
THE NUMBER OF FARTHEST POINTS

T. S. M O T z K I N , E. G. S T R A U S , AND F. A. V A L E N T I N E

1. Introduction. Consider a set S in a metric space E. For each point x £ £ ,

let y{x) denote a point of S which has maximum distance from x> and let Y(x)

be the set of all y{x) with that property. It is our purpose here to study sets S

for which certain restrictions are placed on the number of points in Y(x). In

§ 2 we analyze those sets S in the Minkowski plane for which Y(x) has exactly

one element for each x £ S. In § 3 we characterize those sets in the Euclidean

plane E2 for which Y{x) has at least two elements for each x £ S.

In order to achieve these ends we first establish some introductory results

which hold in rather general spaces.

DEFINITION 1. Let S be a set in a metric space. If S is contained in a

sphere of radius r, then its r- convex hull is the intersection of all closed

spheres of radius r which contain S.

A set S is r- convex if it coincides with its r- convex hull [ 2, p. 128].

LEMMA 1. Let S be a set of diameter d in a linear metric space. Then for

each x £ S the set Y{x) lies in the boundary of the d- convex hull of S.

Proof. If Y(x) j4 0, choose any point y(x) Then S is contained in a sphere

with center at x and with radius d(x, y), where d(x, y) denotes the distance

from x to y. Since for x £ S we have d{x9 γ) < d, there exists a point z on the

ray γx such that the sphere with center z and with radius d = d(z, y) contains

S. The point y is thus clearly on the boundary of the J-convex hull.

NOTE. By virtue of Lemma 1, all results for compact S below will hold

under the less restrictive assumption that S contain the intersection of its

closure with the boundary of its d- convex hull.

COROLLARY 1. Let S be a set in a linear metric space. Then for each x the

set Y(x) is contained in the boundary of the convex hull of S.
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T h i s i s an i m m e d i a t e c o n s e q u e n c e of the f a c t t h a t S i s c o n t a i n e d in t h e

s p h e r e with c e n t e r x a n d r a d i u s d(x9 y {x)), p r o v i d e d Y(x) £ 0.

LEMMA 2. Suppose S is a set in a linear metric spacey and let T be a set

such that Y{x) Φ 0 for each x £ T, Then d{x, y(x)) is a continuous function

of x on T.

Proof. S i n c e \d(x9 z) — d{u9 z)\ < d(x, u), a n d s i n c e

I m a x d(x, z ) - max d{u, z)\ = \d(x, y(x)) - d{u, y(u))\ ,
z e S z e S

we h a v e \d(x, y(x)) ~ d{u9 y{u))\ < € if d{x9 u) < €.

LEMMA 3 . Let S be a compact set in a linear metric space. If Xi —> x9 then

all limit points of the sequence \y{xi) } lie in Y{x).

Proof. Let y t = y{x{) be a sequence of points. Let γ be a limit point of the

sequence ί yι i. Then the continuity oi d(xf y(x)) implies that d(x, y)>^d{x, q)

for all q C S. Hence we have y'£. Y(x).

LEMMA 4. Let S be a compact set in a linear metric space, and suppose

y{x) is single- valued on a set T. Then y(x) is a continuous mapping of T into

S.

Proof. Since y(x) is single - valued, Lemma 3 implies that if xι —> #, then

y(xi)—> y(x)>

2. Sets in M2 on which y(x) is single-valued. Let M2 be a two-dimensional

Minkowski space [2, p. 23]. We restrict our attention here to connected sets S in

M2 (See § 4 for remarks about disconnected sets.)

THEOREM 1. Let S be a continuum (compact connected set) in M2 If y(x)

is single- valued on S9 then the set sum

is the entire boundary B of the convex hull of S; and this convex hull is d-

convex, where d is the diameter of S.

