A NOTE ON THE DIMENSION THEORY OF RINGS A. Seidenberg

1. Introduction. Let O be an integral domain. If in O there is a proper chain

$$(0) \subset P_1 \subset P_2 \subset \cdots \subset P_n \subset (1)$$

of prime ideals, but no such chain

$$(0) \subset P'_1 \subset \cdots \subset P'_{n+1} \subset (1),$$

then O will be said to be *n*-dimensional. Let O be of dimension n: the question is whether the polynomial ring O[x] is necessarily (n + 1)-dimensional. Here, as throughout, x is an indeterminate.

By an *F*-ring we shall mean a 1-dimensional ring *O* such that O[x] is not 2dimensional (i. e., the proposed assertion that O[x] is necessarily 2-dimensional fails). Given an *F*-ring, we try by definite constructions to pass to a larger *F*ring having the same quotient field: this restricts the class of rings in which to look for an *F*-ring-a priori we do not know they exist. In this way we also come (in Theorem 8 below) to a complete characterization of *F*-rings: if *O* is 1-dimensional, then O[x] is 2-dimensional if and only if every quotient ring of \overline{O} , the integral closure of *O*, is a valuation ring. The rings \overline{O} thus coincide (for dimension 1) with Krull's Multiplikationsringe [5; p. 554].

2. Preliminary results. The first five theorems are of a preparatory character, and the proofs offer no difficulties.

THEOREM 1. Let O be an arbitrary commutative ring with 1, P_1 , P_2 , P_3 distinct ideals in O[x]. If $P_1 \,\subset P_2 \,\subset P_3$, and P_2 and P_3 are prime ideals, then P_1 , P_2 , P_3 cannot have the same contraction to O.

Proof. Let

$$P_1 \quad n \quad O = P_2 \quad n \quad O = p$$
,

Received May 15, 1952.

Pacific J. Math. 3 (1953), 505-512

and consider

$$O[x]/P_2 = \overline{O}[\overline{x}],$$

where \overline{x} is the residue of x and $\overline{O} \simeq O/p$. Since

$$O[x] \cdot p \subseteq P_1 \subset P_2$$
,

 \overline{x} is algebraic over the integral domain \overline{O} . Let \overline{P}_3 be the image of P_3 ; then $\overline{P}_3 \neq (0)$; but also $\overline{P}_3 \cap \overline{O} \neq (0)$. In fact, let $\gamma \in \overline{P}_3$, $\gamma \neq 0$. Then

$$c_0 \gamma^n + c_1 \gamma^{n-1} + \dots + c_n = 0$$

for some $c_i \in \overline{O}$, $c_n \neq 0$; and $c_n \in \overline{P}_3$ n \overline{O} . Hence also P_3 n $O \neq p$,

COROLLARY. If O is 1-dimensional, and P_1 , P_2 , P_3 are distinct prime ideals in O[x] different from (0) with $P_1 \subset P_2 \subset P_3$, then $P_1 \cap O = (0)$, P_2 is the extension of its contraction to O, and P_3 is maximal.

Proof. If $P_1 \cap O \neq (0)$, then P_1 , P_2 , P_3 would all have to contract to the same maximal ideal in O. So

$$P_1 \cap O = (0) \text{ and } P_2 \cap O = p \neq (0).$$

Were $O[x] \cdot p \in P_2$ properly, then, since $O[x] \cdot p$ is prime,

$$O[x] \cdot p \cap O = (0),$$

whereas

$$O[x] \cdot p \cap O = p.$$

So $O[x] \cdot p = P_2$. Were P_3 not maximal, we would have $P_2 \cap O = (0)$.

For the foregoing theorem, see also [4; Th. 10, p. 375].

THEOREM 2. If O is n-dimensional, then O[x] is at least (n + 1)-dimensional and at most (2n + 1)-dimensional.

Proof. Let

$$(0) \subset P_1 \subset P_2 \subset \cdots \subset P_n \subset (1)$$

be a proper chain of prime ideals in O. Then

$$(0) \subset O[x] \cdot P_1 \subset O[x] \cdot P_2 \subset \cdots \subset O[x] \cdot P_n \subset (1)$$

506

is also a proper chain of prime ideals in O[x]; and $O[x] \cdot P_n$ is not maximal, since, for example,

$$O[x] \cdot P_n \subset (O[x] \cdot P_n, x) \subset (1).$$

(Here, as throughout, we use the symbol \subset for proper inclusion.) Hence O[x] is at least (n + 1)-dimensional. Let now O be *n*-dimensional, and consider a chain

$$(0) \in P'_1 \subset \cdots \in P'_m \subset (1)$$

of prime ideals in O[x]. Let there be s distinct ideals among the contractions

(0)
$$n O, P'_{1} n O, \dots, P'_{m} n O.$$

Then

$$m+1 < 2s \leq 2(n+1)$$
, so $m \leq 2n+1$.

