A NOTE ON THE DIMENSION THEORY OF RINGS

A. Seidenberg

1. Introduction. Let O be an integral domain. If in O there is a proper chain

$$
(0) \subset P_{1} \subset P_{2} \subset \cdots \subset P_{n} \subset(1)
$$

of prime ideals, but no such chain

$$
(0) \subset P_{1}^{\prime} \subset \cdots \subset P_{n+1}^{\prime} \subset(1),
$$

then O will be said to be n-dimensional. Let O be of dimension n : the question is whether the polynomial ring $O[x]$ is necessarily $(n+1)$-dimensional. Here, as throughout, x is an indeterminate.

By an F-ring we shall mean a 1 -dimensional ring O such that $O[x]$ is not 2 dimensional (i.e., the proposed assertion that $O[x]$ is necessarily 2 -dimensional fails). Given an F-ring, we try by definite constructions to pass to a larger F ring having the same quotient field: this restricts the class of rings in which to look for an F-ring-a priori we do not know they exist. In this way we also come (in Theorem 8 below) to a complete characterization of F-rings: if O is 1 -dimensional, then $O[x]$ is 2-dimensional if and only if every quotient ring of \bar{O}, the integral closure of O, is a valuation ring. The rings \bar{O} thus coincide (for dimension 1) with Krull's Multiplikationsringe [5; p.554].
2. Preliminary results. The first five theorems are of a preparatory character, and the proofs offer no difficulties.

Theorem l. Let O be an arbitrary commutative ring with $1, P_{1}, P_{2}, P_{3}$ distinct ideals in $O[x]$. If $P_{1} \subset P_{2} \subset P_{3}$, and P_{2} and P_{3} are prime ideals, then P_{1}, ${ }^{\mathrm{D}}{ }_{2}, P_{3}$ cannot have the same contraction to O.

Proof. Let

$$
P_{1} \cap O=P_{2} \cap O=p
$$

Received May 15, 1952.
Pacific J. Math. 3 (1953), 505-512
and consider

$$
O[x] / P_{2}=\bar{O}[\bar{x}],
$$

where \bar{x} is the residue of x and $\bar{O} \simeq O / p$. Since

$$
\bar{O}[x] \cdot p \subseteq P_{1} \subset P_{2},
$$

\bar{x} is algebraic over the integral domain \bar{O}. Let \bar{P}_{3} be the image of P_{3}; then $\bar{P}_{3} \neq$ (0); but also $\bar{P}_{3} \cap \bar{O} \neq(0)$. In fact, let $\gamma \in \bar{P}_{3}, \gamma \neq 0$. Then

$$
c_{0} \gamma^{n}+c_{1} \gamma^{n-1}+\cdots+c_{n}=0
$$

for some $c_{i} \in \bar{O}, c_{n} \neq 0$; and $c_{n} \in \bar{P}_{3} \cap \bar{O}$. Hence also $P_{3} \cap O \neq p$,
Corollary. If O is 1-dimensional, and P_{1}, P_{2}, P_{3} are distinct prime ideals in $O[x]$ different from (0) with $P_{1} \subset P_{2} \subset P_{3}$, then $P_{1} \cap O=(0), P_{2}$ is the extension of its contraction to O, and P_{3} is maximal.

Proof. If $P_{1} \cap O \neq(0)$, then P_{1}, P_{2}, P_{3} would all have to contract to the same maximal ideal in O. So

$$
P_{1} \cap O=(0) \text { and } P_{2} \cap O=p \neq(0) .
$$

Were $O[x] \cdot p \subset P_{2}$ properly, then, since $O[x] \cdot p$ is prime,

$$
O[x] \cdot p \cap O=(0),
$$

whereas

$$
O[x] \cdot p \cap O=p .
$$

So $O[x] \cdot p=P_{2}$. Were P_{3} not maximal, we would have $P_{2} \cap O=(0)$.
For the foregoing theorem, see also [4; Th. 10, p. 375].
Theorem 2. If O is n-dimensional, then $O[x]$ is at least $(n+1)$-dimensional and at most $(2 n+1)$-dimensional.

