
ON GENERATION OF SOLUTIONS OF THE BIHARMONIC

EQUATION IN THE PLANE BY CONFORMAL MAPPINGS

CHARLES LOEWNER

Introduction. The study of harmonic functions in the plane is essentially

facilitated by the invariance of the Laplace equation

a d2u d2u
V = 0

dx2 dy

under the group of conformal mappings. The transformations leaving the bi-

harmonic equation

, . 4 d4u d4u d4u
(1) V4u Ξ + 2 + = 0

dx4 dx dy2 dγ4

invariant are much more restricted; they only form the group of similarity trans-

formations in the (x, y)-plane. On the other hand, more general transformations

leaving the biharmonic equation invariant may be obtained if u is not treated as

a scalar which does not change its value under the transformations, but trans-

formations of the more general type

%' = φ (x9 γ)

( 2 ) y ' = ψ(x,y)

u' = χ(χ* y)u

are permitted. We assume the functions φ, φ, and y to be four times continuously

differentiable, and X Φ 0. That such nontrivial transformations exist follows

immediately from the well-known representation of a biharmonic function u in

the form
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(3) u = hι(x, y)r2 + h2(x, y ) ,

with suitable harmonic functions hγ and h2, and r2 = x2 + y 2 . If a transformation

by reciprocal radii is applied, which in polar coordinates is given by

(4a)

and u is transformed according to the formula

(4b)

then u' becomes

(3a)

u = — u,

:'U',y')r' 2 ,

with /^ ' and A2 ' being the harmonic functions of x% y' obtained from ht and

h2 by the transformation (4a). This shows that u' is biharmonic in x* and y ' .

By combination of the transformation obtained with arbitrary similarities,

more general transformation of type (2) may be obtained. In order to write them

in a simple way we set

x + z * - x' + iy

One sees easily that the composed transformations can be written in one of the

following forms:

(5')

(5")

z '

z'

<Xz

yz

α ?

yz

+ β

+ 8'

+ β

+ S '

U

- k

dz'

dz

dz'

dz

u;

The constants Oί, β, y, δ , k are only subjected to the conditions

0, k έ 0, k real.
aβ

yδ

Each Moebius transformation in the (x9 y )-plane may, therefore, be extended to

a transformation in the {x9 y9 u)-space leaving the biharmonic equation in-

variant. The extended transformations are analogues of those introduced by
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W. Thomson in his study of the Laplace equation in 3-space.

In the first section of this paper we shall show that formulas ( 5 ' ) and ( 5 " )

represent the only transformations of type (2) leaving the biharmonic equation

invariant. They form a group M in the (x9 y, u )-space depending on seven real

parameters.

The introduction of M has the advantage that if a problem concerning the

biharmonic equation is solved for a domain B of the (x9 y)-plane, it can also

be solved for any domain B' obtained from B by a Moebius transformation. A

further advantage consists in the possibility of introducing domains having

z — oo in the interior or on the boundary. All definitions regarding the behavior

of a biharmonic function u at z = oo are obtained by using one of the transfor-

mations (5) transforming 2=00 into a finite point z*'— a'', and considering the

transformed biharmonic function u' at z*' = α ' . For example, u is called regular

at z = 00 if u' is regular at z ' = α ' . Also the concept of a biharmonic Green's

function Γ {x9 y) with the boundary conditions u — 0 and du/dn~0 requiring

that u and the normal derivative are zero on the boundary (Green's function of

the clamped plate ) may be extended to the case where the domain considered

contains z — 00 in its interior, and oc should be the pole of Γ. The singular

part of Γ, belonging to a finite pole α', is given by r ' 2 log r% r' denoting the

distance of z'*=.χ'+iy* from a'. By using a transformation (5) transforming

α ' into infinity, one obtains a biharmonic function satisfying the same boundary

conditions in the transformed domain whose singular part at z = 00 is — c log r,

with a positive constant c, and r representing the distance of z from z - 0 or

from any other fixed point of the z-plane. In order to make the definition definite

we set c = 1.

