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1. Introduction. If G is a finite subgroup of the multiplicative group of non-

zero elements of a commutative field, then it is known that G must be cyclic.

This result clearly is not true for general division rings, as is shown, for in-

stance, by the example of the group

G = ( ± 1, ± i, ±j, ± k)

in the division algebra of the quaternions over the real field. One might ask,

however, if there exist extensions or analogues of the theorem for commutative

fields to general division rings. The results of this paper are in the direction

of possible such extensions. One result we obtain is, in fact, that if K is of

characteristic p, p / 0, then any finite multiplicative subgroup of the group of

nonzero elements is indeed cyclic. For arbitrary K, the groups of odd order are

at least metacyclic, and in the special case of the quaternions the subgroups of

odd order are all cyclic.

Let K be a division ring with center Z, and let K be the multiplicative

group of nonzero elements of K. Whenever we write G C K , we mean that G is

a subgroup of K under the multiplication defined in K .

2. Results on finite subgroups of R* for general K. Suppose that G C R* is

both finite and Abelian. Let the elements of G be g^9 g 2, ••• , gR. Consider

T = Z ( g t , ••• , gn), the division ring obtained by adjoining g^, , gn to Z.

Since G is Abelian, T must be commutative, so 7 is a commutative field; more-

over G C Γ*. Thus, being a finite subgroup of the multiplicative group of a

field, G is cyclic. So we have:

LEMMA 1. If G C K* is an Abelian group of finite order, then G is cyclic.

Let p be a prime number. If G is of order p or p 2 , it is Abelian. So by Lemma

1 we obtain:

LEMMA 2. If G C K* is of order p or p 2, then G is cyclic.
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LEMMA 3. If G C K is of order pr, p an odd prime, then G is cyclic.

Proof. Our proof is by induction over r:

(1) If r = 1, or r = 2, this is merely Lemma 2.

(2) Suppose that all G C K of order pv, v < r, are cyclic. Let G C K be

of order pr, r > 2. Then by the induction hypothesis all the proper subgroups of

G are cyclic. Since p is an odd prime and r > 2, by Satz 88 [2, p. 72], G is

cyclic. Thus Lemma 3 is established.

THEOREM 4. If G C K is of odd order, then G is metacyclic.

Proof. All the Sylow subgroups of G belong to odd primes, so they are

cyclic by Lemma 3. Hence G is metacyclic [3 , p. 145, Theorem 11].

As a consequence of the metacyclicity of G we obtain [3 , p. 145, Theorem

11] :

THEOREM 5. If G C K* is of odd order, then there exist a, b €L G which

generate all of G, and which satisfy

(1) an = bm = 1 (n, m odd)

(2) bab"1 = ar.

3. The case where K is of characteristic p, p ^ 0. In this section we

assume K is of characteristic p, p ^ 0. Let P C Z, Z the center of K, P the

prime field of characteristic p.

THEOREM 6. If G C K is of finite order, then G is cyclic.

Proof. Let

n

Clearly ί/ is a group under multiplication and addition. Moreover, U is finite,

since P is finite. Since ί/ is contained in K9 it can have no divisors of zero.

Thus U is a finite division ring. By Wedderburn's theorem, U must then be com-

mutative; since G C U*, we then have the result that G is cyclic.

So for division rings of nonzero characteristic, the result for commutative

fields carries over in its entirety. One might well ask how much of the result

carries over in the case of division rings of characteristic zero. We have not
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solved this completely as yet; but in the special case that A' is the quaternion

algebra over the real field, v\7e obtain a fairly satisfactory answer.

>. K the real quaternions. In this section, A will denote the division alge-

bra of the quaternions over the real field Z ( Z is then, of course, also the center

of A). The principal result we obtain is:

THEOREM 7. If G C A* is of odd order, then G is cyclic.

We first establish several preliminary lemmas.

Suppose that x C A'. The normalizer of x9 U(x), is defined by

ϊ[(x) = {a€K 1 ax = xa\.

Trivially, Z C U ( x ) ; and Y\(x) is a division algebra over the rea l s . Not being

the reals or the quaternions, U(%) must be isomorphic with the complex numbers.

Thus there must be a t £ H ( Λ ) , with t2 = - 1, so that every a C Yl{x) can be

written as a = α 0 + (Xι t, where (Xj C Z . Let

C \y CK I y = y Q + γχ i, γ. CZ\.

