STRUCTURED THEOREMS FOR RELATIVELY COMPLEMENTED LATTICES

J. E. McLaughlin

Introduction. In a previous paper [3] a study was made of the projectivities between the points of a simple relatively complemented lattice of finite dimension. It was shown that for a given dimension there is an upper bound for the number of transposes required to establish the projectivities between the points. The examples given in which this upper bound is attained have a particularly simple structure - they are closely related to a direct union. We shall prove here some general structure theorems for relatively complemented lattices and then apply these to the case of maximal projectivities.

The notation will be that of [3]. The lattice L to which we refer is always relatively complemented.

1. Structure Theorems. Our arguments depend heavily upon the simplicity or indecomposability [2] of L, and it is convenient to have the following characterization of a direct union:

Theorem 1.l. If L has dimension n, and a, b are two elements of L, then $L \cong a / z \vee b / z$ if and only if
(1) $\rho(a)+\rho(b) \leq n$, and
(2) $p \subseteq a$ if and only if $p \not \ddagger b$ for all points $p \in L$.

Proof. Certainly if $L \cong a / z \vee b / z$, conditions (1) and (2) will hold. Suppose (1) and (2) hold in L. We shall proceed by induction on n. The theorem is true when $n=1,2$. Suppose it is true for all lattices of dimension less than n, but $L \neq a / z \vee b / z$ 。

It is clear that

$$
x=(a \cap x) \cup(b \cap x)
$$

for all $x \in L$. Consider the mapping

Received March 31, 1952.
Pacific J. Math. 3 (1953), 197-208

$$
x \rightarrow \sigma x=(a \cap x, b \cap x) \in a / z \vee b / z
$$

Now $x \supseteq y$ if and only if

$$
a \cap x \supseteq a \cap y \text { and } b \cap x \supseteq b \cap y
$$

and the latter occurs if and only if $\sigma x \supseteq \sigma y$. Hence L is isomorphic, as a partially ordered set, to a subset of $a / z \vee b / z$, where

$$
\sigma u=(a, b), \sigma z=(z, z)
$$

These remarks show that if any two elements a, b of L satisfy (2), we must have

$$
\rho(a)+\rho(b) \geq n
$$

If $L \neq a / z \vee b / z$, there are points $p \subseteq a$ and $q \subseteq b$ such that $p / z P_{2} q / z$. Hence there is a maximal element m such that $m \neq p, m \not q q$. Then s_{1} and s_{2} exist with

$$
a>s_{1} \supseteq m \cap a, b>s_{2} \supseteq m \cap b
$$

Furthermore,

$$
a \cup s_{2}=b \cup s_{1}=u
$$

Let $u=x_{0}>x_{1}>\ldots>x_{n-1}>x_{n}=z$ be a complete chain in L. This chain maps onto

$$
\sigma u=(a, b)>\sigma x_{1}>\cdots>\sigma x_{n-1}>\sigma x_{n}=(z, z)
$$

Either (i) $\sigma x_{1}=\left(a, t_{2}\right)$, where $b>t_{2}$, or (ii) $\sigma x_{1}=\left(t_{1}, b\right)$, where $a>t_{1}$. Suppose the former is true. The points of x_{1} are in either a or t_{2}, but not both. Then a and t_{2} satisfy (2) in x_{1} / z, and since

$$
\rho\left(x_{1}\right)=n-1
$$

we have

$$
\rho(a)+\rho\left(t_{2}\right) \geq n-1
$$

But

$$
\rho(a)+\rho(b) \leq n, \text { so } \rho\left(t_{2}\right)=\rho(b)-1
$$

Then by the induction hypothesis, $x_{1} / z \cong a / z \vee t_{2} / z$. This gives the exist-
ence of a chain from s_{1} through a to u of length $1+\rho(b)-1+1$, or $\rho(b)+1$. By Lemma 3.6 of [3], there is a chain from b to z of length at least $\rho(b)+1$, which is a contradiction. A similar contradiction arises if $\sigma x_{1}=\left(t_{1}, b\right)$. Therefore $L \cong a / z \vee b / z$, and thus the theorem is proved.

The following theorem gives more information about the quotient lattices a_{p}^{k} / z introduced in Lemma 3.5 of [3].

Theorem 1.2. Let L be simple of dimension $n>1$. If p is any point and k is a nonnegative integer such that $h<[(n+1) / 2]$, then a_{p}^{k} / z has dimension at least $2 k+1$.