Proof. According to Corollary 1, we have

Σχ£S Y{x)cB.
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By L e m m a 4, the mapping y(x) y i e l d s a c o n t i n u o u s mapping of S in to B. Now

t h e only c o n n e c t e d s e t s in a s i m p l e c l o s e d curve a r e : ( 1 ) a p o i n t , ( 2 ) a s i m p l e

a r c , ( 3 ) t h e whole c l o s e d c u r v e . F o r c a s e s ( 1 ) and ( 2 ) , l e t

then the mapping y(x) of A into itself must have a fixed point x0 = y(x$ ), so

that ί xQ ! = Y{x0) = S, in which case the theorem is trivial. Thus A = B in all

three cases. Moreover, since by Lemma 1 the set A ~ B lies in the boundary of

of the (/-convex hull of 5, the boundary of the d- convex hull must coincide with

B.

Since there is no continuous mapping without fixed points of a closed two-

cell into itself, Lemma 2 and Theorem! imply that, for single-valued y(x)9 the

connected bounded set 5 must contain the entire boundary of its convex hull, but

not all of the interior of that hull (unless S consists of a single point). It may

suffice, in some cases, to delete one single point from the interior of a convex

set; for instance, in the case of a circular disc in E2> the deletion of the center

makes y(x) single-valued throughout.

In the remaining theorems and lemmas we restrict our attention to sets in E2

DEFINITION 2. By a normal to a convex curve C at a point x C C we mean

a line perpendicular to a line of support to C at x.

NOTATION. We designate a line of support at x by L(x), and the corre-

sponding normal by N(x). Further, for a point y C 5, we let x(y) be a point in

S such that y - y (x ), and let X (y ) be the set of all x (y) .

THEOREM 2. Suppose S is the boundary of a compact convex set in E29 and

suppose y{x) is single-valued on S. Then:

(1) The set X(y) consists of all points of intersection of the normals to S

at y with S - y. If S has a tangent at y, then x(y) is single-valued and con-

tinuous at y,

( 2 ) The mapping x(y) is monotonic; that is, the order of x(yι), # ( 7 2 )>

x(y3) on S has the same sense as thatofγi9 y2> 73*

Proof. (1) U x = x{y), then the circle with center x and radius d(x, y)

contains S. Hence the tangent to this circle at the point y is also a line of sup-

port to 5, and the radius lies in a normal to S at y.
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Now, let yι—> y, yι £ S, and choose x{ = # ( y t ) . Then, due to the conti-

nuity of the mapping y(x), each limit point of {χ( \ is in X(y). Thus if S has a

tangent at a pointy, then the mapping x(y) is one-to-one and continuous at y.

To complete the proof of (1), suppose S has a corner at y. Then the farthest

points of intersection from y of the normals at y with S fill out a closed subarc

of S, which we denote by S^ the end-points of S t we denote by α, and ur There

exists a sequence y; £ S with y; —>y such that the normals to S at the yz are

unique and approach the left normal at y. Hence, by the above, x(yι) converges

to Up and hence Uj £ X(y)> Similarly, uτ £ λ ( y ) . The three lines determined

by Up ur, and y divide the plane into seven closed sets, and the arc S^ is con-

tained in that unbounded one which has u,ur as part of its boundary. We denote

that set by A. Since each of the two circles with centers Ui and ur which pass

through y contains S, it follows by the law of cosines that γ(u) = y for all

« C A. Hence S t C X(y). According to Theorem 1, the curve S contains no

straight line-segment, and thus any normal to S intersects S in exactly two

points. Hence the common part {S~Sι) X{y) is the null set, so that Sι =

X{y).

(2) The above facts, together with the fact that each u €1 S is contained in

some X(y), imply that the transformation x{y) maps connected sets into con-

nected sets, even though the mapping need not be single-valued and therefore

not necessarily continuous. The single-valuedness of y{x) implies that if

Ύι £ Jr2> t n e n ^ ( y i ) ^ ( y 2 ) = 0. If the transformation x{y) failed to be mono-

tonic, it would have a fixed point y = x{y); but this is impossible unless S is

a single point. Hence condition (2) must hold.

COROLLARY 2. Suppose C is the boundary of a compact convex set S. Let

(X β be a diameter of C, and let /V(CX, /3) designate the common normal to C

through CX and β. Then y{x) is single-valued on C if and only if for every pair

of points u, v £ C which lie on the same side of N( 0C, /3)> the normals N(u)

and N(v) intersect at an interior point of S.

