THE NORM FUNCTION OF AN ALGEBRAIC FIELD EXTENSION

Harley Flanders

1. Introduction. Let k be an algebraic field, K a finite extension field of degree n over k, and $\omega_{1}, \cdots, \omega_{n}$ a linear basis of K over k. (For the standard results of field theory which we have used in this paper, the reader is referred to the texts $[2 ; 4 ; 5]$.) If $X=\left(X_{1}, \cdots, X_{m}\right)$ is a set of indeterminates over K, then $[K(X): k(X)]=n$, and in fact $\omega_{1}, \cdots, \omega_{n}$ is a basis of $K(X)$ over $k(X)$. We set $m=n$ and form the so-called general element

$$
E=\omega_{1} X_{1}+\cdots+\omega_{n} X_{n}
$$

of K over k. We may, without confusion, use the symbol $N_{K / k}$ both for the norm function of K / k and for that of $K(X) / k(X)$. The general norm of K over k is the polynomial

$$
N(X)=N\left(X_{1}, \cdots, X_{n}\right)=N_{K / k}(\Xi) \in k[X] .
$$

We propose here to discuss the factorization of this polynomial and the possibility of characterizing the norm function $N_{K / k}$ of K / k intrinsically. We are indebted to Professor E. Artin for a helpful suggestion communicated orally.
2. Factorization of the general norm. If we take a new basis $\eta_{1}, \cdots, \eta_{n}$, we simply effect a nonsingular linear transformation on the n variables X_{i}; hence nothing essential is changed. The possibility of selecting a convenient basis will be used to advantage in the proofs below. Our first result, while not complete, admits a simple proof; consequently we give it before giving a more general result.

Theorem l. Let $K=k(\theta)$ be a simple extension of k. Then the general $\operatorname{norm} N(X)$ is irreducible in $k[X]$.

Proof. Let $f(X)=\left(X-\theta_{1}\right) \cdots\left(X-\theta_{n}\right)$ be the minimum function of $\theta=\theta_{1}$ over k, and take $1, \theta, \cdots, \theta^{n-1}$ as a basis of K over k. Then

$$
N(X)=\prod_{i=1}^{n}\left(X_{1}+\theta_{i} X_{2}+\cdots+\theta_{i}^{n-1} X_{n}\right)
$$

Since this is a complete factorization of $N(X)$ into linear factors, it follows that any factor of $N(X)$ must be the product of a constant and certain of the linear factors displayed. Consequently, if $G(X)$ is an irreducible factor of $N(X)$ in $k[X]$ with

$$
\operatorname{deg} G(X)=r \quad(1 \leq r \leq n)
$$

then, by properly renumbering and adjusting the coefficient of X_{1}^{r}, we have

$$
G(X)=\prod_{i=1}^{r}\left(X_{1}+\theta_{i} X_{2}+\cdots+\theta_{i}^{n-1} X_{n}\right)
$$

It follows that $G(X,-1,0, \cdots, 0) \in k[X]$. But this means that

$$
\prod_{i=1}^{r}\left(X-\theta_{i}\right) \in k[X]
$$

Since $f(X)$ is irreducible over k, we must have $r=n$.
We can generalize this theorem as follows.
Theorem 2. Let $[K: k]=n$, and let $m=\max \{[k(\theta): k]$ for $\theta \in K\}$. Then m divides n, and the complete factorization in $k[X]$ of the general norm $N(X)$ of K over k is given by

$$
N(X)=[F(X)]^{n / m},
$$

where $F(X)$ is an irreducible polynomial in $k[X]$.
Proof. If K / k is a separable extension, then it is a simple one and Theorem 1 applies. Consequently, we may assume that k has finite characteristic p, and that K / k is inseparable. Let S be the maximal separable subfield of K over k, and let $s=[S: k]$, so that $n=s p^{u}$. We let e denote the least whole number such that $K^{p^{e}} \subset S$. Then $1 \leq e \leq u$ and it is known [2;4;5] that $m=s p^{e}$. Finally, we let α be a generator of S / k, thus $S=k(\alpha)$; and let

$$
\Omega_{1}=1, \Omega_{2}, \cdots, \Omega_{p^{u}}
$$

be a linear basis of K / S with

$$
\left(\Omega_{j}\right)^{p^{e}}=\beta_{j} \in S
$$

The general element E of K / k is given by

$$
\mathrm{E}=\sum \alpha^{i} \Omega_{j} X_{i j} \quad\left(i=0, \cdots, s-1 ; j=1, \cdots, p^{u}\right)
$$

and the general norm by

$$
N(X)=[F(X)]^{p^{u-e}}
$$

with

$$
F(X)=N_{S / k}\left(\sum_{\left.\alpha^{i p^{e}} \beta_{j} X_{i j}^{p^{e}}\right)}\right.
$$

