} \int_{-1}^{1} r^{2}\left(\frac{\partial \phi_{0}}{\partial r}\right)^{2} \mu d \omega d \mu$

$$
\begin{aligned}
=-2 \pi \sum_{n=1}^{p-1}(n+1)^{2} & \int_{-1}^{1}\left[2 A_{0, n+1} a_{0, n} P_{n+1} P_{n}\right. \\
& \left.+\sum_{s=1}^{n}\left(A_{s, n+1} a_{s, n}+B_{s, n+1} b_{s, n}\right) P_{n+1}^{s} P_{n}^{s}\right] \mu d \mu
\end{aligned}
$$

(12) $I_{3}=\int_{0}^{2 \pi} \int_{-1}^{1}\left(\frac{\partial \phi_{0}}{\partial \omega}\right)^{2} \frac{\mu}{\left(1-\mu^{2}\right)} d \omega d \mu$

$$
=2 \pi \sum_{n=1}^{p-1} \int_{-1}^{1} \sum_{s=1}^{n} s^{2}\left(A_{s, n+1} a_{s, n}+B_{s, n+1} b_{s, n}\right) P_{n+1}^{s} P_{n}^{s} \frac{\mu}{\left(1-\mu^{2}\right)} d \mu
$$

(13) $I_{4}=\int_{0}^{2 \pi} \int_{-1}^{1} r\left(\frac{\partial \phi_{0}}{\partial \mu}\right)\left(\frac{\partial \phi_{0}}{\partial r}\right)\left(1-\mu^{2}\right) d \omega d \mu$

$$
\begin{aligned}
=\pi & \sum_{n=1}^{p-1}(n+1) \int_{-1}^{1}\left[2 A_{0, n+1} a_{0, n} \frac{\partial P_{n}}{\partial \mu} P_{n+1}\right. \\
& \left.+\sum_{s=1}^{n}\left(A_{s, n+1} a_{s, n}+B_{s, n+1} b_{s, n}\right) \frac{\partial P_{n}^{s}}{\partial \mu} P_{n+1}^{s}\right]\left(1-\mu^{2}\right) d \mu \\
& -\pi \sum_{n=1}^{p-1}(n+1) \int_{-1}^{1}\left[2 A_{0, n+1} a_{0, n} \frac{\partial P_{n+1}}{\partial \mu} P_{n}\right. \\
& \left.+\sum_{s=1}^{n}\left(A_{s, n+1} a_{s, n}+B_{s, n+1} b_{s, n}\right) \frac{\partial P_{n+1}^{s}}{\partial \mu} P_{n}^{s}\right]\left(1-\mu^{2}\right) d \mu
\end{aligned}
$$

We see that from (6),

$$
\frac{8 \pi Z_{0}}{K_{0}}=I_{1}-I_{2}+I_{3}-2 I_{4}
$$

from which, by using (10), (11), (12), (13), we get

$$
\begin{align*}
Z_{0}=\frac{K_{0}}{2} & \sum_{n=1}^{p-1}\left[2(n+1) A_{0, n+1} a_{0, n}\right. \tag{14}\\
& \left.+\sum_{s=1}^{n}\left(A_{s, n+1} a_{s, n}+B_{s, n+1} b_{s, n}\right) \frac{(n+s+1)!}{(n-s)!}\right] .
\end{align*}
$$

This determines Z, for the component Z_{i} can be written down in terms of the coefficients of the expansion of ϕ_{i}. In the same way, when the components Y_{0}, X_{0}, N_{0}, M_{0}, L_{0} are determined then the components Y, X, N, M, L may be written down.

By using the same method as for Z_{0} above, the following results are obtained:
(16) $\quad X_{0}=\frac{K_{0}}{4} \sum_{n=1}^{p-1}\left[2(n+1)(n+2) A_{1, n+1} a_{0, n}-2 n(n+1) A_{0, n+1} a_{1, n}\right.$

$$
+\sum_{s=1}^{n} \frac{(n+s+2)!}{(n-s)!}\left(A_{s+1, n+1} a_{s, n}+B_{s+1, n+1} b_{s, n}\right)
$$

$$
\left.-\sum_{s=1}^{n-1} \frac{(n+s+1)!}{(n-s-1)!}\left(A_{s, n+1} a_{s+1, n}+B_{s, n+1} b_{s+1, n}\right)\right]
$$

$$
\begin{align*}
& N_{0}=\frac{K_{0}}{2} \sum_{n=1}^{p} \sum_{s=1}^{n} \frac{s(n+s)!}{(n-s)!}\left(B_{s, n} a_{s, n}-A_{s, n} b_{s, n}\right), \tag{17}\\
& M_{0}=\frac{K_{0}}{4} \sum_{n=1}^{p}\left[2 n(n+1)\left(A_{1, n} a_{0, n}-A_{0, n} a_{1, n}\right)\right.
\end{align*}
$$