Proof. First observe that, for any compact convex set S with (X j3 as a dia-

meter, if x α β = 0, then x and y(x) must lie on opposite sides of /V(CX, β).

To prove the necessity, observe that (X and β are involutory points in the

sense that

y ( y ( α ) ) = α andy(y(/3)) = β.

Hence the necessity follows from the monotonicity of y(x) as described in



THE NUMBER OF FARTHEST POINTS 225

Theorem 2

To prove the sufficiency, first choose x C C - ( C (X/3). Suppose y(x) i s

not s ingle-valued, and choose u, v C Y(x) As mentioned above, y(%) and x

lie on opposite s ides of iV( (X, β ) . A circle with center x and radius d(x, u) i s

tangent to C at both M and v, and the normals /V(u) and N(v) intersect at x,

which is not interior to S. Hence y {x) i s s ingle- valued for x £ C — {C 01/3).

By continuity it follows also that

y ( α ) = j8, y( j8) = α .

This completes the proof.

In the following we shall extend the generalized notions of curvature describ-

ed by Bonnesen and Fenchel [ 2 , pp. 143-144]. Choose a point % £ C , where C is

a closed convex curve together with a line of support L(x). The circle tangent

to L (x) at x and passing through a point p C C - x must have its center z ( p )

on the normal N(x) to L(x) at x. Establ ish an order on N(x) in terms of the

distance from x, and let

Es (x, S U ) ) = sup z ( p ) 1

P

p G 8{x) - x,

Et(x9 Six)) = inf z(p)
P

where δix) is an arc of C containing x. We define four types of centers of curva-

ture as follows:

Es{x) sE8{x,C), Et(x) = Et{x, C ) .

E (x) = lim Eίx,δix)), EΛx) s lira £, (*, S(x)).
° Hx)-*x s ' SU)-.* '

Clearly £ z ( x ) < £ , ( * ) < £ o ( « ) < £ s ( % ) relative toN(x).

D E F I N I T I O N 3. The sets

Σ,Es{x), ΣEo(x), ΣE^x), and Σ ^ U )

(Λ; ranges over C) are respectively called the superior evolute, the oω£er evolute,

the inner evolute, and the inferior evolute of S, and are denoted by £ s , Z£o, £"j, £*̂ .

THEOREM 3. Suppose C is the boundary of the compact convex set S C £ 2

// y ( * ) is single - valued on C, ίAew ίAe superior evolute, and hence all four
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evolutes, of C must be contained in S.

Proof, S i n c e y(x) i s s i n g l e - v a l u e d for e a c h p o i n t xx G C , t h e proof of

T h e o r e m 2 i m p l i e s t h a t for any normal N(xι)f t h e s e t N(xί) •(C-~xί) con-

s i s t s of a s i n g l e p o i n t , d e n o t e d by x '. C h o o s e p G C - xχ. S i n c e

d{x%p) < d{x%xx) = d(x',y(x'))9

it is clear that the perpendicular bisector B of the segment xι p intersects the

segment xx x '. Hence

B -xχx' = zip) G S.

THEOREM 4. Suppose the inner evolute of the boundary C of the compact

convex set S is contained in S — C. Then y(x) is single-valued on C.

Proof. Suppose there exists an x G C such that γ{x) is not single-valued.

Choose u, v G Y(x) The circle with center x and radius d(x, u) contains S

and is tangent to C at u and v. Hence the arc uv of C - x contains a point w of

minimal distance from x. The circle with center x and radius d(x, w) is tangent

to C at w, while a neighboring arc of w on C lies outside or on that circle.

Hence C has a unique normal at w and Ejiw) > x> so that Ei(w) is on or out-

side C.

Theorems 3 and 4 do not determine the single-valuedness of y(x) on S if £ t ,

Eo, and Es lie in S and contain points of C. This situation can be described as

follows:

THEOREM 5. Let S be a compact convex set with boundary C such that Es

[and hence each of the evolutes) of C lies in S. Then y(x) fails to be single-

valued on C if and only if there exists a point x G C which lies on E(9 EO9 and

ES9 and which is the center of a circular arc contained in C. A

Proof, To prove sufficiency, suppose there exists a point x G C which is

the center of a circular arc C\ C C9 and suppose y(x) is single-valued on C.