Proof. Let

$$
(0) \subset P_{1} \subset P_{2} \subset \cdots \subset P_{n} \subset(1)
$$

be a proper chain of prime ideals in O. Then

$$
(0) \subset O[x] \cdot P_{1} \subset O[x] \cdot P_{2} \subset \cdots \subset O[x] \cdot P_{n} \subset(1)
$$

is also a proper chain of prime ideals in $O[x]$; and $O[x] \cdot P_{n}$ is not maximal, since, for example,

$$
O[x] \cdot P_{n} \subset\left(O[x] \cdot P_{n}, x\right) \subset(1)
$$

(Here, as throughout, we use the symbol \subset for proper inclusion.) Hence $O[x]$ is at least ($n+1$)-dimensional. Let now O be n-dimensional, and consider a chain

$$
(0) \subset P_{1}^{\prime} \subset \cdots \subset P_{m}^{\prime} \subset(1)
$$

of prime ideals in $O[x]$. Let there be s distinct ideals among the contractions

$$
(0) \cap O, P_{1}^{\prime} \cap O, \cdots, P_{m}^{\prime} \cap O
$$

Then

$$
m+1<2 s \leq 2(n+1), \text { so } m \leq 2 n+1
$$

Theorem 3. If O is n-dimensional but $O[x]$ is not ($n+1$)-dimensional, then for at least one minimal prime ideal p of O either the quotient ring O_{p} is an F-ring or O / p is m-dimensional and $O / p[x]$ is not ($m+1$)-dimensional, and $m<n$.

Proof. Suppose that for some minimal prime ideal p of $O, O[x] \cdot p$ is not minimal in $O[x]$; that is, there exists a prime ideal P such that

$$
(0) \subset P \subset O[x] \cdot p
$$

Then

$$
(0) \subset O_{p}[x] \cdot P \subset O_{p}[x] \cdot p
$$

is also a chain of prime ideals in $O_{p}[x]$, as one easily verifies. Since $O_{p}[x] \cdot p$ is not maximal, this shows that O_{p} is an F-ring. We pass then to the case that $O[x] \cdot p$ is minimal for every minimal prime ideal p of O. Let

$$
(0) \subset P_{1}^{\prime} \subset \cdots \subset P_{n+2}^{\prime} \subset(1)
$$

be a chain of prime ideals in $O[x]$. If

$$
P_{1}^{\prime} \cap O=p \neq(0)
$$

then O / p is at most $(n-1)$-dimensional, and $O[x] / O[x] \cdot p$ is a polynomial ring in one variable over O / p and is at least $(n+1)$-dimensional. So we must suppose

$$
P_{1}^{\prime} \cap O=(0)
$$

but then

$$
P_{2}^{\prime} \cap O=p_{2} \neq(0)
$$

let p be a minimal prime ideal contained in p_{2} - such exists since O is finite dimensional; then $O[x] \cdot p \subset P_{2}^{\prime}$, properly, since $O[x] \cdot p$ is minimal but P_{2}^{\prime} is not. Replacing P_{1}^{\prime} by $O[x] \cdot p$, we come back to a previous case, and the proof is complete.

Corollary. If (is an F-ring, then so is some quotient ring of O.
The foregoing theorem shows that if for some n there exists a ring O which is n-dimensional, while $O[x]$ is not $(n+1)$-dimensional, then there exist F-rings. Thus we may provisionally confine our attention to 1 -dimensional rings O.

Theorem 4. If O is l-dimensional, and O is a valuation ring, then $O[x]$ is 2-dimensional.

Proof. Let p be a proper prime ideal of O, and let

$$
(0) \subset P \subseteq O[x] \cdot p
$$

where P is prime. Let

$$
f(x) \in P, \quad f(x) \neq 0
$$

Then one can factor out from $f(x)$ a coefficient of least value, that is, write

$$
f(x)=c \cdot g(x)
$$

where $c \in p$, and $g(x)$ has at least one coefficient equal to 1 ; in particular, then $g(x) \notin O[x] \cdot p$; hence $c \in P$. So $P \cap O \neq(0)$, whence

$$
P \cap O=p \quad \text { and } \quad P=O[x] \cdot p
$$

This proves that $O[x]$ is 2-dimensional (see Corollary to Theorem l).

Theorem 4 restricts the size of an F-ring, since a maximal ring is a valuation ring. The following theorem reduces the considerations to integrally closed rings.

Theorem 5. Let \bar{O} be the integral closure of the integral domain O. Then O is an F-ring if and only if \bar{O} is an F-ring.

Proof. Let R be an integral domain integrally dependent on O; a basic theoem of Krull (see, for example, [2; Th. 4, p. 254]) says that if $P_{1} \subset P_{2}$ are prime ideals in R, then they contract to distinct prime ideals in O; hence $\operatorname{dim} R \leq \operatorname{dim} O$. Another theorem (loc. cit., p. 254) says that if $p_{1} \subset p_{2}$ are prime ideals in O, and p_{1} is a prime ideal in R contracting to p_{1}, then there exists a prime ideal P_{2}, $P_{2} \supset P_{1}$, contracting to p_{2}. Hence $\operatorname{dim} R \geq \operatorname{dim} O$, and so $\operatorname{dim} R=\operatorname{dim} O$. Hence \bar{O} is 1 -dimensional if and only if O is 1 -dimensional, and $\bar{O}[x]$ is 2 -dimensional if and only if $O[x]$ is 2 -dimensional.