This is the case because

$$
N_{K / k}=N_{S / k} \circ N_{K / S}
$$

and

$$
N_{K / S} A=A^{p^{u}}=\left(A^{p^{e}}\right)^{p^{u-e}} \text { for } A \in K
$$

We next assert that the polynomial

$$
\Pi(X)=\Xi^{p^{e}}=\sum \alpha^{i p^{e}} \beta_{j} X_{i j}^{p^{e}}
$$

is irreducible in the ring $S[X]$. Suppose this is not the case and let $\Gamma(X)$ be an irreducible factor. We normalize the coefficient of the highest power of X_{01} in $\Gamma(X)$; we may thus write

$$
\Gamma(X)=E^{P^{f} v}
$$

where $0 \leq f<e$ and $(v, p)=1$. We clearly have

$$
\left(p^{f} v, p^{e}\right)=p^{f}
$$

and so there exist rational integers a, b such that

$$
p^{f} v a+p^{e} b=p^{f} .
$$

This implies that

$$
\Xi^{P^{f}}=\left(\Xi^{P^{f} v}\right)^{a}\left(\xi^{p^{e}}\right)^{b} \in S[X] ;
$$

hence

$$
\bigoplus^{p^{f}} \in S[X], \sum \alpha^{i p^{f}}\left(\Omega_{j}\right)^{p^{f}} \chi_{i j}^{p^{f}} \in S[X] .
$$

Thus, for each i and $j\left(i=0, \cdots, s-1 ; j=1, \cdots, p^{u}\right)$, we have

$$
a^{i p^{f}}\left(\Omega_{j}\right)^{p^{f}} \in s .
$$

In particular, setting $i=0$, we obtain

$$
\left(\Omega_{j}\right)^{p^{f}} \in S \text { for } j=1, \cdots, p^{u}
$$

Hence $K^{p^{f}} \subset S$, a contradiction of the definition of e.
It will be convenient in the remainder of the proof to have a "sufficiently large" field at our disposal. We form the splitting field U over k of any polynomial $f(X)$ in $k[X]$ which has amongst its roots the quantities $\alpha, \Omega_{1}, \ldots, \Omega_{p^{u}}$ Then we may assume $k \subset S \subset K \subset U$, and any relative isomorphism on K over k into any field containing K is already into U.

Now let σ be any relative isomorphism of S over k into U. The fact that $\Pi(X)$ is irreducible over $S[X]$ clearly implies that $\Pi^{\sigma}(X)$ is irreducible over $S^{\sigma}[X]$. We also assert that if $\sigma \neq \iota$, the identity isomorphism, then $\Pi(X)$ and and $\Pi^{\sigma}(X)$ are relatively prime in $U[X]$. To prove this, we first note that, since K is a pure inseparable extension of S, σ has a unique prolongation to an isomorphism (also denoted by σ) of K / k. Thus

$$
\Pi(X)=\Xi^{p^{e}}, \Pi^{\sigma}(X)=\left(\Xi^{\sigma}\right)^{p^{e}} .
$$

These can have a proper common factor if and only if

$$
\lambda \Xi=\Xi^{\sigma} \text { for } \lambda \text { in } K .
$$

If this is the case, then we compare the coefficients on either side of X_{01} and X_{11}, obtaining $\lambda=1$ and $\alpha=\alpha^{\sigma}$, an impossibility if $\sigma \neq \iota$.