This extension of the concept of Green's function will be utilized in §2 ,

which is concerned with a question of Hadamard [3] regarding the sign of the

Green's function. He asked whether it may oscillate in sign. R. J. Duffin [ l ]

indicated that the answer is affirmative by constructing solutions of the bi-

harmonic Poisson equation

in an infinite straight strip satisfying the boundary conditions

du
u = 0, — = 0

an

which oscillate in sign although p is positive. In §2 simple examples of domains
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bounded by analytic Jordan curves are constructed in which Green's function

for suitable choice of the pole may oscillate in sign. Other examples were found

by G. Szego [4] and P. R. Garabedian [ 2 ] .

There are indications that in the exterior of a convex curve with the pole at

infinity a change of the sign of the Green's function cannot occur. In the last

part of § 2 we prove only that this conjecture is equivalent to positivity of the

harmonic function V Γ.

The fact that the biharmonic equation is absolutely invariant only under the

group of similarities does not exclude the possibility that for an individual bi-

harmonic function u other conformal mappings exist which transform u into a new

biharmonic function. Indeed, we shall show in § 1 that in general there exists a

one-parameter family of conformal mappings which are not similarities and which

transform u into biharmonic functions. In particular one can construct in this

way from one Green's function a one-parameter family of Green's functions of

nonsimilar domains. (Only the case of a circle has to be excluded here.) This

also will be discussed in § 1 and applied in § 2.

1. Transformations of biharmonic functions. We shall prove that the trans-

formations of type (2) leaving the biharmonic equation invariant form the group

M described by equations (5) . All transformations are assumed to be one-to-one

and four times continuously differentiate, and the Jacobian shall never vanish.

We make use of the well-known fact that the biharmonic equation is the

Euler-Lagrange equation of the variational problem

( 6 ) δ ff (V2u)2 dx dy = 0.

If the integral of ( 6 ) is subjected to a transformation of type ( 2 ) , an integral in

the (%' y')-plane must be obtained whose Euler-Lagrange equation must again

be the biharmonic equation

v'V=o.

The new integrand is a quadratic expression in the second derivatives of u' with

respect t o x ' and y'9 and the second degree terms are evidently given by

(7) λ
X2

xy\Ud2u' \(dx'\2 (d*'\]

)2u' \dx' dy' dx' dy'Λ d u'

'dy' L dx dx dy dy J Λy'2
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/ being the Jacobian of the transformation from the (x% y ')-plane into the

(x9 y)-plane.

Already from the expression ( 7 ) one can derive the fourth order terms of the

Euler-Lagrange equation, which by assumption is again the biharmonic equation.

This leads by a simple computation to the equations

dy I \dx I \ dy

dx' dy' dx' dy'
— + — = 0,

dx dx dy dy

and we see that the mapping must be conformal.

In order to obtain further conditions on the transformation, we specialize u

to an arbitrary harmonic function of x and y. Since it is then also a harmonic

function of x' and y', we have

π / 2 . π /2 f dy du dy du \

I (9%' (9%' d y ' d y ' J

and further,

dx dx dy dy

d\ d2u d\ d2uf dzγ dλu d\ dλu dzy dzu 1
+ 4 £ + 2 2 — + .

l a % ' 2 a,; ' 2 dx'dy' dx'dy' dy'* <9y'2 J

/ 2/ 2

Since V w = 0 represents the only relation between the derivatives oί u'

with respect to x* and y' up to the second order, we may conclude.from ( 9 " ) that

d\ d2χ d2χ

do) — - = —(L , — i — = o.

dx'2 dy'2 dx'dy'

The only functions satisfying these conditions are those of the form

(11') x = co(x'2 + y'2) + 2cιX'+ 2 c 2 y ' + c 3

( c O s Cι j c2> c3 arbitrary constants ) .
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Application of the same considerations to the inverse transformation leads to a

similar formula for the reciprocal of y:

(11") 1 = co'(x2 + y2) + 2c/x + 2c 2 'y + c3 ' ,
X

with suitable constants c o ' $ cx'9 c2'9 c 3 ' . Consider now first the case of a

nonconstant y . According to (110 and (11") , the level lines of y are in both

planes systems of concentric circles each of which may degenerate into a sys-

tem of parallel lines. But a conformal mapping transforming such systems into

each other must be, as is well known, a proper or improper Moebius transforma-

tion.