Then according to Theorem 2 the single-valuedness of y(x) implies x CX(y)

for each y G Cί, Hence Cί C Y(x)9 a contradiction.

To prove necessity, assume y{x) is not single-valued on C, Choose u,

v G Y(x), and let w be a nearest point to x of the arc Cγ of C - x joining u and

v. In the proof of Theorem 4 we saw that E{(w) > x; but since the evolutes are

By "center of a circular arc" we mean the center of the circle to which the arc
belongs.
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in S, we have

E.(w) = Eo(w) = Es(w) = x.

(Since Es is bounded, C can contain no straight line segments.) Hence the circle

with center x and radius d(x, w) contains S. Thus d{x, w) > d(x, u). From the

definition of w it now follows that d{x, z) = d{x, u) for each z £ C t . Hence C L

Hence Cx is circular arc in C with center at x.

As seen earlier, if S is a simply connected set containing at least two points,

then y{x) is not single-valued on S. The situation is described more fully in

the following theorem.

THEOREM 6. Let S be a compact convex set in E2 with boundary C. Then

y(z) is single-valued if z^Es{x) for all x £ C; and y{z) is not single-

valued if z - Es(x), z ^ Eo(x) for some x £ C

Proof Assume y(z) is not s ingle-valued; then there exist dist inct points

u ζL Y (z)9 v (ϋY {z)9 and the circle with center z and radius d(zf u) contains

S and is tangent to C at u and v. Hence Es (u) - Es ( v ) - z.

Now suppose there exists an x £ C such that z — Es (x), z 4- Eo (x). Then,

since C is compact, there exis t s a point u ^ x, u ζL C9 such that

d(z,u) = d ( z 9 x ) = d ( z , y ( z ) ) .

Hence u £ Y (z ), x £ Y (z ). Thus Theorem 6 is proved.

A few remarks about the four evolutes may be desirable at this point. The

inferior and superior centers of curvature, EΛx) and Es(x), are determined by

properties in the large. In fact, Ej contains the set of centers of those circles

which are in S and which are tangent to C at not less than two points. Similarly

Es contains the sets of centers of those circles which contain C and which are

tangent to C at not less than two points.

Since a convex curve C has curvature almost everywhere, we have Ei {x) =

Eo(x) for almost all x £ C. Let us define

E Ξ Σ,E.(x) Eo(χ),

(x ranges over C), where, as usual, Eι(x) Eo(x) denotes a closed segment.

The number of normals to C through a point x £ E2> as a function of x, is the

same in each component of the complement of E* In the case where S is a com-

pact convex set for which E is bounded, there are exactly two normals to C

through each point x in the unbounded component of the complement of E (the



228 T. S. MOTZKIN, E. G. STRAUS, AND F. A. VALENTINE

lines joining y to the nearest and farthest points on C). However, from each

point y ql E on E^(ES ) there are at least four normals to C. [According to

Theorem 6, there are at least two normals to the two or more points of tangency

u, v of the inscribed (circumscribed) circle with center at y. In addition, there

are lines joining y to nearest (farthest) points on each of the two arcs of C

joining u and v. ] Thus E^ and Es do not intersect the unbounded component of

E. These statements imply the following:

THEOREM 7. Let C be the boundary of a compact convex set S C E2. Then

Es C S if and only if Eo C S. Also Es C S - C if and only if Eo C S - C.

AN EXAMPLE. Consider the family of ellipses C(e ),

b2xχ

2 + a2 x2 = n2b2, a > b.

If the eccentricity e sat i s f ies the condition e < \/2/2, then y{x) i s s ingle-

valued on C(e). If e > \/2/2, then y(x) is not s ingle-valued at # = ( 0 , ± ί> )•

In each case the inner and outer evolutes coincide; they form the familiar astroid

with cusps at

ξ = ( aχ, 0 ) , η = ( - aχ, 0 ) , τ = ( 0, bχ ) and p = ( 0, - bγ ) ,

where aί < a, and bί < b for e < \/2/2 while bγ> b for e > \[2/2. The superior

e volute Es i s the closed l ine- segment p T, and E, i s the closed l ine-segment

ξη. If e £ 0, then y{x) is s ingle-valued on the complement of the open segment

pτ-p-τ.