Thus if there exist l-rings, then there exist integrally closed F-rings, and, taking an appropriate quotient ring, we see that there would exist an integrally closed f-ring O having just one proper prime ideal. In view of Theorem 4 (and the close association of integrally closed rings with valuation rings) one may ask whether an integrally closed ring with only one proper prime ideal is necessarily a valuation ring. Were it so, there would be no F-rings, but it is not so: Krull has an example [$6 ; \mathrm{p} .670 \mathrm{f}$]. W'or convenience, we may mention the example: let K be an algebraically closed field, x and y indeterminates; O consists of the rational functions $r(x, y)$ which, when written in lowest terms, have denominators not divisible by x, and which are such that $r(0, y) \in K$.
3. Principal results. We now establish:

Theorem 6. If O is integrally closed with only one maximal ideal p, a an element of the quotient field of O, and $1 / a \notin O$, then $O[\alpha] \cdot p$ is prime. If also $\alpha \notin O$, then $O[\alpha] \cdot p$ is not maximal.

Proof. We first observe that

$$
(O[\alpha] \cdot p, \alpha) \neq(1)
$$

as an equation

$$
1=c_{0}+c_{1} \alpha+\cdots+c_{s} \alpha^{s} \quad\left(c_{0} \in p, c_{i} \in O\right)
$$

leads to an equation of integral dependence for $1 / \alpha$ over O. Let now $g(x) \in$ $O[x]$ be a monic polynomial of positive degree. We may assume, trivially, that $a \notin O$; then $g(a)=c \in O$ is impossible, as $g(\alpha)-c=0$ would be an equation of integral dependence for α over O; in particular, $g(\alpha) \neq 0$. Also $l / g(a) \notin$ O, for if it were in O, it would be a nonunit in O, and hence would be in p, so that

$$
1 \in g(\alpha) \cdot p \subseteq O[\alpha] \cdot p
$$

and this is not so. By the result on α,

$$
(O[g(\alpha)] \cdot p, g(\alpha)) \neq(1)
$$

Since α satisfies $g(x)-g(\alpha)=0, O[\alpha]$ is integral over $O[g(\alpha)]$; over any prime ideal in $O[g(\alpha)]$ containing $(O[g(\alpha)] \cdot p, g(\alpha))$, there lies a prime ideal in $O[\alpha]$, hence

$$
(O[\alpha] \cdot p, g(\alpha)) \neq(1)
$$

Since $1+g(x)$ is monic of positive degree, also

$$
(O[\alpha] \cdot p, 1+g(\alpha)) \neq(1) .
$$

This shows that $g(\alpha) \notin O[\alpha] \cdot p$, a conclusion that also holds if $g(x)$ is of degree zero; that is, $g(x)=1$.

We now prove that under the homomorphism $g(x) \longrightarrow g(\alpha)$ of $O[x]$ onto $O[\alpha]$, the inverse image of $O[\alpha] \cdot p$ is $O[x] \cdot p$; this will complete the proof, as $O[x] \cdot p$ is prime but not maximal. Let, then,

$$
g(x) \in O[x], g(x) \notin O[x] \cdot p
$$

We write

$$
g(x)=g_{1}(x)+g_{2}(x),
$$

where $g_{2}(x) \in O[x] \cdot p$ and no coefficient of $g_{1}(x)$ is in p; in particular, this is so for the leading coefficient c. Then $g_{1}(\alpha) / c \notin O[\alpha] \cdot p$, since $g_{1}(x) / c$ is monic. A fortiori, $g_{1}(\alpha) \notin O[\alpha] \cdot p$, whence also $g(\alpha) \notin O[\alpha] \cdot p$.

Corollary. In the case $\alpha \notin O$, if $g(x) \in O[x]$ and $g(\alpha) \in O[\alpha] \cdot p$, then $g(x) \in O[x] \cdot p$.

Theorem 7. Let O be an integrally closed integral domain, p a proper ideal therein, a an element in the quotient-field of O, but a $\notin O_{p}, 1 / a \notin O_{p}$. Then $O[a] \cdot p$ is prime but not maximal; in fact,

$$
O[\alpha] \cdot p \cap O=p \text { and } O[\alpha] / O[\alpha] \cdot p \simeq O / p[x]
$$

Proof. We know that $O_{p}[\alpha] \cdot p$ is prime, and

$$
O_{p}[\alpha] \cdot p \cap O[\alpha]=O[\alpha]=O[\alpha] \cdot p
$$

by the last corollary (and the fact that $O_{p} \cdot p \cap O=p$). Hence $O[\alpha] \cdot p$ is prime. Also here, as in the corollary, we have that if $g(x) \in O[x]$ and $g(\alpha) \in O[\alpha]$. p, then $g(x) \in O[x] \cdot p$; the required isomorphism follows at once.