In the case of a constant y we may proceed as follows: We compose the

transformation with one of the transformations (5) having a nonconstant y , and

apply to the composed transformation the previous result saying that now the

(x, y )-plane is subject to a Moebius transformation. Using the group property

of the Moebius transformation, we conclude that also the original transformation

of the (x, y\-plane is a Moebius transformation.

We now have to investigate how the coefficients C{ in y depend on the

Moebius transformation to which the (x, y)-plane is subjected. Since we already

know the transformations (5), it is sufficient to consider only the identity

transformation. We know already that y must have the form

X = co(x2 + y2) + 2cxx + 2c2y + c 3 ,

and multiplication of any biharmonic function u by y must again lead to a bi-

harmonic function. Setting

u = x2 + y2

gives immediately the result c0 = 0. Setting further

/ 0 9\ / 2 2\

u = x\x + y ) or u = y\x + y )

gives then Cγ — c2 — 0, and we see that y must be a constant. We have thus

arrived at:

THEOREM 1. The most general transformations of type (2) which leave the

biharmonic equation invariant are represented by formulas (5 7 ) and ( 5 " )

As was already mentioned in the introduction, there exist in general for an
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individual biharmonic function u (x9 γ) conformal mappings which are not simi-

larities, and which transform u again into a biharmonic function. In order to

derive them we make use of the well-known Goursat representation of a bi-

harmonic function,

(12) u = K { 7 p U ) + q(z)\,

where p(z) and q (z) are analytic functions of z = x + iy, and the symbol 3ί in-

dicates the real part of the quantity in parentheses. The representation is

unique modulo a change of p and q into

(13) p = p + a + icz9 q — q — az + id

(a9 c, d constants, c and d rea l ) .

We write further the Laplacian in the more convenient form

2
(14) V a = 4

d z d z

Without loss of generality we may restrict our attention to proper conformal

mapping. Let

(15) z ' = / U )

be such a mapping transforming u into a biharmonic function in the (z'= ac' + iy')-

plane. We have

dz^ dz_ _ idp_ dz_ £^__\ f\^P_ £L\
V dz' dΊ' " \dz dz' dΊ'\~ Adz' d~z~Λ

d2u _ d2u dz dz idp dz £^\ f\^P £L

dz'dV " dzdV

and

dz

and, therefore,

%£\

f d2p d*7\
(16) Si - = 0.

Ir fz ' 2 c/S"'2-1
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Excluding now the trivial case of linear mappings characterized by

d2z
0,

dz'2

we conclude from (16) that

(17) = ic (c a real constant),

dz'2 dz'2

and hence

(18) p - icz + (X z ' + /3 (&,j3 constants ) .

We may exclude also the possibility (X = 0, since then p = icz + β and according

to (12) our function u is harmonic. But in this case (15) may be any conformal

mapping. If Cί Φ 0 we have

( 1 9 ) z' = a(p — icz ) + b (a9 b? c constants , a Φ 0, c r e a l ) .

We have thus arrived at:

THEOREM 2°, A proper conformal mapping transforming a given biharmonic

but not harmonic function u with the Goursat representation (12) again into a

biharmonic function is either a similarity or one of the transformations (19).

REMARK 1. For the functions u with constant Laplacian V u, the mappings

(19) coincide with the similarity mappings, and these are the only biharmonic

functions of this type.

REMARK 2. By combination of the transformations (19) with transformations

of type (5), more general mappings may be obtained transforming u into a bi-

harmonic function.

2. A question of Hadamard regarding the sign of Green's function of the

clamped plate. As was already discussed in the introduction, Hadamard asked

whether Green's function of the clamped plate may change its sign. We shall

construct here very elementary examples showing that this is the case. In order

not to interrupt further considerations, we shall first derive several simple

lemmas which will be used in our constructions.

Consider first a finite domain B, and let Γ ( z l s z2 ) be its biharmonic
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Green's function now considered as function of a pair of points z± and z2 in B.