$\left.+\sum_{s=1}^{n-1} \frac{(n+s+1)!}{(n-s-1)!}\left(A_{s+1, n} a_{s, n}+B_{s+1, n} b_{s, n}-A_{s, n} a_{s+1, n}-B_{s, n} b_{s+1, n}\right)\right]$.

$$
\begin{equation*}
L_{0}=\frac{K_{0}}{4} \sum_{n=1}^{p}\left[2 n(n+1)\left(A_{0, n} b_{1, n}-B_{1, n} a_{0, n}\right)\right. \tag{19}
\end{equation*}
$$

$\left.+\sum_{s=1}^{n-1} \frac{(n+s+1)!}{(n-s-1)!}\left(\dot{A}_{s+1, n} b_{s, n}+A_{s, n} b_{s+1, n}-B_{s+1, n} a_{s, n}-B_{s, n} a_{s+1, n}\right)\right]$.
It can be shown that the field becomes two-dimensional if
(20) $\left\{\begin{array}{l}\text { s even, } b_{s n}=B_{s, n}=0, a_{s, n}=\frac{2(n-s)!}{n!} a_{0, n}, A_{s, n}=\frac{2 n!}{(n+s)!} A_{0, n}, \\ \text { s odd, } a_{s n}=A_{s, n}=0, b_{s, n}=\frac{(n-s)!}{(n-1)!} b_{1, n}, B_{s, n}=\frac{(n+1)!}{(n+s)!} B_{1, n} .\end{array}\right.$

Spherein a general field. If a sphere of radius a, filled with homogeneous dielectric of specific inductive capacity K, is placed in air, with its center at the origin of coordinates in any electrostatic field whose potential function is $\phi(x, y, z)$ having no singularities inside or on $r=a$, then the potential inside and outside the sphere are respectively

$$
\phi_{i}=\frac{2}{(1+K)} \phi(x, y, z)+\frac{(K-1)}{(K+1)^{2}} \int_{0}^{1} t^{-K /(K+1)} \phi(x t, y t, z t) d t
$$

and

$$
\begin{aligned}
\phi_{0}=\phi(x, y, z) & -\frac{(K-1)}{(K+1)} \frac{a}{r} \phi\left(x_{1}, y_{1}, z_{1}\right) \\
& +\frac{(K-1)}{(K+1)^{2}} \frac{a}{r} \int_{0}^{1} t^{-K /(K+1)} \phi\left(x_{1} t, y_{1} t, z_{1} t\right) d t
\end{aligned}
$$

where

$$
x_{1}=\frac{a^{2} x}{r^{2}}, \quad y_{1}=\frac{a^{2} y}{r^{2}}, \quad z_{1}=\frac{a^{2} z}{r^{2}} \text { and } r^{2}=x^{2}+y^{2}+z^{2}
$$

It is assumed that there are no other boundaries present.

These results can be obtained either by the method of P. Weiss [6], or by expanding $\phi(x, y, z)$ in harmonics and using the boundary conditions

$$
\phi_{i}=\phi_{0}, K \frac{\partial \dot{\phi}_{i}}{\partial r}=\frac{\partial \phi_{0}}{\partial r} \quad \text { on } r=a
$$

If the original potential is given by

$$
\phi(x, y, z)=\sum_{n=1}^{p} r^{n} S_{n},
$$

where

$$
S_{n}=A_{0, n} P_{n}+\sum_{s=1}^{n}\left(A_{s, n} \cos s \omega+B_{s, n} \sin s \omega\right) P_{n}^{s},
$$

and if we assume the interference potential to be given by

$$
\phi_{1}=\sum_{n=1}^{\infty} \frac{W_{n}}{r^{n+1}},
$$

where

$$
W_{n}=a_{0, n} P_{n}+\sum_{s=1}^{n}\left(a_{s, n} \cos s \omega+b_{s, n} \sin s \omega\right) P_{n}^{s},
$$

then, by using the above result, we get

$$
a_{0, n}= \begin{cases}\frac{n(1-K)}{n(1+K)+1} a^{2 n+1} A_{0, n} & \text { if } n \leq p \\ 0 & \text { if } n>p\end{cases}
$$