Proof. The theorem is true when $k=0$. Suppose it is true for all k less than the one in which we are interested. Then a_{p}^{k-1} has dimension at least $2 k-1$, and $a_{p}^{k} \supseteq a_{p}^{k-1}$. If $a_{p}^{k}=u$, we are through, so assume $u \supset a_{p}^{k}$. Then there is a point $s \in L$ with $s \nsubseteq a_{p}^{k}$, but $s / z P_{2} t / z$ for some $t \in C_{p}^{k}$. Hence there is a maximal element m such that $m \npreceq s, m \not \ddagger a_{p}^{k}$. Since $s \in C_{p}^{k}$, we have $m \supseteq a_{p}^{k-1}$. Therefore $a_{p}^{k} \supset a_{p}^{k-1}$, and the dimension of a_{p}^{k} / z is at least $2 k$. Suppose $\operatorname{dim}\left(a_{p}^{k} / z\right)=2 k$. Let b be the join of all points of L which are not in a_{p}^{k}. All of these points are in $x_{p}^{k}=\cap M_{p}^{k}$, where

$$
M_{p}^{k} \equiv\left\{m \in L \mid u>m \nsucceq a_{p}^{k-1}\right\}
$$

(See proof of Lemma 3.5 of [3].) Hence $x_{p}^{k} \supseteq b$ and $b \cap a_{p}^{k}=z$. The latter follows from the assumption $\operatorname{dim}\left(a_{p}^{k} / z\right)=2 k$, since, by Theorem 3.1 of [3] for any point q we would have $q \subseteq a_{p}^{k}$ if and only if $q \in C_{p}^{k}$. On the other hand, it is shown, in the proof of Lemma 3.5 of [3], that $q \in C_{p}^{k}$ if and only if $q \nsubseteq x_{p}^{k}$.

Since L is simple, there exists an x such that

$$
u>x, x \notin a_{p}^{k}, x \notin b .
$$

But $x \nsucceq b$ implies $x \supseteq a_{p}^{k-1}$. Then

$$
x=a_{p}^{k-1} \cup(b \cap x), \text { and } u=b \cup x=a_{p}^{k-1} \cup b .
$$

Hence if $u>m$ we have $m \supseteq a_{P}^{k-1}$, if and only if $m \nsupseteq b$. Therefore a_{p}^{k}, a_{p}^{k-1}, and b satisfy the conditions of Lemma 3.6 of [3], and there exists a chain of length at least $2 k$ from u to b. Then

$$
\rho(b) \leq n-2 k, \text { so } \rho\left(a_{p}^{k}\right)+\rho(b) \leq n
$$

But by Theorem 1.1 we would have $L=a_{p}^{k} / z \vee b / z$, contrary to the simplicity of L. Therefore $\rho\left(a_{p}^{k}\right) \geq 2 k+1$ for all $k<[(n+1) / 2]$.

Let $ß$ denote the partially ordered subset of L consisting of u, the maximal elements, the points, and z. Let β_{ν} be the normal completion of \Re_{β}. Consider the mapping $A \longrightarrow \cup A$ from \Re_{ν} into L. (A is a normally closed subset of L.) If $A \supseteq B$, then $\cup A \supseteq \cup B$. Suppose $\cup A \supseteq \cup B$; then $x \in A^{*}$ implies $x \supseteq a$, all $a \in A$ implies $x \supseteq \cup A$, so $x \supseteq \cup B$, and hence $x \supseteq b$ all $b \in B$ and $x \in B^{*}$; therefore $A^{*} \subseteq B^{*}$, so $\left(A^{*}\right)_{*} \supseteq\left(B^{*}\right)_{*}$, or $A \supseteq B$. Thus the mapping is order preserving both ways.

Suppose $a \in L, a \neq u, a \neq z$. Set

$$
\begin{aligned}
& P(a) \equiv\{p \in \Re \mid a \supseteq p>z\} \\
& M(a) \equiv\{m \in \Re \mid u>m \supseteq a\}
\end{aligned}
$$

Now $x \supseteq p$, all $p \in P(a)$, if and only if $x \supseteq a$, so $M(a) \subseteq(P(a))^{*}$. Also $P(a) \subseteq\left(P(a)^{*}\right)_{*}$. Suppose $y \in\left(P(a)^{*}\right)_{*}$; then $y \subseteq x$, all $x \in P(a)^{*}$ implies $y \subseteq m$, all $m \in M(a)$ implies $y \subseteq a$. Suppose $a^{\prime} \supseteq y$, all $y \in\left(P(a)^{*}\right)_{*}$; then $a^{\prime} \supseteq p$, all $\dot{p} \in P(a)$ implies $a^{\prime} \supseteq a$, so $a=U\left(P(a)^{*}\right)_{*}$. If $a=u$, then $a=U(u)$; if $a=z$ then $a=U(z)$. (Here (x) denotes the principal ideal generated by x.) Hence each $a \in L$ has an inverse image under the above mapping, and $\Re_{\nu} \cong L$; see [2]. This proves the following:

Theorem 1.3. The structure of L is completely determined by the structure of \Re.