Because of the well-known symmetry

z2 ) =

it is irrelevant which of the points is considered as pole. We have:

LEMMA 1. For any choice of m points z l y z2, , zm in B, the determinant

(20)

satisfies

D =

ϊ9 z2 ) , • • • , Γ(zl9

(z29 , z2), , zm)

), Γ ( z m , z 2 ) ,

D > 0 .

This is an immediate consequence of the well-known fact that Γ ( z l s z2 )

represents a positive definite kernel.

In particular, Γ ( α s a) >̂  0; but the equality sign cannot hold since then

the inequality

Γ(a9 a) Γ(a> z)

Γ(z,a) Γ U , z)

= - Γ 2 ( α s z) > 0

would lead to Γ (α> z) = 0 for all 2: in B, which is evidently impossible. We

have, therefore:

LEMMA 2. For all points z in B9 we have

(21) Γ ( z , z) > 0.

We assume now 5 to contain 00 in its interior, and state, for its Green's

function with the pole at infinity, which we will call Γ (z ):

XIt is, for example, sufficient to assume the boundary of B to be three times con-
tinuously differentiable to ensure the existence of Γ.

2Hadamard ascribes the first proof of inequality (21) to M. Boggio. His formula for
the variation of Γ ( z , 2) on p. 28 of the already quoted paper also implicitly contains
a proof.
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LEMMA 3. Γ ( z ) can be represented in the neighborhood of z — oo in the

form

(22) Γ ( z ) = - l o g r + aor
2 + 2a xx + 2a2y + Γι(z)

(r = \z\9 α 0 > ai9 a2 constants ) ,

with a remainder Γ t bounded in the neighborhood of z = oo, and the constant

a0 is positive.

Proof. If we apply to Γ(z) the transformation (5 ' ) corresponding t o z ' = 1/z,

Γ ( z ) changes into Green's function Γ ' ( z ' ) of the transformed domain B' with

the pole in z ' = 0. But for Γ ' we have

Γ ' ( z ' ) = r / 2 l o g r ' + α 0 + 2aιX' + 2027' + . . . ,

the dots indicating quantities of at least second order. The constant a0 is

positive by Lemma 2. Transforming back, we obtain the contents of Lemma 3.

We introduce now the Goursat representation of Γ, writing it in the form

(23) Γ(z) = SίiFpU)} - h,

where p(z) is analytic and h harmonic.3 From Lemma 3 we can easily con-

clude that the free constants in the choice of p and h can be selected so that

the following conditions are satisfied:

( a ) The function p(z) has at infinity a simple pole with a positive p'(oo).

(b) The function h differs from log r by a harmonic function in B, regular

also at infinity.

By the c o n d i t i o n s ( a ) and ( b ) , the f u n c t i o n s p a n d h a r e u n i q u e l y deter-

m i n e d .

We s h a l l now d e r i v e properties of p(z) characterizing it independently of h.

We use the analytic function

dh
w(z) = 2 — .

dz

8 W e a s s u m e f rom n o w o n t h a t B i s s i m p l y c o n n e c t e d , i n w h i c h c a s e ρ{z) i s a l w a y s

s i n g l e - v a l u e d .
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Its expansion at infinity starts with the term 1/z. From (23) and the boundary

conditions satisfied by Γ we conclude that, on the boundary of B,

dΓ 1
(24 0 = = -

dz 2

dp ) dh

dz 1 dz

This equation evidently completely expresses the boundary conditions on Γ

modulo an additive constant. We have proved, therefore:

LEMMA 4 . The function p(z) is characterized by the two properties:

( a ) It has at infinity a simple pole with a positive derivative p ' (oo).

(b) The function

dp _

dz

coincides on the boundary of B with a function which is analytic in B and whose

expansion at oo starts with 1/z.

We know from Theorem 2 that p(z ) maps our domain B onto a domain Bγ (not

necessarily schlicht) with preservation of the Green's function with pole at

infinity. In order to bring Lemma 4 into a form in which B and Bx play a sym-

metric role? we introduce the function z = g (ζ) which maps the exterior of the

unit circle | ζ\ - 1 onto B so that

(25) g(cc) = oo, g'(oo) > 0.