Then C is also isomorphic to the complex numbers. There exists an isomorphism

of ϊl{x) onto C which leaves the elements of Z fixed. The next two lemmas are

concerned with establishing the nature of this isomorphism. Using results about

division subalgebras of division algebras 11, p. 42, Satz 3] , we could obtain

the results immediately; but, for the sake of self-containment, we establish

these results here.

LEMMA 8. // t C K is such that t2 = - 1, then there exists an S C K so

that StS"ι = i.

Proof. Suppose that

t = τ 0 + τ ^ + τ 2 / + τ3k ( α m ' s in Z ) .

Since t2 = - 1, it follows that To = 0 and Ί2 + T^ + T̂  = 1. If 1X = 1, then t = i

and there is nothing to prove. So we suppose that 1X Φ l A simple computation

then shows that StS"ι — i, where

S = S o + St i + S2 j + S3 k,

and where
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τ 3 - τ 2 τ 3 + τ2

0 , i z m z r r 2 3

2 V I - τ ι 2 V l ~ T t 2

Now

U(αc) = ί σ £ Λ' I o = α 0 + aι t, di's in Z, t2 = - 1 1,

C = ! g C K I g = yQ + yχ i, γ. 's in Z }.

By Lemma 8, there exists an S so that StS" = i, whence S ΓI(Λ;)5" 1 = C. So we

have shown:

LEMMA 9. //# ^ Z, then there exists an S G K so that Sϊl(x)S"1 = C.

LEMMA 10. If a, b C X, α71 = bm = 1, α/iί/ 6α6" 1 = αΓ, ί/ie/z eiίAer α6 = ba

or a"1 b ~ ba.

Proof. If a ζl Z, then α& = Z>α, and the result is correct. Suppose then that

a y- Z. Since a ^1 ϊl(a) ^ K9 by Lemma 9 there exists an S G A' so that

SaS"1 £ C. Thus (if we assume rc is the least positive integer so that an = 1),

27TA 2τrλ _ . λ n

= SαS" 1 = cos + i sin [ ( λ , n) = 1]

is a primitive nth root of unity in C. Let

= β0 + βίi + β2j + β3k, βi ε z .

From όαό"1 = α r, we obtain δ ^ β " 1 = Ar. If β = /3 = 0 , then AB = δ ^ since in
2 3

that case both A and β would be in C So we suppose one of them, say β2, is

not zero. Then BAB'1 = Ar yields

(1) (j80 + βχ i + β2j+ β3k) cos + t sin 1

/ 2?7λr 2πλr \
= cos + i sin (β + β i + β j + βΛ).

\ n n I υ ι ι ό

Computing the coefficients of / and k in (1), we obtain

, o x n I 2πλ 2πλr\ I 2πλ 2πλr\
{2a) jS I cos cos + β [ sin + sin = 0 ,

2 \ n n I 3 \ n n I
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, , λ / 2πλ 2πλr\ I 2πλ 2πλr\
(2b ) - p sin + sin I + β [ cos cos 1 = 0.

2 \ n n I 3 \ n n I

Since β φ- 0, we have

( 3 )

2πλ 2πλr
cos — cos

n n

2πλ m 2πλr
sin -f sin

I 2πλ m 2πλr\ 2πλ
— I sin + sin I cos —

\ n n ' n

2πλr
cos

= 0.

Expanding this determinant, we have

2τ7λ(r+l) 2πλ 2πλr 2πλ . 2πλr
(4) cos = cos cos — sin sin = 1.

n n n n n

Since (λ, n) = 1, from (4) we obtain n \ (r + 1.)

Thus BA = ArB =s A"ιB9 since An — 1; this gives correspondingly for a and

b the result that ba = a"ιb9 which is the lemma.

COROLLARY. // an = bm = 1, n and m both odd, and bab"1 = aΓ, then ba =

ab.

For if bab"1 = a"1 then b2a=ab2

9 and since m is odd this gives ba = ab.

Proof of Theorem 7. Since G C X* is of odd order, by Theorem 5 there

exist a, b G G which generate G and which satisfy

(1) an = bm = l

( 2 ) bab~ι=ar.

{n, m odd),

Thus by the corollary to Lemma 10, ab = ba. So G must be an Abelian group;

since G is in X*, an application of Lemma 1 yields the result that G is cyclic.

This is Theorem 7.

One might hope that a more general result would hold. Such a result might

be that if K is a division ring, then any finite subgroup G, G C /£*, which is of

odd order, is cyclic. It would be enough to prove this for division algebras of

finite order over the rationale.
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