THEOREM 3. If O is n-dimensional but O[x] is not (n + 1)-dimensional, then for at least one minimal prime ideal p of O either the quotient ring O_p is an F-ring or O/p is m-dimensional and O/p[x] is not (m + 1)-dimensional, and m < n.

Proof. Suppose that for some minimal prime ideal p of O, $O[x] \cdot p$ is not minimal in O[x]; that is, there exists a prime ideal P such that

$$(0) \subset P \subset O[x] \cdot p.$$

Then

$$(0) \subset O_p[x] \cdot P \subset O_p[x] \cdot p$$

is also a chain of prime ideals in $O_p[x]$, as one easily verifies. Since $O_p[x] \cdot p$ is not maximal, this shows that O_p is an *F*-ring. We pass then to the case that $O[x] \cdot p$ is minimal for every minimal prime ideal *p* of *O*. Let

$$(0) \subset P'_1 \subset \cdots \subset P'_{n+2} \subset (1)$$

be a chain of prime ideals in O[x]. If

$$P'_1 \cap O = p \neq (0),$$

then O/p is at most (n-1)-dimensional, and $O[x]/O[x] \cdot p$ is a polynomial ring in one variable over O/p and is at least (n + 1)-dimensional. So we must suppose

A. SEIDENBERG

$$P'_{1} \cap O = (0);$$

but then

$$P'_{2} \cap O = p_{2} \neq (0);$$

let p be a minimal prime ideal contained in p_2 -such exists since O is finite dimensional; then $O[x] \cdot p \in P'_2$, properly, since $O[x] \cdot p$ is minimal but P'_2 is not. Replacing P'_1 by $O[x] \cdot p$, we come back to a previous case, and the proof is complete.

COROLLARY. If O is an F-ring, then so is some quotient ring of O.

The foregoing theorem shows that if for some *n* there exists a ring O which is *n*-dimensional, while O[x] is not (n + 1)-dimensional, then there exist *F*-rings. Thus we may provisionally confine our attention to 1-dimensional rings O.

THEOREM 4. If O is 1-dimensional, and O is a valuation ring, then O[x] is 2-dimensional.

Proof. Let p be a proper prime ideal of O, and let

$$(0) \subset P \subseteq O[x] \cdot p,$$

where P is prime. Let

$$f(x) \in P$$
, $f(x) \neq 0$.

Then one can factor out from f(x) a coefficient of least value, that is, write

$$f(x) = c \cdot g(x),$$

where $c \in p$, and g(x) has at least one coefficient equal to 1; in particular, then $g(x) \notin O[x] \cdot p$; hence $c \in P$. So $P \cap O \neq (0)$, whence

$$P \cap O = p$$
 and $P = O[x] \cdot p$.

This proves that O[x] is 2-dimensional (see Corollary to Theorem 1).

Theorem 4 restricts the size of an *F*-ring, since a maximal ring is a valuation ring. The following theorem reduces the considerations to integrally closed rings.

THEOREM 5. Let \overline{O} be the integral closure of the integral domain O. Then O is an F-ring if and only if \overline{O} is an F-ring.

508

Proof. Let R be an integral domain integrally dependent on O; a basic theoem of Krull (see, for example, [2; Th. 4, p. 254]) says that if $P_1 \,\subset P_2$ are prime ideals in R, then they contract to distinct prime ideals in O; hence dim $R \leq \dim O$. Another theorem (loc. cit., p. 254) says that if $p_1 \,\subset p_2$ are prime ideals in O, and p_1 is a prime ideal in R contracting to p_1 , then there exists a prime ideal P_2 , $P_2 \supset P_1$, contracting to p_2 . Hence dim $R \geq \dim O$, and so dim $R = \dim O$. Hence \overline{O} is 1-dimensional if and only if O is 1-dimensional, and $\overline{O}[x]$ is 2-dimensional if and only if O[x] is 2-dimensional.