In a similar way,

/ ( £ ) = p(g(ζ))

maps the exterior of | ζ\ = 1 onto the domain Bγ, and we have again

(25) /(oc) = oo, / '(oc) > 0.

Lemma 4 can now be expressed by saying that

df dζ

Ίζlz"

coincides on | ζ\ = 1 with the boundary values of a function analytic in | ζ\ > 1
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whose Taylor expansion at infinity starts with the term (g'(oc)ζ)~ l Multi-

plication with dz/dζ leads, therefore, to:

LEMMA 5. The function f(ζ) is characterized by the following properties :

(a ) It is analytic in \ ζ\ > 1 and has at infinity a simple pole with /'(oo) > 0.

(b) The function

< » ,

coincides on \ζ\ — 1 with the boundary values of a function ω(ζ) analytic in

I ζ\ > 1 whose expansion at infinity starts with the term 1/ζ.

As soon as fiζ) is determined, it is easy to construct the Green's function

by using equation (24). It gives, after transformation into the £-plane,

dh
(27) 2—=ω(ζ) ( | £ I > 1 ) .

dζ

An integration of cΰ(ζ) determines h modulo an additive constant which is to be

adjusted to the boundary condition Γ = 0.

Lemma 5 will now be utilized to find simple examples of domains whose

Green's function oscillates in sign. The simplest choice of g(ζ) one might try

would be

ζ+— ( | j 8 i | < l ) ,

which maps | ζ\ > 1 onto the exterior of an ellipse or, in the limiting case

I βi I = 1» onto a slit domain. In this case, one verifies easily that

and a simple computation gives, for Γ written as function of ζ, the expression

(29) Γ= \ L2 1 - 1 - 1 + β t β λ - l o g p , ( | C | = p , p > 1 ) .
2(l + βιβi) \ p 2 J

But one verifies easily that Γ is here always positive. We try, therefore,
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for g(ζ) an expression4

βι β2
(30) g(ζ) = ζ+—+ —

and shall show that for suitable choice of the constants β{ and β2 we obtain a

schlieht map of | ζ\ >_ 1 on a domain B with a Green's function whose sign

oscillates.

First we shall show that the corresponding f(ζ) is of the form

f ex! α 2 1
( 3 D / ( £ ) = c\ζ+ α 0 + -T- + — h * > 0.

In order to verify this we introduce the analytic functions

(32') ^

(32") 7(0- c\^+a0+aι ζ+ a

which coincide on | ζ\ = 1 with g(ζ) and f(ζ)9 respectively. According to

Lemma 5, we have to show that the constants c? C(o, Cί1? α 2 can be chosen in

such a way that

(33) ω ( ζ ) f{ζ)+g(ζ)

has an expansion in 1/ζ starting with the term \/ζ. We have

(34) +0o+ oΓi ζ+ΰ2 j{ φ

r α i 2 α 2 i

\1~F-T\
or

4 N . Mouskhelichvili gave a general procedure telling how to construct Green's func
tion of a domain whose mapping function g( ζ) is rational. We have to compute it in case
(30) in all details. See [ 4 ] . N. Mouskhelichvili, Application des integrates analogues c
celles de Cauchy a quelques probleme de la physique mathematique, Tiflis, 1922.
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(34') ω(ζ) = c ί(cΓ2 + β~2)ζ2 + ( ά ! + ^ ) C ~ (oΓ2 β t + ft α t -oΓ 0 )

26Γ2 /32 + 2/32 α 2 + αΊ β t + ft α t - 2

_ + . . .

The conditions on f{ζ) are, therefore, satisfied if

(35') «! + A = 0, α 2 + /32 = 0, α 0 = aι β2 + ft α 2 ,

and

c(2όΓ2 β 2 + 2/3 2 α 2 + "ά! βt + βΊ αi - 2) = - 1,

which gives

( 3 5 ) α i = - j8 l f α 2 = - / 3 2 , α 0 = - 2ft β 2 ,

and

c"1 = 2(1 + i3 t ΪOΊ + 2/S2 )8"2).