Remark. From the nature of the proof it is seen that the above theorem will be true for any lattice each of whose elements is a join of points and the meet of maximal elements.
2. Lattices with maximal projectivities. In this section we shall study simple lattices of odd dimension in which there occurs a maximal projectivity. We shall show that these lattices are quite close to a direct union in the sense that their structure can be completely described in terms of sublattices. Throughout this section L will be a simple lattice of dimension $2 n+1$, and p, q are two points in L such that $p / z P q / z$ requires $2 n+2$ transposes. Then we have:

Theorem 2.1. If $k \leq n$, the following statements are true:
(1) $\rho\left(a_{p}^{k}\right)=2 k+1, \rho\left(a_{q}^{n-k}\right)=2 n-2 k+1$;
(2) $x_{p}^{k}=a_{q}^{n-k}, x_{q}^{n-k}=a_{p}^{k}$;
(3) a_{p}^{k} / z has a maximal projectivity if and only if a_{q}^{n-k} / z has a maximal projectivity;
(4) if a_{p}^{k} / z has a maximal projectivity then $a_{p}^{k} \cap a_{q}^{n-k}=r>z$, otherwise $a_{p}^{k} \cap a_{q}^{n-k}=z$.

Proof. Note that $s \in C_{q}^{n-k}$ implies $s \notin C_{p}^{k}$ implies $s \subseteq x_{p}^{k}$ implies $a_{q}^{n-k} \subseteq x_{p}^{k}$. Suppose there is a maximal element m such that $m \supseteq a_{p}^{k-1}, m \supseteq x_{p}^{k}$. If m / z is simple, we contradict the assumption of a maximal projectivity between p / z and q / z, since $\rho(m) \leq 2 n$. Write

$$
m / z=L_{1} \vee L_{2} \vee \ldots \vee L_{\nu},
$$

where the L_{i} are simple nontrivial quotient lattices, and $\nu>1$. Now a_{q}^{n-k} / z and a_{p}^{k-1} / z are both simple; if they are in the same L_{i}, we again contradict our maximal projectivity assumption. Hence they are in different components and we must have

$$
\rho\left(a_{p}^{k-1}\right)+\rho\left(a_{q}^{n-k}\right) \leq 2 n .
$$

By Theorem 1.2,

$$
\rho\left(a_{p}^{k-1}\right) \geq 2 k-1 ; \rho\left(a_{q}^{n-k}\right) \geq 2 n-2 k+1
$$

Therefore

$$
\rho\left(a_{q}^{n-k}\right)=2 n-2 k+1
$$

The elements a_{p}^{k-1} and a_{q}^{n-k} are in different L_{i}, so

$$
\rho\left(a_{p}^{k-1} \cup a_{q}^{n-k}\right)=\rho\left(a_{p}^{k-1}\right)+\rho\left(a_{q}^{n-k}\right) \geq 2 n
$$

and hence

$$
m=a_{p}^{k-1} \cup a_{q}^{n-k} \text { or } m / z=a_{p}^{k-1} / z \vee a_{q}^{n-k} / z
$$

Now let $s>z, s \subseteq x_{p}^{k}$. Then $s \notin C_{p}^{k}$, so $s \nsubseteq a_{p}^{k-1}$. But $m \supseteq x_{p}^{k}$, so $m \supseteq s$, and therefore $s \subseteq a_{q}^{n-k}$. This shows that $x_{p}^{k} \subseteq a_{q}^{n-k}$, and hence $x_{p}^{k}=a_{q}^{n-k}$. Thus we have shown that if $a_{P}^{k-1} \cup x_{p}^{k} \neq u$, then $x_{p}^{k}=a_{q}^{n-k}$ and $\rho\left(a_{q}^{n-k}\right)=2 n-2 k+1$.