To complete the proof, we let σ_{1}, \cdots, a_{k} be all of the relative isomorphisms of S over k into l. We have

$$
F(X)=\lambda_{S / k}[\Pi(X)]=\prod_{h=1}^{\infty}\left[\Pi^{\sigma_{h}}(X)\right]
$$

Let $G(X)$ be any irreducible factor of $F(X)$ in $k[X]$. It follows from the facts (a) each $\Pi^{\sigma_{h}}(X)$ is irreducible in $S^{\sigma_{h}}\{X\}$ and (b) the s polynomiais $\Pi^{J^{h}}(X)$ of $U[X]$ are pairwise relatively prime-an immediate consequence of the result of the last paragraph-that $\rho(X)$, after a trivial modification of leading coefficient, is necessarily of the form

$$
G(X)=\prod_{h=1}^{r}\left[\Pi^{\sigma h}(X)\right] \quad(1 \leq r \leq s),
$$

where, of course, we have rearranged the indices h as needed. Since $G(X) \in$ $k[X]$, it follows that the polynomial

$$
g(X)=\prod_{h=1}^{r}\left(X^{p^{e}}-\alpha^{\sigma} h\right),
$$

which results from the specialization

$$
\left[X_{01}=X, X_{11}=-1, X_{i j}=0 \text { for all other } i, j\right],
$$

is in $k[X]$. This implies $r=s, G(X)=F(X)$, as desired.
3. Characterization of the norm function. ${ }^{1}$ In this section, let k, K be fields such that $[K: k]=n$. The norm function $N_{K / k}$ has the following properties:
$\left(N_{1}\right)$

$$
N_{K / k}(A B)=\left(N_{K / k} A\right)\left(N_{K / k} B\right) \text { for all } A, B \in K
$$

$\left(N_{2}\right)$

$$
N_{K / k}(a)=a^{n} \text { for all } a \in k
$$

These properties mean that $N_{K / k} 0=0$ and that $N_{K / k}$ is a homomorphism on the multiplicative group K^{*} of nonzero elements of K into k^{*} such that

$$
N_{K / k} a=a^{n} \text { on } k^{*} .
$$

[^0]Definition 1. A function f on K into k is a norm-like function if

$$
\begin{equation*}
f(A B)=f(A) f(B) \text { for all } A, B \in K \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
f(a)=a^{n} \text { for all } a \in k \tag{2}
\end{equation*}
$$

It is evident from group-theoretic considerations that in general there are many norm-like functions. We wish here to impose further restrictions which will distinguish the norm function $N_{K / k}$ from amongst all norm-like functions. The considerations of §1 suggest a "continuity" condition which we proceed to formulate.

Definition 2. Let L be an n-dimensional linear space over a field k. A function f on L into k will be called a polynomial function if there is a basis x_{1}, \cdots, x_{n} of L and a polynomial

$$
F\left(X_{1}, \cdots, X_{n}\right) \in k[X]
$$

such that whenever

$$
x=\sum a_{i} x_{i} \in L
$$

then

$$
f(x)=F\left(a_{1}, \cdots, a_{n}\right)
$$

It is clear that there is no real dependence on a particular basis in this definition. Similarly we may define a homogeneous polynomial function of degree m on L to k by insisting that $F(X)$ be homogeneous of degree m. The norm function $N_{K / k}$ is a homogeneous norm-like function of degree n on K into k.

Theorem 3. Let k be an infinite field, $[K: k]=n$, and let f be a polynomial norm-like function on K into k. Then $f=N_{K / k}$.

Proof. Let $\omega_{1}=1, \omega_{2}, \cdots, \omega_{n}$ be a basis of $K / k, F\left(X_{1}, \cdots, X_{n}\right)$ a polynomial such that

$$
f\left(\sum a_{i} \omega_{i}\right)=F\left(a_{1}, \cdots, a_{n}\right)
$$

Since k is infinite, F is necessarily unique. It is known that there exist polynomials $g_{1}(X), \cdots, g_{n}(X) \in k[X]$ such that if

$$
A=\sum a_{i} \omega_{i} \in K
$$

and we set

$$
\bar{E}=\sum_{g_{i}\left(a_{1}, \ldots, a_{n}\right) \omega_{i}}
$$

then $A B=N_{K / k} A$. Thus

$$
f(A \bar{B})=f(A) f(E)=\left(N_{K / k} A\right)^{n}
$$

and so we have

$$
F\left(a_{1}, \cdots, a_{n}\right) F\left(g_{1}\left(a_{1}, \cdots, a_{n}\right), \cdots\right)=\left\{N\left(a_{1}, \cdots, a_{n}\right)\right\}^{n},
$$