Thus if there exist F-rings, then there exist integrally closed F-rings, and, taking an appropriate quotient ring, we see that there would exist an integrally closed F-ring O having just one proper prime ideal. In view of Theorem 4 (and the close association of integrally closed rings with valuation rings) one may ask whether an integrally closed ring with only one proper prime ideal is necessarily a valuation ring. Were it so, there would be no F-rings, but it is not so: Krull has an example [6; p. 670f]. For convenience, we may mention the example: let K be an algebraically closed field, x and y indeterminates; O consists of the rational functions r(x, y) which, when written in lowest terms, have denominators not divisible by x, and which are such that $r(0, y) \in K$.

3. Principal results. We now establish:

THEOREM 6. If O is integrally closed with only one maximal ideal p, α an element of the quotient field of O, and $1/\alpha \notin O$, then $O[\alpha] \cdot p$ is prime. If also $\alpha \notin O$, then $O[\alpha] \cdot p$ is not maximal.

Proof. We first observe that

$$(O[\alpha] \cdot p, \alpha) \neq (1),$$

as an equation

$$1 = c_0 + c_1 \alpha + \dots + c_s \alpha^s \qquad (c_0 \in p, c_i \in O),$$

leads to an equation of integral dependence for $1/\alpha$ over O. Let now $g(x) \in O[x]$ be a monic polynomial of positive degree. We may assume, trivially, that $\alpha \notin O$; then $g(\alpha) = c \in O$ is impossible, as $g(\alpha) - c = 0$ would be an equation of integral dependence for α over O; in particular, $g(\alpha) \neq 0$. Also $1/g(\alpha) \notin O$, for if it were in O, it would be a nonunit in O, and hence would be in p, so that

$$1 \in g(\alpha) \cdot p \subseteq O[\alpha] \cdot p,$$

and this is not so. By the result on α ,

A. SEIDENBERG

$$(O[g(\alpha)] \cdot p, g(\alpha)) \neq (1).$$

Since α satisfies $g(x) - g(\alpha) = 0$, $O[\alpha]$ is integral over $O[g(\alpha)]$; over any prime ideal in $O[g(\alpha)]$ containing $(O[g(\alpha)] \cdot p, g(\alpha))$, there lies a prime ideal in $O[\alpha]$, hence

$$(O[\alpha] \cdot p, g(\alpha)) \neq (1).$$

Since 1 + g(x) is monic of positive degree, also

$$(O[\alpha] \cdot p, 1 + g(\alpha)) \neq (1).$$

This shows that $g(\alpha) \notin O[\alpha] \cdot p$, a conclusion that also holds if g(x) is of degree zero; that is, g(x) = 1.

We now prove that under the homomorphism $g(x) \longrightarrow g(\alpha)$ of O[x] onto $O[\alpha]$, the inverse image of $O[\alpha] \cdot p$ is $O[x] \cdot p$; this will complete the proof, as $O[x] \cdot p$ is prime but not maximal. Let, then,

$$g(x) \in O[x], g(x) \notin O[x] \cdot p.$$

We write

$$g(x) = g_1(x) + g_2(x),$$

where $g_2(x) \in O[x] \cdot p$ and no coefficient of $g_1(x)$ is in p; in particular, this is so for the leading coefficient c. Then $g_1(\alpha)/c \notin O[\alpha] \cdot p$, since $g_1(x)/c$ is monic. A fortiori, $g_1(\alpha) \notin O[\alpha] \cdot p$, whence also $g(\alpha) \notin O[\alpha] \cdot p$.

COROLLARY. In the case $\alpha \notin O$, if $g(x) \in O[x]$ and $g(\alpha) \in O[\alpha] \cdot p$, then $g(x) \in O[x] \cdot p$.

THEOREM 7. Let O be an integrally closed integral domain, p a proper ideal therein, a an element in the quotient-field of O, but a $\notin O_p$, $1/a \notin O_p$. Then $O[a] \cdot p$ is prime but not maximal; in fact,

$$O[\alpha] \cdot p \cap O = p$$
 and $O[\alpha]/O[\alpha] \cdot p \simeq O/p[x]$.