Suppose $a_{p}^{k-1} \cup x_{p}^{k}=u$. Then for each maximal element $m, m \supseteq a_{p}^{k-1}$ if and only if $m \notin x_{p}^{k}$. We have $\rho\left(a_{p}^{k-1}\right) \geq 2 k-1$, so $\operatorname{dim}\left(u / a_{p}^{k-1}\right) \leq 2 n+2-2 k$. Since L is simple, $\operatorname{dim}\left(u / x_{p}^{k}\right) \geq 2 k$, by Theorem 1.l. Hence $\rho\left(x_{p}^{k}\right) \leq 2 n-$ $2 k+1$. But $x_{p}^{k} \supseteq a_{q}^{n-k}$, and $\rho\left(a_{q}^{n-k}\right) \geq 2 n-2 k+1$. Hence, in all cases, $x_{p}^{k}=a_{q}^{n-k}$ and $\rho\left(a_{q}^{n-k}\right)=2 n-2 k+1$. By a similar argument, $x_{q}^{n-k}=a_{p}^{k}$ and $\rho\left(a_{p}^{k}\right)=2 k+1$. This demonstrates (1) and (2).

Suppose $r>z, r \subseteq a_{p}^{k}$ such that $r / z P p / z$ requires $2 k+2$ transposes. Now $r \notin C_{p}^{k}$ implies $r \subseteq x_{p}^{k}=a_{q}^{n-k}$. Furthermore, $r \subseteq a_{p}^{k}=x_{q}^{n-k}$ implies $r \notin C_{q}^{n-k}$ implies that $r / z P q / z$ requires $2 n-2 k+2$ transposes. The argument is symmetric in p and q, and this proves (3).

Suppose $s>z$ and $s / z P_{p} / z$ requires $2 n+2$ transposes. Then $x_{p}^{n}=a_{s}^{0}=$ $s=a_{q}^{0}=q$, so there is at most one point q such that $p / z P q / z$ requires $2 n+2$ transposes. This shows that the r in the preceding paragraph, if it exists, is unique, and we have (4).

We are now in a position to characterize the maximal elements of L in terms of the structure of a_{p}^{k} / z and a_{q}^{n-k} / z. When we know these maximal elements, we will know the structure of L, by Theorem 1.3. First we prove two useful lemmas.
L.EMNA 2.1. There is a chain of length $2 n+1$ through a_{p}^{k}.

Suppose $a_{p}^{k} \cup a_{q}^{n-k-1}=u$. Then the maximal elements of L are in two disjoint classes - those containing a_{p}^{k} and those containing a_{q}^{n-k-1}; and by Theorem 1.l,

$$
\operatorname{dim}\left(u / a_{p}^{k}\right)+\operatorname{dim}\left(u / a_{q}^{n-k-1}\right)>2 n+1
$$

But

$$
\begin{aligned}
& \operatorname{dim}\left(u / a_{p}^{k}\right) \leq 2 n+1-(2 k+1) \\
& \operatorname{dim}\left(u / a_{q}^{n-k-1}\right) \leq 2 n+1-(2 n-2 k-1)
\end{aligned}
$$

Hence $\operatorname{dim}\left(u / a_{p}^{k}\right)=2 n-2 k$.
Suppose $u>m \supseteq a_{p}^{k} \cup a_{q}^{n-k-1}$. Now m / z is not simple, since $\rho(m) \leq 2 n$ and $m \supseteq p, m \supseteq q$. Suppose

$$
m / z=L_{1} \vee L_{2} \vee \ldots \vee L_{\nu}
$$

where $\nu>1$. Then a_{p}^{k} / z and a_{q}^{n-k-1} / z are in different components and again there is a chain from a_{p}^{k} to u of length at least $2 n-2 k$ since $\rho\left(a_{q}^{n-k-1}\right)=2 n-$ $2 k-1$. This proves the lemma.

Lemma 2.2. If $s>z, a \notin s, b \notin s$, but $a \cup b \supseteq s$, then there are points $s_{1} \subseteq a$, $s_{2} \subseteq b$ such that $s_{1} / z P_{2} s / z$ and $s_{2} / z P_{2} s / z$.

Let $s \cup b>x \supseteq b$, and let x^{\prime} be a relative complement of $s \cup b$ in $a \cup b / x$ such that $a \cup b>x^{\prime}$. Then $x^{\prime} \neq a, x^{\prime} \neq s$; hence $x^{\prime} \neq s_{1}$, for some point $s_{1} \subseteq a$. Therefore $s / z T a \cup b / x^{\prime} T s_{1} / z$. Similarly we can show the existence of s_{2}.
proving the lemma.
Lemma 2.3. The following relation holds: $\operatorname{dim}\left(a^{k} / a_{p}^{k-1}\right)=2$.
For since L is simple there is a maximal m_{0} such that $m_{0} \not \ddagger a_{F}^{k}, m_{0} \npreceq a_{q}^{n-k}$. Then $m_{0} \supseteq a_{P}^{k-1}, m_{0} \supseteq a_{q}^{n-k-1}$. Assume $a_{p}^{k}>a_{p}^{k-1}$. Then $m_{0} n a_{P}^{k}=a_{p}^{k-1}$. Set $w=a_{q}^{n-k} n m_{0}$. Then y exists such that $a_{q}^{n-k}>y \supseteq w$. Since $m_{0}=a_{p}^{k-1} \cup w$, we have $u=a_{P}^{k-1} \cup y=w \cup a_{p}^{k}$. Since there is a chain of length $2 k$ from a_{q}^{n-k} to u, there exists a maximal m such that $m \neq a_{q}^{n-k}$ and such that there exists a chain of length at least $2 k$ from m to y. Now $m \not q a_{p}^{k}$ since $a_{p}^{k} \cup y=u$. But $m \supseteq a_{p}^{k-1}$ and $m / z=a_{p}^{k-1} / z \vee y / z$ in contradiction with the length of the chain from y to m. Hence $a^{k} \ngtr a_{p}^{k-1}$, and we must have $\operatorname{dim}\left(a_{p}^{k} / a_{p}^{k-1}\right)=2$.

