AN ISOPERIMETRIC MINIMAX

William Gustin

Introduction. In the preceding paper J. W. Green considers for a given convex body K in the euclidean plane the minimum of the isoperimetric ratio r (ratio of squared perimeter l^{2} to area a) taken over all affine transforms k of K. He then investigates the maximum value taken over all K of this minimum ratio, shows by variational methods that such a maximum is attained by some polygon of five or fewer sides, and conjectures that it is, in fact, attained by a triangle with $12 \sqrt{3}$, the isoperimetric ratio of an equilateral triangle, as the minimax ratio. I shall prove this conjecture directly by refining an estimation used by Green, the precise statement of results being as follows:
I. Let K be an nontriangular plane convex body; there then exists an affine transform k of K with $r(k)<12 \sqrt{3}$.
II. Let T be a nonequilateral triangle; then $r(T)>12 \sqrt{3}$.

Before taking up the proof of these results we dispose of a lemma.
III. Let k be a possibly degenerate convex body with $s \subset k \subset t$, wherein t is an equilateral triangle, and s a side of t; there then exists a number x with $0 \leqq x \leqq 1$ such that

$$
\begin{aligned}
& l(k) \leqq(2 / 3+x / 3) l(t) \\
& a(k) \leqq x a(t),
\end{aligned}
$$

simultaneous equality occurring if and only if either $x=0, k=s$ or $x=1, k=t$.
Proof of III. Let p be that supporting strip of k parallel to the line-segment s; and let x be the ratio of the width of p to the width or altitude of t. Thus $0 \leqq x \leqq 1$, with $x=0$ or $x=1$ according as $k=s$ or $k=t$. Choose a point at which k touches the side of p opposite s, and define k_{*} to be the triangle with this point as apex and s as base. Define k^{*} to be the trapezoid formed by intersection of p and t. Clearly $s \subset k_{*} \subset k \subset k^{*} \subset t$; and $k_{*}=k=k^{*}$ if and only if $k=s$ or $k=t$.

Since $k \supset k_{*}$, it follows that $a(k) \geqq a\left(k_{*}\right)$, with equality if and only if $k=k_{*}$. And since $k \subset k^{*}$, it follows that $l(k) \leqq l\left(k^{*}\right)$ with equality if and only if $k=k^{*}$. These inequalities become, upon the easy computation of $a\left(k_{*}\right)$ and $l\left(k^{*}\right)$, the asserted inequalities of III.

Proof of I. Let K be the given nontriangular convex body. Since the area functional is continuous, it easily follows from a compactness argument that a triangle T of maximal area can be inscribed in K. Let the three sides of T be labelled $S_{i}(i=1,2,3)$, and let V_{i} be that vertex of T opposite S_{i}. Because the area of T is maximal, the line L_{i} through V_{i} and parallel to S_{i} is a line of support of K. The triangle formed by the three lines L_{i} then circumscribes K and also T; it is composed of four nonoverlapping congruent triangles T and T_{i}, where T_{i} is labelled so as to have S_{i} as a side. That part K_{i} of K in T_{i} is a possibly degenerate convex body with $S_{i} \subset K_{i} \subset T_{i}$. Now any triangle can be affinely transformed into any other triangle. In particular, T can be affinely transformed into an equilateral triangle t, with T_{i} going into t_{i}, S_{i} into s_{i}, K_{i} into k_{i}, and K into k. Therefore $s_{i} \subset k_{i} \subset t_{i}$, and t_{i} is congruent to t. According to III, ratios x_{i} exist giving inequalities on $l\left(k_{i}\right)$ and $a\left(k_{i}\right)$. Furthermore, since K and hence k is nontriangular, not all $x_{i}=0$ and not all $x_{i}=1$. Therefore $0<x<1$, where $x=\sum x_{i} / 3$. Evidently k is composed of the four nonoverlapping sets t and k_{i} in such a way that

$$
\begin{aligned}
& l(k)=\sum l\left(k_{i}\right)-l(t) \leqq(1+x) l(t), \\
& a(k)=\sum a\left(k_{i}\right)+a(t) \geqq(1+3 x) a(t),
\end{aligned}
$$

whereupon

$$
r(k) \leqq \frac{(1+x)^{2}}{1+3 x} r(t)=\left[1-\frac{x(1-x)}{1+3 x}\right] 12 \sqrt{3}<12 \sqrt{3},
$$

as was to be shown.
Proof of II. Through II is merely a matter of trigonometry, and very likely can be verified by exhibiting a neat but perhaps unperspicuous trigonometric identity, I shall here prove it by the sort of methods used above.

Let T be a nonequilateral triangle. Define S_{i}, V_{i}, L_{i} as above. Since T is nonequilateral, some two of its sides, say S_{1} and S_{2}, are unequal. Let v_{3} be that point on the line L_{3}, regarded as a linear mirror, at which $v_{1}=V_{1}$ is reflected when viewed from $v_{2}=V_{2}$; and let t be the so symmetrized isosceles triangle
with vertices v_{i} and sides s_{i}. Then the path $s_{1} s_{2}$ is shorter than $S_{1} S_{2}$, so $l(t)<l(T)$; and, since both triangles have the same base and altitude, $a(t)=$ $a(T)$. Therefore $r(t)<r(T)$. Consequently if the minimum isoperimetric ratio among triangles is attained, it is attained by an equilateral triangle only; whereupon it would follow that $r(T)>12 \sqrt{3}$, as was to be shown. Now all possible triangle isoperimetric ratios are realized by triangles of fixed perimeter containing a fixed point. By a compactness argument, some such triangle achieves a maximum area and hence a minimum isoperimetric ratio. This completes the proof.

Indiana University