3. Sets on which Y(x) contains at least two points.

THEOREM 8. Let S C E2 be a compact set of diameter d, and let D denote

the set of end-points of diameters of S. If Y (x) has at least two elements for

each x ζl D, then Y(x) consists of exactly two points for x £ D$ and D con"

tains a finite number of points. The d- convex hull of S coincides with the d-

convex hull Of D. [Since the latter is a Reuleaux polygon (see below), D must

contain an odd number of points.]

Proof. Let Σ = \C(x)\ be the family of circular boundaries C(x) with

centers x £ D and with radii d. Let x £ D; then

Y(x) = C(x) D.

Since

diam Y(x) < diam S = c?,
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there exists a smallest arc A of C{x) which contains Y(x)9 and which has a

length not exceeding πd/6. Let xx and x2 be the end-points of A. If a circle

C{x') £ Σ were to intersect A — xx — x2> then C{x') would separate xι and

x2 since

length A <: πd/6.

But this contradicts the fact that 5 C C{x'). For any x £ D, we have z = y ( # )

if and only if x - y( z). Hence every x £ D i s a point of intersection of at leas t

two circles of Σ . These facts imply that }/(rc) = i ^ ; 1 , ^ 2 } .

Define

where K(x) is the closed circular disk with center x and with radius d. Then

e a c h * £ Z) l ies in the interior of all K (x) C // except K(xχ) and K ( x 2 ), where

Y (x ) = {χ ί 9 χ2 J. Hence Λ; is a corner-point of the boundary of H. As above, let

Aι and ,42 be the smallest arcs of C{xx) and C(x2) containing Y{xt) and

y ( % 2 )> respectively. We have shown that Ax A2 =\x\; and /4t and A2 are in

the boundary of //. Thus x i s an isolated corner of the boundary of H. Hence D

contains a finite number of points, and by definition the boundary of H i s the

boundary of the d~ convex hull of D. It is clearly a Reuleaux polygon, that is, a

convex circular polygon whose arcs have radii d, and whose vertices are the

centers of these arcs [ 2 , pp. 130-131] .

Final ly, each of the circles in Σ contains S, and hence S C H.

COROLLARY 3. Let S be a set satisfying the conditions of Theorem 8.

Then Y(x)cD for each x € S.

This is an immediate consequence of the fact that D consists of the vertices

of//.

THEOREM 9. Let S C E2 be a compact set such that Y(x) has at least two

elements for each x C S. Then S lies in the union of a finite number of line-

segments. Moreover, if Y (x) has exactly two elements for each x £ S, then S

cannot be connected.

Proof. Since Y(x) CD for each x £ S, the fact that Y(x) has a least two

elements implies that x lies on the perpendicular bisector of the line joining two

elements of D. Thus S is a subset of the set obtained by taking the union of the

intersections of these perpendicular bisectors with H.
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Since the set H has at least three corners xi9 x2 and x3, let S( (i = 1, 3)

consist of those x G S such that {%(, x2 \c Y{x). Each set Sj is nonempty

since S( contains the center of the smaller arc of H joining xι and x2. From the

continuity of d(x9 y(x)), it follows that S; is closed. Hence if 5 is connected,

then Sx S2 Φ 0 (since S is compact), and thus there exists an%' G S such that

Y(%') D { xί9 x2y x3 1. This establishes the theorem.

We also obtain the following result due to Bing [ l ] .

COROLLARY 4. Let S be a bounded set in E2 containing at least two

points> and having the property that with every two points x G S> y G S there

exists a z G S such that the triangle x y z is equilateral. Then S is the set of

vertices of an equilateral triangle.