Corollary. The following relation holds:

$$
\operatorname{dim}\left(a_{q}^{n-k} / a_{q}^{n-k-1}\right)=2
$$

This follows by symmetry.
3. Maximal elements when $a_{p}^{k} \cap a_{q}^{n-k} \neq z$. The following theorem gives the possibilities for maximal elements when a_{p}^{k} / z and a_{q}^{n-k} / z each have a maximal projectivity. We assume throughout that $1 \leq k \leq n-1$.

Theorem 3.1. Let $a_{p}^{k} \cap a_{q}^{n-k}=r>z$, and let $u>m$. If $m \supseteq r$, either
(1) $m \supseteq a_{p}^{k}$ and $a_{q}^{n-k}>m \cap a_{q}^{n-k}$,
or
(2) $a_{p}^{k}>m \cap a_{p}^{k}$ and $m \supseteq a_{q}^{n-k}$.

If $m \notin r$, then $a_{p}^{k}>a_{p}^{k} \cap m$ and $a_{q}^{n-k}>a_{q}^{n-k} \cap m$.
Proof. Let $u>m \supseteq r$, and suppose $m \not \ddagger a_{p}^{k}, m \not \ddagger a_{q}^{n-k}$. Then $m \supseteq a_{p}^{k-1}$, and $m \supseteq a_{q}^{n-k-1}$, for otherwise we would not have a maximal projectivity in L. For the same reason, we have $r \nsubseteq a_{P}^{k-1}, r \nsubseteq a_{q}^{n-k-1}$. Then since

$$
\begin{array}{ll}
\rho\left(a_{p}^{k-1}\right)=2 k-1, & \rho\left(a_{p}^{k}\right)=2 k+1 \\
\rho\left(a_{q}^{n-k-1}\right)=2 n-2 k-1, & \rho\left(a_{q}^{n-k}\right)=2 n-2 k+1
\end{array}
$$

we must have

$$
a_{p}^{k}>m \cap a_{p}^{k}=r \cup a_{p}^{k-1} \text { and } a_{q}^{n-k}>m \cap a_{q}^{n-k}=r \cup a_{q}^{n-k-1} .
$$

Hence

$$
m=\left(r \cup a_{p}^{k-1}\right) \cup\left(r \cup a_{q}^{n-k-1}\right) \text { and } u=a_{p}^{k} \cup m=a_{p}^{k} \cup a_{q}^{n-k-1}
$$

Similarly, $u=a_{q}^{n-k} \cup a_{p}^{k-1}$.
By Lemma 2.1, there is a chain from a_{p}^{k} to u of length $2 n-2 k$. Since L is relatively complemented, it is easy to see that v exists such that $u>v, v \cap a_{p}^{k}=$ $r \cup a_{p}^{k-1}$, and there is a chain from $r \cup a_{p}^{k-1}$ to v of length at least $2 n-2 k$. There is an $s \in C_{p}^{k}$ such that $s \not \ddagger a_{p}^{k-1} \cup r$. Hence $s \not \ddagger v$, and this implies $v \supseteq a_{q}^{n-k-1}$. Therefore $v \supseteq m$ and $v=m$. Then by Theorem 1.l,

$$
m / z=a_{p}^{k-1} \text { טr/z } \vee a_{q}^{n-k-1} / z
$$

but this contradicts the existence of a chain from $a_{p}^{k-1} u r$ to m of length $2 n-$ $2 k$. Hence we must have either $n \supseteq a_{p}^{k}$, or $m \supseteq a_{q}^{n-k}$.