where $N(X)$ is the general norm of K / k. Since k is infinite, this is an identity; that is,

$$
F(X) F\left(g_{1}(X), \cdots, g_{n}(X)\right)=N(X)^{n}
$$

By Theorem 2, we have

$$
N(X)=M(X)^{h},
$$

where $M(X)$ is irreducible in $k[X]$. It follows that

$$
F(X)=c M(X)^{r}
$$

for some power r and $c \in k$. We specialize:

$$
X \rightarrow(a, 0, \cdots, 0)
$$

obtaining

$$
a^{n}=F(a, 0, \cdots, 0)=c M(a, 0, \cdots, 0)^{r} .
$$

We raise to the h-power, noting that

$$
N(a, 0, \cdots, 0)=a^{n} ; a^{n h}=c^{h} a^{n r} .
$$

This is true for all $a \in k$; hence

$$
n h=n r, h=r, c^{h}=1, F(X)=c M(X)^{h}=c N(X) .
$$

It is immediate that $c=1$, and hence $f=N_{K / k}$.

In the case that k is a finite field we get a somewhat different result unless we strengthen the hypotheses. We first have the following result.

Theorem 4. Let k be a finite field of q elements and let $[K: k]=n$. Suppose that f is a norm-like function on K into k. Then either $f=\left(N_{K / k}\right)^{r}$, where $0<r<q-1$ and $n r \equiv n(\bmod q-1)$, or $n \equiv 0(\bmod q-1)$ and f is given by $f(0)=0$ and $f(A)=1$ for all $A \neq 0$. Conversely, each such function is norm-like.

Proof. Let A be a generator of the (cyclic) group K^{*}. Then

$$
a=N_{K / k} A=A^{u}
$$

is a generator of k^{*}. lere we have set $u=\left(q^{n}-1\right) /(q-1)$ for convenience. The norm-like function f, being a homomorphism on K^{*}, is completely determined by its effect on A. Thus we have $f(A)=a^{r}$ for some rational integer r. Since $a^{q-1}=1$, we may assume that $0 \leq r<q-1$. If $B \in K^{*}$, then $B=A^{c}$ and so

$$
f(B)=f(i)^{c}=\left(N_{K / k} A\right)^{r c}=\left(N_{K / k} A^{c}\right)^{r}=\left(N_{K / k} B\right)^{r} .
$$

Thus our function f is given by

$$
f(B)=\left(N_{K / k} B\right)^{r} \text { for } B \neq 0, f(0)=0
$$

So far we have used only the property $\left(N_{1}\right)$. Property $\left(N_{2}\right)$ asserts that $f(a)=$ a^{n}. Mut in our case we have

$$
f(a)=\left(N_{K / k} a\right)^{r}=a^{n r}
$$

hence $a^{n}=a^{n r}$ is a necessary and sufficient condition that f be norm-like. This is equivalent to

$$
n r \equiv n(\bmod q-1),
$$

since $k^{*}=\langle a\rangle$ is a cyclic group of $q-1$ elements.
In our next proof we shall use the following results of Chevalley [3]. Let k be a finite field of q elements, and let L denote the linear space of all n tuples $\mathbf{a}=\left(a_{1}, \cdots, a_{n}\right)$ of elements of k. Let l denote the ideal in $k\left[X_{1}, \cdots, X_{n}\right]$ of all polynomials $F(X)$ such that $F(\mathbf{a})=0$ identically on L. Then

$$
I=\left(X_{1}^{q}-X_{1}, \ldots, X_{n}^{q}-X_{n}\right)
$$

If $F(X) \in k[X]$, then there is a unique polynomial $F^{*}(X)$ such that (a) $F \equiv F^{*}(\bmod I)$ and $(\mathrm{b}) \operatorname{deg}_{X_{i}} F^{*} \leq q-1$ for each $i=1, \cdots, n$. The polynomial F^{*} is called the reduced form of F, and has degree at most that of F. Finally, if $F(\mathbf{a})=1$ for all $\mathbf{a} \neq 0$ and $F(0)=0$, then

$$
F^{*}=(-1)^{n-1}\left(X_{1}^{q-1}-1\right) \cdots\left(X_{n}^{q-1}-1\right)+1
$$

Theorem 5. Let k be a finite field and let $[K: k]=n$. Suppose that f is a norm-like function on K into k, and that f is also a polynomial function of degree at most n. Then $f=N_{K / k}$.