Theorem 7 is known in the case that O is a finite discrete principal order [3, $\S 49, \mathrm{p} .134-136]$. The class of rings dealt with in the theorem includes this class properly; for example, the ring O of the example of Krull is not a finite discrete principal order, as $x y^{\rho} \in O$ for all ρ, but $\gamma \notin O$.

Theorem 8. If O is 1-dimensional, then $O[x]$ is 2-dimensional if and only if every quotient ring of the integral closure of O is a valuation ring.

Proof. By Theorem 5, we may assume O to be integrally closed. If O is an F-ring, then so is one of its quotient rings (Theorem 3, Corollary). This quotient ring is not a valuation ring (Theorem 4). Conversely, suppose some quotient ring $O_{1}=O_{p}$ is not a valuation ring. Let α be an element of the quotient field of O_{1} such that $\alpha \notin O_{1}$ and $\alpha^{-1} \notin O_{1}$. Then $O_{1}[\alpha]$ is at least 2 -dimensional, by Theorem 6 , and $O_{1}[x]$ is at least 3 -dimensional, as one sees by considering the homomorphism of $O_{1}[x]$ onto $O_{1}[\alpha]$ determined by mapping x into α. So O_{1} is an F-ring. Thus $O_{p}[x] \cdot p$ is not minimal in $O_{p}[x]$, and it follows at once that $O[x] \cdot p$ is not minimal in $O[x]$, whence O is an F-ring.

Let O be the ring of Krull's example above, and let X be an indeterminate. The single prime ideal p in O is constituted by the rational fractions $r(x, y)$ which, when written in lowest terms, have numerator divisible by x, i.e., are of the form $x g(x, y)$, where $g(x, y) \in K[x, y]$. The polynomials in $O[X]$ which vanish for $X=y$ form a prime ideal, different from (0) since $x X-x y$ is in it, properly contained in $O[X] \cdot p$.

The following theorem is well known [4, Th. 13, p.376].
Theorem 9. If O is a Noetherian ring of dimension n, then $O[x]$ is ($n+1)$ dimensional.

Proof. Taking a quotient ring or residue class does not destroy the Noetherian character of O, so by Theorem 3 we may suppose O is 1 -dimensional. Let then p be a proper prime ideal in O. Then $O[x] \cdot p$ is minimal for every principal ideal $O[x] \cdot(a)$, where $a \in p, a \neq 0$, so by the Principal Ideal Theorem [3, p. 37], $O[x] \cdot p$ is minimal in $O[x]$, and $O[x]$ is 2 -dimensional by Theorem 1 , Corollary. - Instead of the Principal Ideal Theorem, one could use instead that the integral closure \bar{O} is also Noetherian (see, for example, [1, Th. 3, p.29]; see also $[3, \S 39, p .108])$. Neither proof makes use of the full force of the quoted theorems, so it might be of some interest to find a direct proof using less technical means.

Note. In a forthcoming paper we will show that if O is a 1 -dimensional ring
such that $O[x]$ is 2 -dimensional, then $O\left[x_{1}, \cdots, x_{n}\right]$ is $(n+1)$-dimensional. Theoren 2 , above, will also be completed by examples showing that for any m, n with $n+1 \leq m \leq 2 n+1$, there exist n-dimensional rings such that $O[x]$ is m dimensional.

References

1. I. S. Cohen, Commutative rings with restricted minimum condition, Duke Math. J. 17 (1950), 27-42.
2. I. S. Cohen and A. Seidenberg, Prime ideals and integral dependence, Bull. Amer. Math. Soc. 52 (1946), 252-261.
3. W. Krull, Idealtheorie, Ergebnisse der Mathematik und ihrer Grenzgebiete, 4, no.3, Berlin, 1935.
4. , Jacobsonsche Ringe, Hilbertscher Nullstellensatz, Dimensionstheorie, Math. Z. 54 (1951), 354-387.
5. \qquad , Beiträge zur Arithmetik kommutativer Integritätsbereiche, I. iiultiplikationsringe, ausgezeichnete Idealsysteme, Kroneckersche Funktionalringe. Math. Z. 41 (1936), 545-577.
6. ——, Beiträge zur Arithmctik kommutativer Integritätsbereiche, II. v-Ideale und vollständig ganz abgeschlossene Integritätsbereiche. Math. Z. 41 (1936), 665-679.

University of California, Berkeley.