Suppose $m \supseteq a_{q}^{n-k}$, but $a_{p}^{k}>x \supset m \cap a_{p}^{k}$. Let y be a relative complement of x in $a_{p}^{k} / a_{p}^{k} \cap m$. Then $y \supset a_{p}^{k} \cap m$, since $a_{p}^{k}>x$. Hence $m \notin x$, $m \notin y$, so

$$
x \cup a_{q}^{n-k}=y \cup a_{q}^{n-k}=u
$$

Since

$$
\rho\left(a_{p}^{k}\right)=\rho\left(a_{p}^{k-1}\right)+2 \text { and } r \cup a_{p}^{k-1} \supset a_{p}^{k-1},
$$

it follows that $m \not \ddagger a_{p}^{k-1}$. Hence either $x \not \ddagger a_{p}^{k-1}$ or $y \not \ddagger a_{p}^{k-1}$. Suppose the latter is the case. Then there is an $s \in C_{p}^{k-1}$ such that $s \nsubseteq y$. But $s \subseteq u=y \cup a_{q}^{n-k}$. Hence, by Lemma 2.2,s/z $P_{2 n-2 k+2} q / z$ and $p / z P_{2 n} q / z$ contrary to our assumption of a maximal projectivity between p / z and q / z. A similar contradiction arises if $x \not \ddagger a_{p}^{k-1}$. Hence $a_{p}^{k}>a_{p}^{k} \cap m$. The roles of p and q are symmetric, so if $m \supseteq a_{p}^{k}$, then $a_{q}^{n-k}>m \cap a_{q}^{n-k}$.

Now let $u>m \nsucceq r$. Since $m \not \ddagger r$, we have $m \supseteq a_{p}^{k-1}$ and $m \supseteq a_{q}^{n-k-1}$. Suppose

$$
a_{p}^{k}>x>a_{p}^{k-1}=a_{p}^{k} \cap m \text { and } a_{q}^{n-k}>y>a_{q}^{n-k-1}=a_{q}^{n-k} \cap m
$$

Let x^{\prime} be a relative complement of x in a_{p}^{k} / a_{p}^{k-1}. Suppose $x^{\prime} \neq r$, and let $x^{\prime \prime}$ be a relative complement of a_{p}^{k} in u / x^{\prime}. Since $a_{p}^{k}>x^{\prime}$, we can assume $u>x^{\prime \prime}$. Now $x^{\prime \prime} \nsubseteq r$, so $x^{\prime \prime} \supseteq a_{q}^{n-k-1}$. Hence $x^{\prime \prime}=m$, contrary to $a_{p}^{k-1}=m \cap a_{p}^{k}$. A similar contradiction arises if $x \nsupseteq r$; and since $a_{p}^{k-1} \npreceq r$, we must have $a_{p}^{k}>m \cap a_{p}^{k}$. Therefore either

$$
a_{p}^{k}>m \cap a_{p}^{k} \text { or } a_{q}^{n-k}>m \cap a_{q}^{n-k} .
$$

Suppose

$$
a_{p}^{k}>m \cap a_{p}^{k}>a_{p}^{k-1} \text { but } a_{q}^{n-k}>y>a_{q}^{n-k-1}=m \cap a_{q}^{n-k} .
$$

As before, v exists with $u>v, v \cap a_{p}^{k}=m \cap a_{p}^{k}$, and there is a chain from $m \cap a_{p}^{k}$ to v of length at least $2 n-2 k$. There is a point $s \in C_{p}^{k}$ such that $s \not \ddagger m \cap a_{p}^{k}$, and hence $s \not \ddagger v$. Therefore $v \supseteq a_{q}^{n-k-1}$, so $v=m$. But m / z, by Theorem 1.1, is equal to $m \cap a_{p}^{k} / z \vee a_{q}^{n-k-1} / z$ in contradiction with the length of the chain from $m \cap a_{p}^{k}$ to $v=m$. Hence $a_{q}^{n-k}>m \cap a_{q}^{n-k}$; and whenever $u>m \neq r$, we have

$$
a_{p}^{k}>m \cap a_{p}^{k}, a_{p}^{n-k}>m \cap a_{q}^{n-k} .
$$

The converse of this theorem is not true; however we do have the following result:

Theorem 3.2. If $a_{p}^{k}>x \supseteq r$, then $u>x \cup a_{q}^{n-k}$, while if $a_{q}^{n-k}>y \supseteq r$, then $u>a_{p}^{k} \cup y$. If $a_{p}^{k}>x \nsupseteq r$ and $a_{q}^{n-k}>y \nsubseteq r$, then $u>x \cup y$ if and only if for any points $t \subseteq x, s \subseteq y$, we have $t \cup s \notin r$.