Proof. As before, we let q be the number of elements of k, and we may apply Theorem 4. If $q=2$, we clearly have $f=N_{K / k}$ since

$$
f(0)=0=N_{K / k} 0 ;
$$

whilst if $A \neq 0$, then $f(A) \neq 0$, and hence

$$
f(A)=1=N_{K / k} A
$$

We may henceforth assume that $q>2$.
Next, let $\omega_{1}, \cdots, \omega_{n}$ be a basis of K / k, and let $N(X)$ be the general norm of K / k with respect to this basis. By hypothesis, there exists a polynomial $F(X)$ of degree at most n such that

$$
f(A)=F\left(a_{1}, \cdots, a_{n}\right) \text { for all } A=\sum a_{i} \omega_{i}
$$

Suppose that the second alternative of Theorem 4 is the case. Then

$$
f(0)=0 \text { and } f(A)=1 \text { for all } A \neq 0
$$

This implies that

$$
F^{*}=(-1)^{n-1}\left(X_{1}^{q-1}-1\right) \cdots\left(X_{n}^{q-1}-1\right)+1
$$

and so

$$
(q-1) n=\operatorname{deg} F^{*} \leq \operatorname{deg} F=n
$$

Hence $q-1 \leq 1, q=2$. We have already ruled out this possibility.
Finally suppose that $f=\left(N_{K / k}\right)^{r}$, where $1 \leq r<q-1$. We set

$$
G(X)=F(X)[N(X)]^{q-1-r},
$$

and have $G(0)=0$. If $\mathbf{a} \neq 0$, then

$$
A=\sum a_{i} \omega_{i} \neq 0
$$

and

$$
G(\mathbf{a})=f(A)\left(N_{K / k} A\right)^{q-1-r}=\left(N_{K / k} A\right)^{q-1}=1
$$

This implies that

$$
G^{*}=(-1)^{n-1}\left(X_{1}^{q-1}-1\right) \cdots\left(X_{n}^{q-1}-1\right)+1 ;
$$

hence

$$
(q-1) n=\operatorname{deg} G^{*} \leq \operatorname{deg} G \leq n+(q-1-r) n=(q-r) n,
$$

so that

$$
q-1 \leq q-r, r \leq 1, r=1
$$

We are left with the single possibility $f=N_{K / k}$, as desired.
It is worth noting that the proof can still be pushed through under the weaker assumption that f is a polynomial function of degree at most $2 n-1$. However, the most interesting case is that in which f is a homogeneous polynomial function of degree n.
4. Conjecture. It would be interesting to prove Theorem 3 under weakened conditions. We make the following definition.

Definition 3. Let L be an n-dimensional linear space over a field k. A function f on L to k will be called an algebraic function if there is a basis x_{1}, \cdots, x_{n} of L and a polynomial

$$
F\left(X_{0}, X_{1}, \cdots, X_{n}\right) \in k[X]
$$

such that $F(X) \neq 0$, and such that whenever $x=\sum a_{i} x_{i}$ then

$$
F\left(f(x), a_{1}, \cdots, a_{n}\right)=0
$$

Our conjecture is the following.

If k is an infinite field, $[K: k]=n$, and f is an algebraic norm-like function on K into k, then $f=N_{K / k}$.

References

1. E. Artin, Remarques concernant la théorie de Galois, Collogues Internationaux C.N.R.S., XXIV, 1950, pp. 161-162.
2. N. Bourbaki, Algèbra, Hermann, Paris, Chapter 5.
3. C. Chevalley, Démonstration d'une hypothèse de M. Artin, Abh. Math. Sem. Univ. Hamburg, 11 (1935), 73-75.
4. B. van der Waerden, Moderne Algebra I, Ungar, New York, 1948.
5. H. Weyl, Algebraic theory of numbers, Princeton, 1940.

[^0]: ${ }^{1}$ A somewhat different characterization is given in [1].