Our function fiζ) is, therefore, given by

( 3 6 ) / ( O J 2 U 3 f t 2 β β ) J \ ζ 2 β β\ζ-2βι β2-— - — J.

In order to obtain Γ, we have to compute, according to formula (23), the real

part of /( ζ) g (ζ) Using the expression (36), we obtain

- 2 ft /32 £ + A = - A - + 02 =- - 2 - = - - β 2 -

A 0i A

and
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βlβi β2β2

(37) c"1 mf(ζ)giζ)\ =
2 P4

- 2
β2β2 βιβ2β2

ζ2 ζζ2

We substitute further into the formula (34) for ω(ζ) the expressions (35) for

Cί0, CCi, OC2, and obtain

(38') U -2β1β2-βιζ-β2ζ
2

βι

2

+ c β2ζ
2

βι 2/32

1 + — +

C ζ3

or, after a simple computation,

(38) ω(ζ) = — + c
iβyβ2β2

In order to obtain h we may? according to (27) ? integrate ω(ζ):

(39) fω(ζ)dζ= logζ~2c
β2β2+2βιβ2 βιβ2β2

ζ
+ C (C a c o n s t a n t ) .

Since the rea l part of ( 3 9 ) must coincide on | ζ\ - 1 with $l\ f(ζ)g(ζ)\9 we

obtain, by comparison of ( 3 7 ) and ( 3 9 ) ,

(40') dl -

(40)
βιβi+2β2β2)

From the foregoing formulas we finally obtain, by substitution into ( 2 3 ) , the

following expression for Γ ( ^ ) in terms of ζ:
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(41)
,/3, β2β2

P2 P 4

-231 βlβ2ζ~
ζ P2C

with

(42)

- - l o g p - ( l - β ι β ι - β2β2),
c

c~ι = 2 ( 1 + βιβί + 2β2β2).

We can now show that the constants βι and β2 can be chosen in such a way

that g(ζ) represents a schlicht mapping of | ζ\ > 1, and still Γ(£) oscillates

in sign. Evidently we obtain an oscillating Γ if the normal derivative

on the unit circle | ζ\ = 1 becomes negative in some of its points. But we have,

from (41),

\do2l ί β ι - 20β2β2

-2ϊ ί
4/31j82

ζ ζ ζ ζ
ι β ι + 2β2β2),

or

(43)
'(-)

= 4 - - 16 β2 β2 - 16 S?

This expression becomes negative on the unit circle if

1 6 | / 3 , / 3 2 | > 4 - 4/3 1 /3 1 - 16/32

(44) i l l + 2 | / 3 2 | > 1 .
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The function g(ζ) represents a schlicht mapping of the exterior of the unit

circle if the difference quotient

giζ,)- g(ζ2)

has positive real part there. This is the case if

\βι\ + 2\β2\ < 1 .

But even the exterior of slightly smaller circle is mapped schlicht under this

condition if only the cases \βι + 2 \ β2 | = 1> and β and β of equal argu-

ment, are excluded. If, therefore, | / 3 ι | + 2 | j 8 2 | = l, and β* and β2

2 have dif-

ferent arguments, all sufficiently close values βi9 β2 give schlicht mappings

°f I C\ > 1> a n ( ^ c a n be chosen so that (44) is satisfied. We thus obtain ex-

amples of domains where Γ oscillates in sign.

We conjecture that, for the exterior of a convex curve and pole at infinity,

Γ is positive. We shall support this conjecture by proving:

THEOREM 3. For the exterior of a convex curve and pole at infinity the
2

positivity of Γ is equivalent to the positivity o/V Γ

This is important because V Γ is a harmonic function.

First we shall prove that the positivity of Γ implies the positivity of V Γ.

Assume first that the boundary curve is analytic. Then Γ can be analytically

continued beyond the boundary curve, and we can speak of derivatives of higher

order on the curve itself. From the positivity of Γ and the boundary condition

it follows immediately that the normal derivative of second order on the boundary

satisfies

d2r
— > o.
dn2 "

But the second derivative in the tangential direction is zero again on account

of the boundary conditions. We have, therefore, V Γ > 0 on the boundary.