Proof. The closure 5 of 5 must also satisfy the hypothesis stated. Consider

the set D of Theorem 8 relative to S. If x G D, and ί y, z } C Y{ x), then d( y, z) =

d, so that x, y, z form the vertices of a Reuleaux polygon, and therefore by

Theorem 8 we have D = ί x, y, z\. Now let u be the centroid of the triangle x9 y,

z. By Theorem 9, S is contained in the segments xu, yu9 and zu. Suppose t>G

(5 xu - x); then 7 (i;) = ί y, z !. But t>, y, z is not equilateral; hence S xu ~

x. Similarly, S yu — y, S zu = z. Consequently, S = ί Λ;, y, z !•

4. Remarks and problems. Several questions are raised by our theorems.

(1) If we try to characterize disconnected sets in E2 for which γ{x) is

single-valued, we see that this condition is not very restrictive. In fact, given

any set S which contains at least one point of the boundary of its r- convex hull

H for some radius r, we can adjoin a single point z to S, such that z lies on an

interior normal to // at a point of H S, and such that y(x) relative to S + { z \ is

single-valued on S + { z !.

(2) The characterization of connected sets S in En (n > 2) for which y{x)

is single-valued on S offers considerable difficulties. The mapping y(x) still

yields a continuous map of S into the boundary of its convex hull, but it need no

longer be an onto mapping. For example, the torus, both the solid and its sur-

face, will have single-valued y{x) for suitable ratios of the two radii. The

argument that a nontrivial compact S which contains no indecomposable continua

cannot be simply- connected holds, however, regardless of dimension, since

every continuous mapping of such a simply-connected set S into itself has fixed

points [ 4 ] .

(3) The generalization of the discussion of multivalued y(x) suggests the
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following problem: Let 5 be a compact set in En such that Y(x) has at least k

elements for x C S. Does it follow that 5 lies in the union of a finite number of

(n ~ k + 1 )-dimensional planes? (Note that in the case k = 1 this is no restric-

tion, while for k > n + 1 there would be no sets S. ) Are there any sets for which

k = n + 1 ?

It seems likely that this generalization is false, since the argument which

proved the finiteness of the set D in Theorem 8 fails for n > 2.

In the case k > n, all points of D are vertices of their c?-conves hull. Thus

in this case D must surely be denumerable.

(4) Is it possible to generalize Corollary 4, as follows:

If the bounded set S in En contains at least two points; and if, for some

k > 2, with every two points x, y ζl S there are k — 1 points in S which together

with x, y form the vertices of a regular k- simplex, does it follow that S is the

set of vertices of a regular Z- simplex, where k <l <n?

(5) Another question raised by Corollary 4 is the following:

What are the sets (bounded sets, compact sets) S in E2 which have the

property that with every x, y ζL S there is a z €1 S such that x y z is an isosce-

les triangle with vertex z and prescribed verticle angle (X?

For Ot < 77/3, a nontrivial set with the stated property obviously cannot be

bounded. For Ct = 77/3, the question for the bounded case is answered by Corol-

lary 4. For α > 77/3, there is a considerable variety of bounded sets, although

none of them can be finite. In fact, for Cί > 77/3 every S must be dense in itself;

and thus, if closed, it must be perfect. The case (X = 77 has been discussed by

J. W. Green and W. Gustin [ 3 ] ; for closed sets S, this case characterizes con-

vexity.

An easy argument shows that for compact 5, and 77/3 < 0L<π/2, the entire

line-segment joining two farthest points of S must be contained in S.

It may also be worth remarking that if S has the foregoing property for an

angle (X, then its complement has the same property for the angle 77— CC. Thus

the case Cί = 77/2 is especially noteworthy, since in this case the class of all S

with the stated property is closed under the operation of taking complements.

(6) Finally, one should compare the theorems about Y(x) with those for

M(x), where M(x) denotes the subset of S whose points have minimum distance

from x. In particular the theorem of Motzkin [6, 7] (see also Jessen [ 5 ] ) states

that a closed set S is convex if and only if M(x) is a single point for all x. This

theorem does not correspond to any of the results on Y (x) in § 1 . In fact, the
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analogous assumption, concerning a (not necessarily closed) set S in En, that

y(x) be single-valued for all x, is satisfied if and only if S consists of a single

point.
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