Proof. Let $a_{p}^{k}>x \supseteq r$, and let x^{\prime} be a relative complement of a_{p}^{k} in u / x such that $u>x^{\prime}$. Then by Theorem 3.1 we have $x^{\prime} \supseteq a_{q}^{n-k}$ and $x^{\prime}=x \cup a_{q}^{n-k}$. A similar argument shows that if $a_{q}^{n-k}>y \supseteq r$, then $u>a_{p}^{k} \cup y$.

Suppose

$$
a_{p}^{k}>x \nsupseteq r, a_{q}^{n-k} \supseteq y \nsucceq r .
$$

If

$$
x \supseteq t>z \text { and } y \supseteq s>z
$$

such that $s \cup t \supseteq r$, then

$$
x \cup y \supseteq r \text { and } x \cup y=(x \cup r) \cup(y \cup r)=u .
$$

Suppose $x \cup y=u$. Since

$$
x \notin r, y \notin r,
$$

it follows that

$$
x \supseteq a_{p}^{k-1}, y \supseteq a_{q}^{n-k-1}
$$

If $x=a_{P}^{k-1}$ or $y=a_{q}^{n-k-1}$, Lemma 2.2 tells us that $r \in C_{p}^{k}$ or $r \in C_{q}^{n-k}$. Hence

$$
x>a_{p}^{k-1} \text { and } y>a_{q}^{n-k-1}
$$

So points s and t exist such that $x=t \cup a_{p}^{k-1}$ and $y=s \cup a_{q}^{n-k-1}$. Therefore

$$
a_{p}^{k-1} \cup t \cup s \cup a_{q}^{n-k-1} \supseteq r
$$

and applying Lemma 2.2 twice we get $t u s \supseteq r$. All that is required to finish the proof of the theorem is to show that if $u>m \supseteq x \cup y$, then $m=x \cup y$. Suppose $m \supseteq r$; then

$$
m \supseteq(x \cup r) \cup(y \cup r)=u
$$

So $m \neq r$. Hence, by Theorem 3.1, $m=x_{1} \cup y_{1}$, where

$$
a_{p}^{k}>x_{1} \neq r \text { and } a_{q}^{n-k}>y_{1} \neq r
$$

But this implies $x=x_{1}, y=y_{1}$, and $m=x \cup y$.
4. Maximal elements when $a_{p}^{k} \cap a_{q}^{n-k}=z$. Here as before we assume that $1 \leq k \leq n-1$.

Theorem 4.1. If $u>m$ then m is one of the following three types:
(1) $m \supseteq a_{p}^{k}, a_{q}^{n-k}>a_{q}^{n-k} \cap m \ddagger a_{q}^{n-k-1}$, or dually;
(2) $m \supseteq a_{p}^{k}, a_{q}^{n-k} \cap m=a_{q}^{n-k-1}$, or dually;
(3) $a_{p}^{k}>m \cap a_{p}^{k} \supseteq a_{p}^{k-1}$, and $a_{q}^{n-k}>m \cap a_{q}^{n-k} \supseteq a_{q}^{n-k-1}$.

Proof. Suppose

$$
u>m \supseteq a_{p}^{k}, m \not \ddagger a_{q}^{n-k-1}, \text { but } a_{q}^{n-k}>x \supset a_{q}^{n-k} \cap m
$$

Then not all elements of a_{q}^{n-k} / z covering $m \cap a_{q}^{n-k}$ will contain a_{q}^{n-k-1}. On the other hand,

$$
m=\left(m \cap a_{q}^{n-k}\right) \cup a_{p}^{k}
$$

so for any point

$$
s \subseteq a_{q}^{n-k}, s \nsubseteq m \cap a_{q}^{n-k}
$$

we have

$$
s \cup\left(m \cap a_{q}^{n-k}\right) \cup a_{p}^{k} \supseteq a_{q}^{n-k-1}
$$

Then by Lemma 2.2 we must have

$$
s \cup\left(m \cap a_{q}^{n-k}\right) \supseteq a_{q}^{n-k-1}
$$

contrary to the above assertion. Therefore if

$$
u>m \supseteq a_{p}^{k} \text { and } m \not \ddagger a_{q}^{n-k-1},
$$

then $a_{q}^{n-k}>m \cap a_{q}^{n-k}$.
Now suppose $u>m \supseteq a_{P}^{k}$ and $m \supseteq a_{q}^{n-k-1}$. If m / z is simple, we contradict our maxim:al projectivity assumption; but arguing as before on the direct split of m / z, we see that