Since V Γ is harmonic and, on account of Lemma 3,

2

the Laplacian V Γ is positive in the whole domain.
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The condition of analyticity of the boundary curve now can easily be dropped

by a limiting process.
2

We shall now prove the converse: V Γ > 0 implies Γ > 0. For the proof we

need some preliminary considerations regarding the following question: Which

differential operators of second order,

d2u d2u d2u
(45) v(x9 y) = an(x9 y) + 2a Ax9 y) - — — + a22(x, γ)

du du
+ 2aι(x9 y) + 2a2(x, y) + a3(x9 y)u,

dx dy

transform an arbitrary biharmonic function u(x9 y) into a harmonic function

v(x, y)? The answer is given in:

X

LEMMA 6. The most general operator of the required type is of the form

(46) v(x9

dm(x, y) du dm(x9 y) du

+
7 2

m u,
dx dx dy dy

where the function m(x, y) is of the form

(47) m{xy y) - cQ(x2 + y2 ) + 2c γx + 2c2y + c3 ( c 0 > c l s c29 c3 constants ).

Proof. We form

2 dVu dVu dSJu
(48 ) V v = a i i + 2 α l 2 + α 2 2 + terms of lower order.

dx2 dxdy dy2

Since the only relation between the derivatives of u up to the fourth order is

given by V u = 0, we see already from (48') that

(49') aί2 = 0, axι = α 2 2 .

Calling α u = α 2 2 = m, we can write (45) in the form

2 du du
(45') v = mV u + 2ax — + 2a2 + a3u.

dx dy

From (45') we obtain
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dm dV u dm dV u

dx dx dy dy
+ a2h——+ a2 r

dx dy

+ terms of lower order.

From (48") we conclude that

(49") o,

and (45') can be rewritten as

dm

77'
dm

dy

(45")
2 I dm du dm du

v - m V u - 2 I — — + —

I dx dx dy dy

From this equation we derive

(48'") V\; = V2mV2u-4
d2m d2u d2m d2u d2m d2u

+.2 +

dx
2
 dx

2
 dxdy dxdy dy

2
 dy

2

+ α3 V u + term of lower order ,

which gives

(49")
d2 d2m d2m

dx2 dy2 dxdJ
- 0, α 3 = V m,

and we obtain (45) in the form (46) with m given by an expression (47). We

verify easily that for any such choice of m the Laplacian satisfies

V2v = 0.

Let B now be the exterior of a closed convex curve, and Γ its Green's

function with the singular point at infinity, and assume that V Γ > 0 in B.

Take a straight line which does not penetrate into the interior of the boundary

curve. By change of the coordinate system we can make this line the y-axis,

so that B lies to its left. We now apply Theorem 5 with the special choice

m — x, and obtain that

(50) v = %V2Γ - 2 —
dx



436 CHARLES LOEWNER

is harmonic in B. On the boundary of B,

(51) — = 0, V2Γ > 0
dx

the latter inequality being a consequence of the assumption that V Γ > 0 in B.

Since our domain lies completely in the half-plane x < 0, we conclude from (51)

that v has nonpositive boundary values. From the behavior of Γ at z - oo ex-

pressed by Lemma 2, we see that v is regular at infinity. From the extremum

properties of harmonic functions we now conclude that i; < 0 in the whole B,

In particular, on the y-axis where x = 0 we obtain the result

(52) > 0.
dx -

Let I now be a half line originating in a point C of the boundary curve of

B orthogonal to the tangent line at C. Laying the y-axis perpendicular to I

through any of its points, we see that (52) holds in all points of /; and, since

Γ = 0 at C, we arrive at the inequality Γ >_ 0 along the whole I. But the equality

cannot hold, for otherwise Γ would be zero along a whole segment of / and,

since it is analytic, along the whole I. This contradicts Lemma 2, which im-

plies that Γ—» oo as z —»oo. The whole domain B can be covered with half

lines having the properties of U The inequality Γ > 0 holds, therefore, in the

whole B.
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