with similar expressions for $a_{s, n}, b_{s, n}$. The forces are thus

$$
\begin{aligned}
Z=\frac{1}{2} & \sum_{n=1}^{p-1} \frac{n(K-1) a^{2 n+1}}{n(K+1)+1}\left[2(n+1) A_{0, n} A_{0, n+1}\right. \\
& \left.+\sum_{s=1}^{n}\left(A_{s, n} A_{s, n+1}+B_{s, n} B_{s, n+1}\right) \frac{(n+s+1)!}{(n-s)!}\right]
\end{aligned}
$$

$$
\begin{aligned}
& X= \frac{1}{4} \sum_{n=1}^{p-1} \frac{n(K-1) a^{2 n+1}}{n(K+1)+1}\left[2(n+1)(n+2) A_{0, n} A_{1, n+1}-2 n(n+1) A_{1, n} A_{0, n+1}\right. \\
&+\sum_{s=1}^{n}\left(A_{s, n} A_{s+1, n+1}+B_{s, n} B_{s+1, n+1}\right) \frac{(n+s+2)!}{(n-s)!} \\
&\left.\quad-\sum_{s=1}^{n-1}\left(A_{s+1, n} A_{s, n+1}+B_{s+1, n} B_{s, n+1}\right) \frac{(n+s+1)!}{(n-s-1)!}\right] \\
& Y=\frac{1}{4} \sum_{n=1}^{p-1} \frac{n(K-1) a^{2 n+1}}{n(K+1)+1}\left[2(n+1)(n+2) A_{0, n} B_{1, n+1}-2 n(n+1) A_{0, n+1} B_{1, n}\right. \\
& \quad-\sum_{s=1}^{n}\left(B_{s, n} A_{s+1, n+1}-A_{s, n} B_{s+1, n+1}\right) \frac{(n+s+2)!}{(n-s)!} \\
&\left.\quad-\sum_{s=1}^{n-1}\left(B_{s+1, n} A_{s, n+1}-B_{s, n+1} A_{s+1, n}\right) \frac{(n+s+1)!}{(n-s-1)!}\right] \\
& N=M= L=0 .
\end{aligned}
$$

The potential inside, being of the form

$$
\phi_{i}=\sum_{n=1}^{p} r^{n} S_{n},
$$

contributes nothing to the forces.
The forces on bodies with surfaces $r=a+\epsilon P_{n}$ (ϵ small) can also be easily evaluated.

As an example [1, p. 290, ex.31], take a positive point-charge e at the point $(0,0, c), c>a$. We have

$$
A_{0, n}=\frac{e}{c^{n+1}}, \quad A_{s, n}=0
$$

and so

$$
Z=e^{2} \sum_{n=1}^{\infty} \frac{n(n+1)(K-1)}{n(K+1)+1} \cdot \frac{a^{2 n+1}}{c^{2 n+3}}, \quad Y=0, \quad X=0
$$

The resultant attraction between the sphere and point-charge may thus be written

$$
\frac{e^{2} a^{3} \alpha}{2 c^{3}}\left\{\frac{2 c^{2}}{\left(c^{2}-a^{2}\right)^{2}}+\frac{(1+\alpha)}{\left(c^{2}-a^{2}\right)}-\frac{c\left(1-\alpha^{2}\right)}{a^{3}}\left(\frac{a}{c}\right)^{\alpha} \int_{0}^{a / c} \frac{x^{2-\alpha}}{\left(1-x^{2}\right)} d x\right\}
$$

where

$$
\alpha=\frac{K-1}{K+1} .
$$

Equations (14) - (19) can be used for the forces on a body in a liquid moving irrontationally and extending to infinity, simply by putting $K_{0}=4 \pi \rho$. Flementary cases have been considered [5].

Reference

1. Sir James Jeans, The mathematical theory of electricity and magnetism, Fifth Edition, Cambridge University Press, Cambridge, England.
2. Horace Lamb, Hydrodynamics, Dover Publications, New York, 1945.
3. L. M. Milne-Thomson, Theoretical hydrodynamics, Macmillan and Co. Limited, London, 1949.
4. -, Theoretical aerodynamics.
5. G. I. Taylor, Forces on a body in a curved stream, Proc. Royal Soc. London Ser. A 120 (1928), 260.
6. P. Weiss, On hydrodynamical images, Proc. Cambridge Philos. Soc. 40 (1945), 259.

The University of Nottingham