$$
m / z=a_{p}^{k} / z \vee a_{q}^{n-k-1} / z,
$$

and hence $m \cap a_{q}^{n-k}=a_{q}^{n-k-1}$.
Finally suppose $u>m$, but $m \nsupseteq a_{p}^{k}, m \not a_{q}^{n-k}$. Then $m \supseteq a_{p}^{k-1}$ and $m \supseteq a_{q}^{n-k-1}$. Assume $m \cap a_{p}^{k}=a_{p}^{k-1}$, and let $a_{p}^{k}>x>a_{p}^{k-1}$, by Lemma 2.3. Let v be a relative complement of a_{p}^{k} in u / x such that $u>v$. Since $v \not \ddagger a_{p}^{k}$, we have $v \supseteq a_{q}^{n-k-1}$. Now $v \neq m$, so $a_{q}^{n-k}>m \cap a_{q}^{n-k}$. Then m^{\prime} exists such that $u>m^{\prime}, m^{\prime} \neq a_{q}^{n-k}$, and there is a chain from $m \cap a_{q}^{n-k}$ to m^{\prime} of length at least $2 k$. Since $m^{\prime} \neq a_{q}^{n-k}$, it follows that $m^{\prime} \supseteq a_{p}^{k-1}$, and hence $m^{\prime}=m$. But m / z is not simple; a_{p}^{k-1} and $a_{q}^{n-k} n m$ are in different components. This is contrary to the length of the above chain, since $\rho\left(a_{p}^{k-1}\right)=2 k-1$. Hence we must have $a_{p}^{k}>m \cap a_{p}^{k}$, and dually $a_{q}^{n-k}>m \cap a_{q}^{n-k}$.

Examples show that it is impossible from the structures of a_{p}^{k} / z and a_{q}^{n-k} / z to tell whether $u>a_{p}^{k} \cup a_{q}^{n-k-1}$ or $u=a_{p}^{k} \cup a_{q}^{n-k-1}$, and dually. However, for the other maximal elements we have:

Theorem 4.2. If

$$
a_{q}^{n-k}>y \neq a_{q}^{n-k-1},
$$

then $u>y \cup a_{p}^{k}$, and dually. If

$$
a_{p}^{k}>x \supseteq a_{p}^{k-1} \text { and } a_{q}^{n-k}>y \supseteq a_{q}^{n-k-1}
$$

then $u>x \cup y$ if and only if for every pair of points $s \subseteq x, t \subseteq y$ the lattice $s \cup t / z$ is a Boolean algebra.

Proof. Suppose

$$
a_{q}^{n-k}>y \supseteq a_{q}^{n-k-1} \text { and } u=a_{p}^{k} \cup y .
$$

Then there is a point $t \subseteq a_{q}^{n-k-1}$ such that $t \nsubseteq y, t \nsubseteq a_{p}^{k}$, but $t \subseteq a_{p}^{k} \cup y$; and using Lemma 2.2 we obtain a contradiction of our maximal projectivity hypothesis. On the other hand, if $u>m \supseteq a_{p}^{k} \cup y$, then by Theorem 4.1 we get $m=a_{p}^{k} \cup y$.

Let $a_{p}^{k}>x \supseteq a_{p}^{k-1}$ and $a_{q}^{n-k}>y \supseteq a_{q}^{n-k-1}$. By Theorem 4.1, either $u=x \cup y$
or $u>x \cup y$. If $u=x \cup y$, there are points $s \subseteq x, t \subseteq y$ such that

$$
t \cup a_{p}^{k-1} \cup s \cup a_{q}^{n-k-1} \supseteq a_{q}^{n-k}
$$

Then by Lemma 2.2, we have

$$
t \cup s \cup a_{q}^{n-k-1} \supseteq a_{q}^{n-k}
$$

thus $t \cup a_{q}^{n-k} / z$ is not a direct union, so there is another point $r \subseteq a_{p}^{k}$ such that $t \cup s \cup a_{q}^{n-k-1} \supseteq r$, and hence $t \cup s \supseteq r$. But this tells us that $t \cup s / z$ is not a Boolean algebra.

If $u>x \cup y$, we must have $x \cup y / z=x / z \vee y / z$, and the condition is satisfied.

Here again, then, save for the one exception, the structure of L is determined by the structure of sublattices and the relations between points.

References

1. R. P. Dilworth, The structure of relatively complemented lattices, Ann. of Math. (2) 5 (1950), 348-359.
2. R. P. Dilworth and Morgan Ward, Note on paper by C. E. Rickart, Bull. Amer. Math. Soc. 55 (1949), 1141.
3. J. E. McLaughlin, Projectivities in relatively complemented lattices, Duke Math. J. 18 (1951), 73-84.

The University of Michigan