Proof. We know that $O_p[\alpha] \cdot p$ is prime, and

$$O_p[\alpha] \cdot p \cap O[\alpha] = O[\alpha] = O[\alpha] \cdot p$$

by the last corollary (and the fact that $O_p \cdot p \cap O = p$). Hence $O[\alpha] \cdot p$ is prime. Also here, as in the corollary, we have that if $g(x) \in O[x]$ and $g(\alpha) \in O[\alpha]$. p, then $g(x) \in O[x] \cdot p$; the required isomorphism follows at once. Theorem 7 is known in the case that O is a finite discrete principal order [3, §49, p.134-136]. The class of rings dealt with in the theorem includes this class properly; for example, the ring O of the example of Krull is not a finite discrete principal order, as $xy^{\rho} \in O$ for all ρ , but $y \notin O$.

THEOREM 8. If O is 1-dimensional, then O[x] is 2-dimensional if and only if every quotient ring of the integral closure of O is a valuation ring.

Proof. By Theorem 5, we may assume O to be integrally closed. If O is an F-ring, then so is one of its quotient rings (Theorem 3, Corollary). This quotient ring is not a valuation ring (Theorem 4). Conversely, suppose some quotient ring $O_1 = O_p$ is not a valuation ring. Let α be an element of the quotient field of O_1 such that $\alpha \notin O_1$ and $\alpha^{-1} \notin O_1$. Then $O_1[\alpha]$ is at least 2-dimensional, by Theorem 6, and $O_1[x]$ is at least 3-dimensional, as one sees by considering the homomorphism of $O_1[x]$ onto $O_1[\alpha]$ determined by mapping x into α . So O_1 is an F-ring. Thus $O_p[x] \cdot p$ is not minimal in $O_p[x]$, and it follows at once that $O[x] \cdot p$ is not minimal in O[x], whence O is an F-ring.

Let O be the ring of Krull's example above, and let X be an indeterminate. The single prime ideal p in O is constituted by the rational fractions r(x, y) which, when written in lowest terms, have numerator divisible by x, i.e., are of the form x g(x, y), where $g(x, y) \in K[x, y]$. The polynomials in O[X] which vanish for X = y form a prime ideal, different from (0) since xX - xy is in it, properly contained in $O[X] \cdot p$.

The following theorem is well known [4, Th. 13, p. 376].

THEOREM 9. If O is a Noetherian ring of dimension n, then O[x] is (n + 1)-dimensional.

Proof. Taking a quotient ring or residue class does not destroy the Noetherian character of O, so by Theorem 3 we may suppose O is 1-dimensional. Let then p be a proper prime ideal in O. Then $O[x] \cdot p$ is minimal for every principal ideal $O[x] \cdot (a)$, where $a \in p$, $a \neq 0$, so by the Principal Ideal Theorem [3, p. 37], $O[x] \cdot p$ is minimal in O[x], and O[x] is 2-dimensional by Theorem 1, Corollary. — Instead of the Principal Ideal Theorem, one could use instead that the integral closure \overline{O} is also Noetherian (see, for example, [1, Th.3, p.29]; see also [3, § 39, p.108]). Neither proof makes use of the full force of the quoted theorems, so it might be of some interest to find a direct proof using less technical means.

NOTE. In a forthcoming paper we will show that if O is a 1-dimensional ring

such that O[x] is 2-dimensional, then $O[x_1, \dots, x_n]$ is (n + 1)-dimensional. Theorem 2, above, will also be completed by examples showing that for any m, n with $n + 1 \le m \le 2n + 1$, there exist *n*-dimensional rings such that O[x] is *m*-dimensional.

References

1. I. S. Cohen, Commutative rings with restricted minimum condition, Duke Math. J. 17 (1950), 27-42.

2. I. S. Cohen and A. Seidenberg, *Prime ideals and integral dependence*, Bull. Amer. Math. Soc. 52 (1946), 252-261.

3. W. Krull, *Idealtheorie*, Ergebnisse der Mathematik und ihrer Grenzgebiete, 4, no.3, Berlin, 1935.

4. _____, Jacobsonsche Ringe, Hilbertscher Nullstellensatz, Dimensionstheorie, Math. Z. 54 (1951), 354-387.

5. ____, Beiträge zur Arithmetik kommutativer Integritätsbereiche, I. Multiplikationsringe, ausgezeichnete Idealsysteme, Kroneckersche Funktionalringe. Math. Z. 11 (1936), 545-577.

6. _____, Beiträge zur Arithmetik kommutativer Integritätsbereiche, II. v-Ideale und vollständig ganz abgeschlossene Integritätsbereiche. Math. Z. 41 (1936), 665-679.

UNIVERSITY OF CALIFORNIA, BERKELEY.